Submitted:
26 May 2025
Posted:
29 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Herbal Material
2.2. Essential Oil Extraction and Solutions
2.3. Essential Oil Analysis: Gas Chromatography Coupled with Mass Spectrometry (GC-MS)
2.4. Cell Culture
2.5. MTT Assay
2.6. Trypan Blue Viability Assay
2.7. Assessment of Cell Proliferation Kinetics
2.8. DNA Damage Assay
2.9. Reactive Oxygen Species Detection Assay
2.10. Statistical Analysis
3. Results
3.1. Chemical Characterization of E. uniflora EO
3.2. Microscopic Morphology of Colonic Cell Lines
3.3. Evaluation of the Cytotoxic Effect of E. uniflora EO on Cell Lines
3.4. Cell Proliferation Kinetics of CCD 841 CoN and Caco-2 Cell Lines
3.5. DNA Damage Produced by the E. uniflora EO
3.6. Oxidative Stress Produced by E. uniflora EO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EO | Essential Oil |
| TB | Trypan Blue |
| DT | Cell Doubling Time |
| FBS | Fetal Bovine Serum |
| PBS | Phosphate buffer saline |
| CRC | Colorectal Cancer |
References
- Dzobo, K. 2.20 - The Role of Natural Products as Sources of Therapeutic Agents for Innovative Drug Discovery. In Comprehensive Pharmacology, Kenakin, T., Ed.; Elsevier: Oxford, 2022; pp. 408–422. [Google Scholar]
- Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology 2013, 4. [Google Scholar] [CrossRef]
- Keszenman, D.J.; German, P. Traditional medicine usage of pitanga’s leaves for medicinally valuable infusions is directing the search for potential chemotherapeutic agents against colon cancer. In ABS is Genetic Resources for Sustainable Development; UNDP – Global Environmental Finance Sustainable Development Cluster Bureau for Policy and Programme Support United Nations Development Programme; 2018; Volume 304, pp. 212–219. [Google Scholar]
- Allegra, S.; De Francia, S.; Turco, F.; Bertaggia, I.; Chiara, F.; Armando, T.; Storto, S.; Mussa, M.V. Phytotherapy and Drugs: Can Their Interactions Increase Side Effects in Cancer Patients? Journal of Xenobiotics 2023, 13, 75–89. [Google Scholar] [CrossRef]
- Asiimwe, J.B.; Nagendrappa, P.B.; Atukunda, E.C.; Kamatenesi, M.M.; Nambozi, G.; Tolo, C.U.; Ogwang, P.E.; Sarki, A.M. Prevalence of the Use of Herbal Medicines among Patients with Cancer: A Systematic Review and Meta-Analysis. Evidence-Based Complementary and Alternative Medicine 2021, 2021, 9963038. [Google Scholar] [CrossRef]
- Tayeb, B.A.; Kusuma, I.Y.; Osman, A.A.M.; Minorics, R. Herbal compounds as promising therapeutic agents in precision medicine strategies for cancer: A systematic review. Journal of Integrative Medicine 2024, 22, 137–162. [Google Scholar] [CrossRef]
- Youn, B.-Y.; Kim, J.-H.; Jo, Y.-K.; Yoon, S.; Im, J.-Y.; Kim, H.-J.; Lee, J.-D.; Ko, S.-G. Current Characteristics of Herbal Medicine Interventions for Cancer on Clinical Databases: A Cross-Sectional Study. Integrative Cancer Therapies 2023, 22, 15347354231218255. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Chambers, A.C.; Dixon, S.W.; White, P.; Williams, A.C.; Thomas, M.G.; Messenger, D.E. Demographic trends in the incidence of young-onset colorectal cancer: a population-based study. British Journal of Surgery 2020, 107, 595–605. [Google Scholar] [CrossRef]
- Howren, A.; Sayre, E.C.; Loree, J.M.; Gill, S.; Brown, C.J.; Raval, M.J.; Farooq, A.; De Vera, M.A. Trends in the Incidence of Young-Onset Colorectal Cancer With a Focus on Years Approaching Screening Age: A Population-Based Longitudinal Study. JNCI: Journal of the National Cancer Institute 2021, 113, 863–868. [Google Scholar] [CrossRef]
- Musetti, C.; Garau, M.; Alonso, R.; Piñeros, M.; Soerjomataram, I.; Barrios, E. Colorectal Cancer in Young and Older Adults in Uruguay: Changes in Recent Incidence and Mortality Trends. International Journal of Environmental Research and Public Health 2021, 18, 8232. [Google Scholar] [CrossRef]
- Piñeros, M.; Laversanne, M.; Barrios, E.; Cancela, M.d.C.; de Vries, E.; Pardo, C.; Bray, F. An updated profile of the cancer burden, patterns and trends in Latin America and the Caribbean. The Lancet Regional Health – Americas 2022, 13. [Google Scholar] [CrossRef]
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on Diet, Nutrition, Physical Activity, and Cancer: Impact and Future Directions. The Journal of Nutrition 2020, 150, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Arrillaga, B. Plantas usadas en medicina natural. 1997. [Google Scholar]
- Davies, P. Fichas técnicas de cultivo. In Estudios de domesticación y cultivo de especies medicinales y aromáticas nativas; FPTA-INIA, Ed.; INIA: Montevideo, Uruguay, 2004; pp. 37–120. [Google Scholar]
- Paz, E.A.; Bassagoda, M.J.; Ferreira, F. Yuyos: uso racional de las plantas medicinales. Ed. Fin de Siglo, 1992. [Google Scholar]
- Tabakian, G. Estudio comparativo de plantas medicinales vinculadas a tradiciones indígenas y europeas en Uruguay. Bonplandia 2019, 28, 135–158. [Google Scholar] [CrossRef]
- Stefanello, M.É.A.; Pascoal, A.C.R.F.; Salvador, M.J. Essential Oils from Neotropical Myrtaceae: Chemical Diversity and Biological Properties. Chemistry & Biodiversity 2011, 8, 73–94. [Google Scholar] [CrossRef]
- Brussa, C.A.; Grela González, A. Flora arbórea del Uruguay : con énfasis en las especies de Rivera y Tacuarembó; 2007; p. 544. [Google Scholar]
- Jolochín Manorani, G. Estudios biogeográficos en poblaciones uruguayas de Eugenia uniflora L. Universidad de la República, Facultad de Ciencias, 2016.
- Bagetti, M.; Facco, E.M.P.; Piccolo, J.; Hirsch, G.E.; Rodriguez-Amaya, D.; Kobori, C.N.; Vizzotto, M.; Emanuelli, T. Physicochemical characterization and antioxidant capacity of pitanga fruits (Eugenia uniflora L.). Food Science and Technology 2011, 31. [Google Scholar] [CrossRef]
- Vizzotto, M. Fitoquímicos em pitanga (Eugenia uniflora L.): seu potencial na prevencao e comabte a doencas. In Proceedings of the III Simpósio nacional do morango II Encontro sobre pequenas frutas e frutas nativas do Mercosul, Pelotas, Brasil; 2006; pp. 29–34. [Google Scholar]
- Ferragut, G. , Lombardo, P. , Severi, M.A., Vignale, B., Cedano, J., Dellacassa, E., Pérez, E. Estudios de bioactividad de extractos de plantas nativas uruguayas y su papel inmunológico. In Proceedings of the XV Jornadas de la Sociedad Uruguaya de Biociencias., Piriápolis, Uruguay; 2014. [Google Scholar]
- Fidelis, E.M.; Savall, A.S.P.; de Oliveira Pereira, F.; Quines, C.B.; Ávila, D.S.; Pinton, S. Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: A review. Arabian Journal of Chemistry 2022, 15, 103691. [Google Scholar] [CrossRef]
- Lombardo, P. Caracterización química y bioactividad de aceites esenciales contra patógenos de los cítricos. Universidad de la República, Montevideo, Uruguay, 2015.
- Lombardo, P.; Guimaraens, A.; Franco, J.; Dellacassa, E.; Pérez Faggiani, E. Effectiveness of essential oils for postharvest control of Phyllosticta citricarpa (citrus black spot) on citrus fruit. Postharvest Biology and Technology 2016, 121, 1–8. [Google Scholar] [CrossRef]
- Rodrigues, K.A.d.F.; Amorim, L.V.; Oliveira, J.M.G.d.; Dias, C.N.; Moraes, D.F.C.; Andrade, E.H.d.A.; Maia, J.G.S.; Carneiro, S.M.P.; Carvalho, F.A.d.A. Eugenia uniflora L. Essential Oil as a Potential Anti-Leishmania Agent: Effects on Leishmania amazonensis and Possible Mechanisms of Action. Evidence-Based Complementary and Alternative Medicine 2013, 2013, 279726. [Google Scholar] [CrossRef]
- Sánchez, A.G. , Ferragut, G., Lombardo, P., Severi, M.A., Cedano, J., Vignale, B., Vázquez, A., Dellacassa, E., Keszenman, D.J. Efectos celulares de extractos de Pitanga. In Proceedings of the 8vo Encuentro Nacional de Frutos Nativos, Rocha, Uruguay, 2017. [Google Scholar]
- Victoria, F.N.; Lenardão, E.J.; Savegnago, L.; Perin, G.; Jacob, R.G.; Alves, D.; Silva, W.P.d.; Motta, A.d.S.d.; Nascente, P.d.S. Essential oil of the leaves of Eugenia uniflora L.: Antioxidant and antimicrobial properties. Food and Chemical Toxicology 2012, 50, 2668–2674. [Google Scholar] [CrossRef]
- Vignale, B. , Cabrera, D., Rodríguez, P., Machado, G. Selección de frutales nativos en Uruguay. Horticultura Argentina 2016, 35, 19–29. [Google Scholar]
- Weyerstahl, P.; Marschall-Weyerstahl, H.; Christiansen, C.; Oguntimein, B.O.; Adeoye, A.O. Volatile Constituents of Eugenia uniflora Leaf Oil1. Planta Med 1988, 54, 546–549. [Google Scholar] [CrossRef]
- Borsoi, F.T.; Rosa, B.B.d.S.; Filomena, M.; Oliveira, F.D.L.d.; Dulce, B.M.; and Kempka, A.P. Eugenia uniflora L. seed and pulp extracts: phytochemical profile, cytotoxic potential, antitumoral activity, and α-amylase and α-glucosidase inhibition capacity. Natural Product Research 2023, 37, 3862–3867. [Google Scholar] [CrossRef]
- Falcão, T.R.; de Araújo, A.A.; Soares, L.A.L.; de Moraes Ramos, R.T.; Bezerra, I.C.F.; Ferreira, M.R.A.; de Souza Neto, M.A.; Melo, M.C.N.; de Araújo, R.F.; de Aguiar Guerra, A.C.V.; et al. Crude extract and fractions from Eugenia uniflora Linn leaves showed anti-inflammatory, antioxidant, and antibacterial activities. BMC Complementary and Alternative Medicine 2018, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.G.; Pinheiro, J.d.S.; Silveira, G.F.; Beckenkamp, A.; Buffon, A.; Bruno, A.N. Antineoplastic potential of the aqueous crude extract of Eugenia uniflora L. in human cervical cancer. Brazilian Journal of Pharmaceutical Sciences 2018, 54. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy. Carol Stream 2005, 16, 65–120. [Google Scholar]
- McLafferty, F.W.; Stauffer, D.B.; Loh, S.Y. Comparative evaluations of mass spectral data bases. J Am Soc Mass Spectrom 1991, 2, 438–440. [Google Scholar] [CrossRef]
- Mondello, L. Mass spectra of flavors and fragrances of natural and synthetic compounds; Wiley Blackwell: Hoboken, NJ, USA, 2015; Volume 10. [Google Scholar]
- Dellacassa, E.; Lorenzo, D.; Paz, D. Procesos de extracción aplicados a la obtención de productos aromáticos de origen vegetal. In Estudios en domesticación y cultivos de especies medicinales y aromáticas nativas; Davies, P., Ed.; FPTA-INIA; INIA: Montevideo, Uruguay, 2004a; pp. 155–160. [Google Scholar]
- Dellacassa, E.; Lorenzo, D.; Paz, D. . Caracterización fisicoquímica de los aceites esenciales. In Estudios en domesticación y cultivos de especies medicinales y aromáticas nativas; Davies, P., Ed.; FPTA-INIA; INIA: Montevideo, Uruguay, 2004b; pp. 161–169. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Avelar-Freitas, B.A.; Almeida, V.G.; Pinto, M.C.; Mourao, F.A.; Massensini, A.R.; Martins-Filho, O.A.; Rocha-Vieira, E.; Brito-Melo, G.E. Trypan blue exclusion assay by flow cytometry. Braz J Med Biol Res 2014, 47, 307–315. [Google Scholar] [CrossRef]
- Keszenman, D.J.; Salvo, V.A.; Nunes, E. Effects of bleomycin on growth kinetics and survival of Saccharomyces cerevisiae: a model of repair pathways. J Bacteriol 1992, 174, 3125–3132. [Google Scholar] [CrossRef]
- Benitez-Bribiesca, L.; Sanchez-Suarez, P. Oxidative damage, bleomycin, and gamma radiation induce different types of DNA strand breaks in normal lymphocytes and thymocytes. A comet assay study. Ann N Y Acad Sci 1999, 887, 133–149. [Google Scholar] [CrossRef]
- Keszenman, D.J.; Carmen Candreva, E.; Nunes, E. Cellular and molecular effects of bleomycin are modulated by heat shock in Saccharomyces cerevisiae. Mutat Res 2000, 459, 29–41. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Costa-Font, J.; Sato, A.; Saenz-de-Miera, B. Cultural persistence of self-assessed health: A study of first- and second-generation migrants. J Migr Health 2025, 11, 100280. [Google Scholar] [CrossRef] [PubMed]
- Benfatti, C.S.; Cordova, S.M.d.; Guedes, A.; Magina, M.D.A.; Cordova, C.M.M.d. Atividade antibacteriana in vitro de extratos brutos de espécies de Eugenia sp frente a cepas de molicutes. Revista Pan-Amazônica de Saúde 2010, 1, 33–39. [Google Scholar] [CrossRef]
- de Souza Prestes, L.; Damé Schuch, L.F.; Hörnke Alves, G.; Ziemann dos Santos, M.A.; Alves Rodrigues, M.R.; Araújo Meireles, M.C. Evaluación de la actividad bactericida de aceites esenciales de hojas de guayabo, pitango y arazá. Revista Cubana de Plantas Medicinales 2011, 16, 324–330. [Google Scholar]
- Schmeda-Hirschmann, G.; Theoduloz, C.; Franco, L.; Ferro, E.; de Arias, A.R. Preliminary pharmacological studies on Eugenia uniflora leaves: xanthine oxidase inhibitory activity. J Ethnopharmacol 1987, 21, 183–186. [Google Scholar] [CrossRef]
- Ascari, J.; Felipe Maciel Pereira, M.; Schaffka, V.M.; Nunes, D.S.; Magalhães, C.G.; Santos, J.S.; Granato, D.; Carmo, M.; Azevedo, L.; Archilha, M.; et al. Selina-1,3,7(11)-trien-8-one and Oxidoselina-1,3,7(11)-trien-8-one from Eugenia uniflora Leaf Essential Oil and Their Cytotoxic Effects on Human Cell Lines. Molecules 2021, 26. [Google Scholar] [CrossRef]
- Figueiredo, P.L.B.; Pinto, L.C.; da Costa, J.S.; da Silva, A.R.C.; Mourão, R.H.V.; Montenegro, R.C.; da Silva, J.K.R.; Maia, J.G.S. Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. Journal of Ethnopharmacology 2019, 232, 30–38. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Aranha, E.S.P.; de Azevedo, S.G.; dos Reis, G.G.; Silva Lima, E.; Machado, M.B.; de Vasconcellos, M.C. Essential oils from Eugenia spp.: In vitro antiproliferative potential with inhibitory action of metalloproteinases. Industrial Crops and Products 2019, 141, 111736. [Google Scholar] [CrossRef]
- de Oliveira, G.G.F.V.; Longue, M.F.; Pescinelli, L.M.R.; Charret, T.S.; Nogueira, T.S.R.; Pereira, M.T.M.; Vieira, I.J.C.; Abreu, L.S.; Pascoal, V.D.B.; Pascoal, A.C.R.F. Eugenia brasiliensis: Analysis of the Chemical Profile and Evaluation of Cytotoxic Potential. Chem Biodivers 2025, e202500429. [Google Scholar] [CrossRef] [PubMed]
- Ismiyati, N.; Putri, D.; Kusumastuti, S.A.; Febriansyah, R. Antiproliferative Effect of Ethanolic Extract Eugenia uniflora Lam. Leaves on T47D Cells. Indonesian Journal of Cancer Chemoprevention 2012, 3, 370. [Google Scholar] [CrossRef]
- Spyridopoulou, K.; Tiptiri-Kourpeti, A.; Lampri, E.; Fitsiou, E.; Vasileiadis, S.; Vamvakias, M.; Bardouki, H.; Goussia, A.; Malamou-Mitsi, V.; Panayiotidis, M.I.; et al. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci Rep 2017, 7, 3782. [Google Scholar] [CrossRef] [PubMed]
- Agus, H.H.; Sarp, C.; Cemiloglu, M. Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in Schizosaccharomyces pombe. Toxicol Res (Camb) 2018, 7, 848–858. [Google Scholar] [CrossRef]
- Jia, S.S.; Xi, G.P.; Zhang, M.; Chen, Y.B.; Lei, B.; Dong, X.S.; Yang, Y.M. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells. Oncol Rep 2013, 29, 349–354. [Google Scholar] [CrossRef]
- Okumura, N.; Yoshida, H.; Nishimura, Y.; Kitagishi, Y.; Matsuda, S. Terpinolene, a component of herbal sage, downregulates AKT1 expression in K562 cells. Oncol Lett 2012, 3, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Menezes, I.O.; Scherf, J.R.; Martins, A.O.B.P.B.; Ramos, A.G.B.; Quintans, J.d.S.S.; Coutinho, H.D.M.; Ribeiro-Filho, J.; de Menezes, I.R.A. Biological properties of terpinolene evidenced by in silico, in vitro and in vivo studies: A systematic review. Phytomedicine 2021, 93, 153768. [Google Scholar] [CrossRef]
- Zhong, Z.-C.; Zhao, D.-D.; Liu, Z.-D.; Jiang, S.; Zhang, Y.-L. A New Human Cancer Cell Proliferation Inhibition Sesquiterpene, Dryofraterpene A, from Medicinal Plant Dryopteris fragrans (L.) Schott. Molecules 2017, 22, 180. [Google Scholar] [CrossRef]
- Hui, L.M.; Zhao, G.D.; Zhao, J.J. δ-Cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest. Int J Clin Exp Pathol 2015, 8, 6046–6056. [Google Scholar]
- Chien, T.C.; Lo, S.F.; Ho, C.L. Chemical composition and anti-inflammatory activity of Chamaecyparis obtusa f.formosana wood essential oil from Taiwan. Nat Prod Commun 2014, 9, 723–726. [Google Scholar]
- Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; ME, L.L. Oxidative stress and cancer: an overview. Ageing Res Rev 2013, 12, 376–390. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, F.A.B.; Wallau, G.L.; Pinho, A.I.; Nunes, M.E.M.; Leite, N.F.; Tintino, S.R.; da Costa, G.M.; Athayde, M.L.; Boligon, A.A.; Coutinho, H.D.M.; et al. Eugenia uniflora leaves essential oil induces toxicity in Drosophila melanogaster: involvement of oxidative stress mechanisms. Toxicology Research 2015, 4, 634–644. [Google Scholar] [CrossRef]
- de Carvalho, N.R.; Rodrigues, N.R.; Macedo, G.E.; Bristot, I.J.; Boligon, A.A.; de Campos, M.M.; Cunha, F.A.B.; Coutinho, H.D.; Klamt, F.; Merritt, T.J.S.; et al. Eugenia uniflora leaf essential oil promotes mitochondrial dysfunction in Drosophila melanogaster through the inhibition of oxidative phosphorylation. Toxicol Res (Camb) 2017, 6, 526–534. [Google Scholar] [CrossRef] [PubMed]









| Dilutions | |||||
|---|---|---|---|---|---|
| 1/2000 | 1/1000 | 1/500 | 1/200 | 1/100 | |
| [EO] (mg/mL) | 0.66 | 1.32 | 2.64 | 6.60 | 13.2 |
| LRI1 | Compound2 | % | LRI | compound | % |
| 1082 | Hexanal | 0.01 | 1666 | α-Humulene | 0.07 |
| 1110 | β-Pinene | 0.01 | 1668 | γ-Gurjunene | 0.06 |
| 1122 | Sabinene | 0.01 | 1699 | Bicyclogermacrene | 0.02 |
| 1162 | α-Terpinene | 0.01 | 1682 | β-Humulene | 0.13 |
| 1167 | α-Phellandrene | 0.01 | 1684 | trans-β-Guaiene | 0.01 |
| 1169 | Myrcene | 1.10 | 1686 | β-Chamigrene | 3.71 |
| 1198 | Limonene | 0.25 | 1688 | Zonarene | 0.48 |
| 1209 | β-Phellandrene | 0.26 | 1689 | γ-Muurolene | 5.22 |
| 1239 | 2-Pentylfuran | 0.01 | 1708 | Germacrene D | 0.22 |
| 1250 | trans-β-Ocimene | 0.71 | 1720 | α-Cadinene | 0.41 |
| 1234 | cis-β-Ocimene | 1.82 | 1722 | Viridiflorene | 0.71 |
| 1270 | p-Cymene | 0.03 | 1723 | α-Muurolene | 0.55 |
| 1282 | Terpinolene | 0.03 | 1746 | cis-Muurola-3,5-diene | 0.41 |
| 1351 | 1-Hexanol | 0,01 | 1755 | d-Cadinene | 18.73 |
| 1351 | allo-Ocimene | 0.01 | 1806 | Germacrene B | 0.55 |
| 1380 | (Z)-3-Hexen-1-ol | 0.07 | 1808 | trans-Calamenene | 0.02 |
| 1460 | α-Cubebene | 0.06 | 1818 | cis-Calamenene | 0.27 |
| 1523 | β-Bourbonene | 0.03 | 1918 | β-Calacorene | 0.06 |
| 1600 | Guaia-6,9-diene | 0.03 | 1901 | α-Colacorene | 0.05 |
| 1626 | β-Copaene | 0.59 | 1930 | Palustrol | 0.01 |
| 1636 | trans-Caryophyllene | 0.23 | 2082 | Globulol | 0.54 |
| 1637 | Aromadendrene | 0.17 | 2089 | Viridiflorol | 3.85 |
| 1642 | trans-Muurola-3,5-diene | 0.17 | 2185 | τ-Muurolol | 12.72 |
| 1652 | α-Guaiene | 0.01 | 2325 | Hydroxy calamenene | 41.04 |
| 1658 | γ-Elemene | 0.05 | |||
| Total | 95.51 |
| Nmax (cells/mL) | DT (h) | t1/2 (h) | tlag (h) | |
| Control CCD 841 CoN | 1.0x106 ± 1.5x105 | 57.9 ± 8.9 | 309.5 ± 30.8 | 66.0 ± 3.0 |
| Control Caco-2 | 8.2x106 ± 2.8x105 | 17.1 ± 3.0 | 168.0 ± 5.1 | 12.0 ± 0.6 |
| Treated Cado-2 | 5.2x106 ± 2.6x105 | 60.0 ± 3.0 | 225.0 ± 11.3 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
