Submitted:
27 May 2025
Posted:
27 May 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Literature Selection
2.2. Visualization Using VOSviewer Software
3. Results
3.1. Research Trends of 'Wood' OR 'Timber' AND 'Non-Destructive Testing Methods' AND 'Mechanical Properties'
3.2. Research Trends of 'Wood' OR 'TIMBER' AND 'Non-Destructive Testing Methods' AND 'Ultrasonic Wave Method' AND 'Mechanical Properties'
3.3. Research Trends of 'Wood' OR 'Timber' AND 'Non-Destructive Testing Methods' AND 'Ultrasonic Wave Method' AND 'Modulus of Elasticity'
3.4. Research Trends of 'Heviz' AND 'Wood' OR 'Timber' AND 'Non-Destructive Testing Methods' AND 'Ultrasonic Wave Method' AND 'Modulus of Elasticity'
4. Limitation of Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NDT | Non-destructive testing. |
| MOE | Modulus of elasticity. |
| UPV | Ultrasonic pulse velocity. |
References
- M. B. F. M. Puaad, Z. M. B. F. M. Puaad, Z. Ahmad, and H. Muhamad Azlan, “Ultrasonic Wave Non-Destructive Method for Predicting the Modulus of Elasticity of Timber,” in InCIEC 2013, 2014. [CrossRef]
- Espinosa, L.; Brancheriau, L.; Cortes, Y.; Prieto, F.; Lasaygues, P. Ultrasound computed tomography on standing trees: accounting for wood anisotropy permits a more accurate detection of defects. Ann. For. Sci. 2020, 77, 1–13. [Google Scholar] [CrossRef]
- Gonçalves, R.; Trinca, A.J.; Ferreira, G.C.d.S. Effect of coupling media on velocity and attenuation of ultrasonic waves in Brazilian wood. J. Wood Sci. 2011, 57, 282–287. [Google Scholar] [CrossRef]
- V. Bucur et al., “Nondestructuve Testing and Evaluation of Wood: A Worldwide Research Update,” 2009. [Online]. Available: https://www.researchgate.net/publication/237420077.
- C. A. Senalik, G. C. A. Senalik, G. Schueneman, and R. J. Ross, “Ultrasonic-Based Nondestructive Evaluation Methods for Wood: A Primer and Historical Review,” 2014. [Online]. Available: www.fpl.fs.fed.us.
- R. J. Ross, B. K. R. J. Ross, B. K. Brashaw, and R. F. Pellerin, “Nondestructive Evaluation of Wood: Second Edition,” 2015.
- R. J. Ross and R. F. Pellerin, “United States Department of Agriculture Nondestructive Nondestructive Testing for Assessing Testing for Assessing Wood Members in Wood Members in Structures Structures A Review A Review,” 1994.
- Hasegawa, M.; Mori, M.; Matsumura, J. Non-Contact Velocity Measurement of Japanese Cedar Columns Using Air-Coupled Ultrasonics. World J. Eng. Technol. 2016, 04, 45–50. [Google Scholar] [CrossRef]
- R. J. Ross, X. Wang, and C. A. Senalik, “Nondestructive Evaluation of Wood Products,” in Springer Handbooks, 2023. [CrossRef]
- B. Raj, T. B. Raj, T. Jayakumar, and M. Thavasimuthu, Practical Non-destructive Testing. 2002.
- Сoбoль, Б.В.; Soloviev, A.N.; Vasiliev, P.V.; Lyapin, A.A. Modeling of Ultrasonic Flaw Detection Processes in the Task of Searching and Visualizing Internal Defects in Assemblies and Structures. Adv. Eng. Res. 2023, 23, 433–450. [Google Scholar] [CrossRef]
- Shang, L.; Zhang, Z.; Tang, F.; Cao, Q.; Pan, H.; Lin, Z. Signal Process of Ultrasonic Guided Wave for Damage Detection of Localized Defects in Plates: From Shallow Learning to Deep Learning. J. Data Sci. Intell. Syst. 2023. [Google Scholar] [CrossRef]
- Xu, X.; Ran, B.; Jiang, N.; Xu, L.; Huan, P.; Zhang, X.; Li, Z. A systematic review of ultrasonic techniques for defects detection in construction and building materials. Measurement 2024, 226. [Google Scholar] [CrossRef]
- Kuchipudi, S.T.; Ghosh, D. An ultrasonic wave-based framework for imaging internal cracks in concrete. Struct. Control. Heal. Monit. 2022, 29. [Google Scholar] [CrossRef]
- Kuchipudi, S.T.; Pudovikov, S.; Wiggenhauser, H.; Ghosh, D.; Rabe, U. Imaging of vertical surface-breaking cracks in concrete members using ultrasonic shear wave tomography. Sci. Rep. 2023, 13, 1–19. [Google Scholar] [CrossRef]
- Cui, R.; de Souza, C.W.; Katko, B.J.; di Scalea, F.L.; Kim, H. Non-destructive damage localization in built-up composite aerospace structures by ultrasonic guided-wave multiple-output scanning. Compos. Struct. 2022, 292. [Google Scholar] [CrossRef]
- Ju, T.; Findikoglu, A.T. Large Area Detection of Microstructural Defects with Multi-Mode Ultrasonic Signals. Appl. Sci. 2022, 12, 2082. [Google Scholar] [CrossRef]
- Capriotti, M.; Varela, K.; Ellison, A.; Kim, E.H.; DI Scalea, F.L.; Kim, H. ULTRASONIC GUIDED WAVES DEFECT SIGNATURES FOR DAMAGE IDENTIFICATION IN COMPOSITE AEROSPACE STRUCTURES. Proceedings for the American Society for Composites-Thirty Seventh Technical Conference. LOCATION OF CONFERENCE, COUNTRYDATE OF CONFERENCE;
- Premrov, M.; Leskovar, V.Ž. Innovative Structural Systems for Timber Buildings: A Comprehensive Review of Contemporary Solutions. Buildings 2023, 13, 1820. [Google Scholar] [CrossRef]
- Ettelaei, A.; Layeghi, M.; Hosseinabadi, H.Z.; Ebrahimi, G. Prediction of modulus of elasticity of poplar wood using ultrasonic technique by applying empirical correction factors. Measurement 2018, 135, 392–399. [Google Scholar] [CrossRef]
- J. El Najjar and S. Mustapha, “Assessment of the structural integrity of timber utility poles using ultrasonic waves,” in Materials Research Proceedings, 2021. [CrossRef]
- Y. V. Ronnie, “Ultrasonic characterization of engineering performance of oriented strandboard,” Aug. 2003. [Online]. Available: https://repository.lsu.
- Bucur, V. A Review on Acoustics of Wood as a Tool for Quality Assessment. Forests 2023, 14, 1545. [Google Scholar] [CrossRef]
- El Najjar, J.; Mustapha, S. Condition assessment of timber utility poles using ultrasonic guided waves. Constr. Build. Mater. 2021, 272. [Google Scholar] [CrossRef]
- Gonçalves, R.; Lorensani, R.G.M.; Negreiros, T.O.; Bertoldo, C. Moisture-related adjustment factor to obtain a reference ultrasonic velocity in structural lumber of plantation hardwood. Wood Mater. Sci. Eng. 2017, 13, 254–261. [Google Scholar] [CrossRef]
- Bachtiar, E.V.; Sanabria, S.J.; Mittig, J.P.; Niemz, P. Moisture-dependent elastic characteristics of walnut and cherry wood by means of mechanical and ultrasonic test incorporating three different ultrasound data evaluation techniques. Wood Sci. Technol. 2016, 51, 47–67. [Google Scholar] [CrossRef]
- M. Candian and A. Sales, “Application of nondestructive ultrasound techniques, transverse vibration and stress-wave for timber evaluation,” Ambiente Construído, vol. 9, 2009.
- Jiang, X.; Wang, J.; Zhang, Y.; Jiang, S. Defect Detection in Solid Timber Panels Using Air-Coupled Ultrasonic Imaging Techniques. Appl. Sci. 2024, 14, 434. [Google Scholar] [CrossRef]
- L. H. Pearson, A. C. Pearson, E. W. Griffiths, and T. J. Eden, “Ultrasonic Inspection,” Comprehensive Structural Integrity, pp. 217–245, Jan. 2023. [CrossRef]
- S. Palizi, V. S. Palizi, V. Toufigh, and M. Ramezanpour Kami, “Ultrasonic pulse velocity for mechanical properties determination of wood,” Wood Mater Sci Eng, vol. 18, no. 6, 2023. [CrossRef]
- Candian, M.; Sales, A. Aplicação das técnicas não-destrutivas de ultra-som, vibração transversal e ondas de tensão para avaliação de madeira. 2009, 9, 83–98. [CrossRef]
- Kami, M.R.; Toufigh, V. Ultrasonic evaluation for the detection of contact defects of the timber and fiber-reinforced polymer. Struct. Heal. Monit. 2022, 22, 2868–2887. [Google Scholar] [CrossRef]
- Sharma, S.K.; Shukla, S.R. Properties evaluation and defects detection in timbers by ultrasonic non-destructive technique. J. Indian Acad. Wood Sci. 2012, 9, 66–71. [Google Scholar] [CrossRef]
- Carrasco, E.V.M.; Souza, M.D.F.; Pereira, L.R.S.; Vargas, C.B.; Mantilla, J.N.R. Determinação do módulo de elasticidade da madeira em função da inclinação das fibras utilizando tomógrafo acústico. Mater. De Jan. 2018, 22. [Google Scholar] [CrossRef]
- Carrillo, M.; Carreon, H.G. Ultrasonic determination of the elastic and shear modulus on aged wood. Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII. LOCATION OF CONFERENCE, United StatesDATE OF CONFERENCE; p. 67.
- M. B. F. M. Puaad, Z. Ahmad, and H. Muhamad Azlan, “Ultrasonic Wave Non-Destructive Method for Predicting the Modulus of Elasticity of Timber,” in InCIEC 2013, 2014. [CrossRef]
- Aydin, T.Y. Ultrasonic evaluation of time and temperature-dependent orthotropic compression properties of oak wood. J. Mater. Res. Technol. 2020, 9, 6028–6036. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef] [PubMed]
- Klapka, O.; Slabý, A. Visual analysis of search results in Scopus database focused on sustainable tourism. Czech J. Tour. 2020, 9, 41–53. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, G.; Li, Y.; Yan, X.; Zang, L.; Liu, Q.; Chen, D.; Sui, M.; He, Y. A Bibliometric Analysis of Forest Gap Research during 1980–2021. Sustainability 2023, 15, 1994. [Google Scholar] [CrossRef]
- Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; van den Bulcke, J.; Wang, X. Non-Destructive Evaluation Techniques and What They Tell Us about Wood Property Variation. Forests 2019, 10, 728. [Google Scholar] [CrossRef]
- M. Nallar, A. P. Bernier, and J. T. Potter, “Evaluation of Non-Destructive Testing (NDT) Methods for Wood Power Poles,” Sep. 2023. [Online]. Available: https://erdclibrary.on.worldcat.org/discovery.
- L. da C. Mastela, P. G. de A. Segundinho, F. G. Gonçalves, C. G. F. de Souza, F. A. R. Lahr, and V. B. Taquetti, “The use of non-destructive testing methods on glued laminated wood to obtain data,” in A LOOK AT DEVELOPMENT, 2023. [CrossRef]
- Schimleck, L.; Dahlen, J.; Apiolaza, L.A.; Downes, G.; Emms, G.; Evans, R.; Moore, J.; Pâques, L.; van den Bulcke, J.; Wang, X. Non-Destructive Evaluation Techniques and What They Tell Us about Wood Property Variation. Forests 2019, 10, 728. [Google Scholar] [CrossRef]
- R. J. Ross, B. K. R. J. Ross, B. K. Brashaw, and R. F. Pellerin, “Nondestructive Evaluation of Wood: Second Edition,” 2015.
- Dipova, N. Nondestructive Testing of Stabilized Soils and Soft Rocks via Needle Penetration. Period. Polytech. Civ. Eng. 2018, 62, 539–544. [Google Scholar] [CrossRef]
- Xue, X.; Wang, Y.; Tian, P.; Zhan, S. Reliability Simulation Research for Nondestructive Ultrasonic Structure Testing Based on In Situ Influential Factors. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A: Civ. Eng. 2020, 6, 04020027. [Google Scholar] [CrossRef]
- Küttenbaum, S.; Taffe, A.; Braml, T.; Maack, S. Reliability assessment of existing bridge constructions based on results of non-destructive testing. MATEC Web Conf. 2018, 199, 06001. [Google Scholar] [CrossRef]
- Abdallah, W.; Saliba, J.; Sbartaï, Z.-M.; Sadek, M.; Chehade, F.H.; ElAchachi, S. Reliability analysis of non-destructive testing models within a probabilistic approach. MATEC Web Conf. 2019, 281, 04003. [Google Scholar] [CrossRef]
- J. Borján, “CONCRETE - FROM TEST TO USE RELIABILITY OF NONDESTRUCTlVE CONCRETE TESTS,” Budapest, Oct. 1980.
- Mironov, A.A. An analysis of nondestructive testing data with consideration for their stochasticity. Russ. J. Nondestruct. Test. 2015, 51, 166–170. [Google Scholar] [CrossRef]
- Park, J.-W.; Choo, J.-H.; Park, G.-R.; Hwang, I.-B.; Shin, Y.-S. The Evaluation of Non-Destructive Formulas on Compressive Strength Using the Reliability Based on Probability. J. Korea Inst. Struct. Maint. Insp. 2015, 19, 25–34. [Google Scholar] [CrossRef]
- J. Mohammadi, “An Overview of Non-Destructive Test Methods in Fatigue and Fracture Reliability Assessment,” in NDT Methods Applied to Fatigue Reliability Assessment of Structures, 2004. [CrossRef]
- Sweeting, T. Statistical Models for Nondestructive Evaluation. Int. Stat. Rev. 1995, 63, 199. [Google Scholar] [CrossRef]
- S. Yesmin and A. Islam, “Strength Assessment of Jute Fiber Reinforced Concrete by Destructive and Non-destructive Test Methods,” International Journal of Research Publications, vol. 39, no. 2, pp. 1–11, Nov. 2019, [Online]. Available: www.ijrp.
- A. S. Voznesenskii, M. N. Krasilov, Y. O. Kutkin, and M. N. Tavostin, “Reliability increasing of an estimation of rocks strength by non-destructive methods of acoustic testing due to additional informative parameters,” in Minerals, Metals and Materials Series, 2019. [CrossRef]
- Nowak, T.; Patalas, F.; Karolak, A. Estimating Mechanical Properties of Wood in Existing Structures—Selected Aspects. Materials 2021, 14, 1941. [Google Scholar] [CrossRef]
- Annamdas, V.G.; A Radhika, M. Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: A review of wired, wireless and energy-harvesting methods. J. Intell. Mater. Syst. Struct. 2013, 24, 1021–1042. [Google Scholar] [CrossRef]
- Nowak, T.P.; Jasieńko, J.; Hamrol-Bielecka, K. In situ assessment of structural timber using the resistance drilling method – Evaluation of usefulness. Constr. Build. Mater. 2016, 102, 403–415. [Google Scholar] [CrossRef]
- Auty, D.; Achim, A. The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. For. Int. J. For. Res. 2008, 81, 475–487. [Google Scholar] [CrossRef]
- Wessels, C.B.; Malan, F.S.; Rypstra, T. A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. Eur. J. For. Res. 2011, 130, 881–893. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Gong, M. Measurement of dynamic modulus of elasticity and damping ratio of wood-based composites using the cantilever beam vibration technique. Constr. Build. Mater. 2012, 28, 831–834. [Google Scholar] [CrossRef]
- Feio, A.; Machado, J.S. In-situ assessment of timber structural members: Combining information from visual strength grading and NDT/SDT methods – A review. Constr. Build. Mater. 2015, 101, 1157–1165. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Feio, A.O.; Machado, J.S. Chestnut wood in compression perpendicular to the grain: Non-destructive correlations for test results in new and old wood. Constr. Build. Mater. 2007, 21, 1617–1627. [Google Scholar] [CrossRef]
- Fathi, H.; Nasir, V.; Kazemirad, S. Prediction of the mechanical properties of wood using guided wave propagation and machine learning. Constr. Build. Mater. 2020, 262. [Google Scholar] [CrossRef]
- Viguié, J.; Latil, P.; Orgéas, L.; Dumont, P.; du Roscoat, S.R.; Bloch, J.-F.; Marulier, C.; Guiraud, O. Finding fibres and their contacts within 3D images of disordered fibrous media. Compos. Sci. Technol. 2013, 89, 202–210. [Google Scholar] [CrossRef]
- Nasir, V.; Nourian, S.; Avramidis, S.; Cool, J. Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. Holzforschung 2019, 73, 827–838. [Google Scholar] [CrossRef]
- Švajlenka, J.; Kozlovská, M. Quality Parameters Perception o Modern Methods of Construction Based on Wood in the Context o Sustainability. Period. Polytech. Civ. Eng. 2018, 62, 636–642. [Google Scholar] [CrossRef]
- Fathi, H.; Kazemirad, S.; Nasir, V. Lamb wave propagation method for nondestructive characterization of the elastic properties of wood. Appl. Acoust. 2021, 171. [Google Scholar] [CrossRef]
- Faggiano, B.; Grippa, M.R.; Marzo, A.; Mazzolani, F.M. Experimental study for non-destructive mechanical evaluation of ancient chestnut timber. J. Civ. Struct. Heal. Monit. 2011, 1, 103–112. [Google Scholar] [CrossRef]
- Jaskowska-Lemańska, J.; Przesmycka, E. Semi-Destructive and Non-Destructive Tests of Timber Structure of Various Moisture Contents. Materials 2020, 14, 96. [Google Scholar] [CrossRef]
- S. Y. Wang, C. J. S. Y. Wang, C. J. Lin, and C. M. Chiu, “Evaluation of wood quality of Taiwania trees grown with different thinning and pruning treatments using ultrasonic-wave testing,” Wood and Fiber Science, vol. 37, no. 2, 2005.
- Zhang, L.; Tiemann, A.; Zhang, T.; Gauthier, T.; Hsu, K.; Mahamid, M.; Moniruzzaman, P.K.; Ozevin, D. Nondestructive assessment of cross-laminated timber using non-contact transverse vibration and ultrasonic testing. Eur. J. Wood Wood Prod. 2021, 79, 335–347. [Google Scholar] [CrossRef]
- Chiu, C.-M.; Lin, C.-H.; Yang, T.-H. Application of Nondestructive Methods to Evaluate Mechanical Properties of 32-Year-Old Taiwan Incense Cedar (Calocedrus formosana) Wood. BioResources 2012, 8, 688–700. [Google Scholar] [CrossRef]
- Kovryga, A.; Sarnaghi, A.K.; van de Kuilen, J.W.G. Strength grading of hardwoods using transversal ultrasound. Eur. J. Wood Wood Prod. 2020, 78, 951–960. [Google Scholar] [CrossRef]
- Montero, M.; de la Mata, J.; Esteban, M.; Hermoso, E. Influence of moisture content on the wave velocity to estimate the mechanical properties of large cross-section pieces for structural use of Scots pine from Spain. Maderas-Cienc Tecnol 2015, 17, 407–420. [Google Scholar] [CrossRef]
- Yamasaki, M.; Tsuzuki, C.; Sasaki, Y.; Onishi, Y. Influence of moisture content on estimating Young’s modulus of full-scale timber using stress wave velocity. J. Wood Sci. 2017, 63, 225–235. [Google Scholar] [CrossRef]
- S. J. Smulski, “RELATIONSHIP OF STRESS WAVE-AND STATIC BENDING-DETERMINED PROPERTIES OF FOUR NORTHEASTERN HARDWOODS.
- P. kertész and I. MAREK, “APPLICATION DES ONDES ULTRASONORES AUX ESSAIS DE LA PHYSIQUE DES ROCHES,” Periodica Polytechnica Civil Engineering, vol. 15, no. 1, pp. 13–30, 1970.
- Esteban, L.G.; Fernández, F.G.; de Palacios, P. MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing. Comput. Struct. 2009, 87, 1360–1365. [Google Scholar] [CrossRef]
- Liang, S.-Q.; Fu, F. Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber. J. For. Res. 2007, 18, 309–312. [Google Scholar] [CrossRef]
- L. Karlinasari, M. E. L. Karlinasari, M. E. Wahyuna, and N. Nugroho, “Non-destructive ultrasonic testing method for determining bending strength properties of Gmelina wood (Gmelina Arborea),” Journal of Tropical Forest Science, vol. 20, no. 2, 2008.
- Osuna-Sequera, C.; Llana, D.F.; Íñiguez-González, G.; Arriaga, F. The influence of cross-section variation on bending stiffness assessment in existing timber structures. Eng. Struct. 2020, 204. [Google Scholar] [CrossRef]
- Mori, M.; Hasegawa, M.; Yoo, J.-C.; Kang, S.-G.; Matsumura, J. Nondestructive evaluation of bending strength of wood with artificial holes by employing air-coupled ultrasonics. Constr. Build. Mater. 2016, 110, 24–31. [Google Scholar] [CrossRef]





| Title | Journal | Cited by | Reference |
|---|---|---|---|
| Electromechanical impedance of piezoelectric transducers for monitoring metallic and non-metallic structures: A review of wired, wireless and energy-harvesting methods. | Journal of Intelligent Material Systems and Structures | 154 | [58] |
| In situ assessment of structural timber using the resistance drilling method - Evaluation of usefulness. | Construction and Building Materials | 76 | [59] |
| The relationship between standing tree acoustic assessment and timber quality in Scots pine and the practical implications for assessing timber quality from naturally regenerated stands. | Forestry | 74 | [60] |
| A review of measurement methods used on standing trees for the prediction of some mechanical properties of timber. | European Journal of Forest Research | 67 | [61] |
| Measurement of dynamic modulus of elasticity and damping ratio of wood-based composites using the cantilever beam vibration technique. | Construction and Building Materials | 66 | [62] |
| In-situ assessment of timber structural members: Combining information from visual strength grading and NDT/SDT methods - A review. | Construction and Building Materials | 63 | [63] |
| Chestnut wood in compression perpendicular to the grain: Non-destructive correlations for test results in new and old wood. | Construction and Building Materials | 59 | [64] |
| Prediction of the mechanical properties of wood using guided wave propagation and machine learning. | Construction and Building Materials | 59 | [65] |
| Finding fibres and their contacts within 3D images of disordered fibrous media. | Composites Science and Technology | 52 | [66] |
| Stress wave evaluation for predicting the properties of thermally modified wood using neuro-fuzzy and neural network modeling. | Holzforschung | 41 | [67] |
| Title | journal | Cited by | Reference |
|---|---|---|---|
| Prediction of the mechanical properties of wood using guided wave propagation and machine learning. | Construction and Building Materials | 59 | [65] |
| Chestnut wood in compression perpendicular to the grain: Non-destructive correlations for test results in new and old wood. | Construction and Building Materials | 59 | [64] |
| Lamb wave propagation method for nondestructive characterization of the elastic properties of wood. | Applied Acoustics | 30 | [69] |
| Experimental study for non-destructive mechanical evaluation of ancient chestnut timber. | Journal of Civil Structural Health Monitoring | 28 | [70] |
| Estimating mechanical properties of wood in existing structures—selected aspects. | Materials | 18 | [57] |
| Semi-destructive and non-destructive tests of timber structure of various moisture contents. | Materials | 16 | [71] |
| Evaluation of wood quality of Taiwania trees grown with different thinning and pruning treatments using ultrasonic-wave testing. | Wood and Fiber Science | 15 | [72] |
| Nondestructive assessment of cross-laminated timber using non-contact transverse vibration and ultrasonic testing. | European Journal of Wood and Wood Products | 13 | [73] |
| Application of nondestructive methods to evaluate mechanical properties of 32-year-old taiwan incense cedar (Calocedrus formosana) wood. | BioResources | 11 | [74] |
| Strength grading of hardwoods using transversal ultrasound. | European Journal of Wood and Wood Products | 10 | [75] |
| Title | Journal | Cited by | Reference |
|---|---|---|---|
| MOE prediction in Abies pinsapo Boiss. timber: Application of an artificial neural network using non-destructive testing. | Computers and Structures | 62 | [80] |
| Prediction of the mechanical properties of wood using guided wave propagation and machine learning. | Construction and Building Materials | 59 | [65] |
| Lamb wave propagation method for nondestructive characterization of the elastic properties of wood. | Applied Acoustics | 30 | [69] |
| Comparative study on three dynamic modulus of elasticity and static modulus of elasticity for Lodgepole pine lumber. | Journal of Forestry Research | 29 | [81] |
| Experimental study for non-destructive mechanical evaluation of ancient chestnut timber. | Journal of Civil Structural Health Monitoring | 28 | [70] |
| Non-destructive ultrasonic testing method for determining bending strength properties of Gmelina wood (Gmelina Arborea). | Journal of Tropical Forest Science | 25 | [82] |
| The influence of cross-section variation on bending stiffness assessment in existing timber structures. | Engineering Structures | 19 | [83] |
| Estimating mechanical properties of wood in existing structures—selected aspects. | Materials | 18 | [57] |
| Nondestructive evaluation of bending strength of wood with artificial holes by employing air-coupled ultrasonics. | Construction and Building Materials | 15 | [84] |
| Evaluation of wood quality of Taiwania trees grown with different thinning and pruning treatments using ultrasonic-wave testing. | Wood and Fiber Science | 15 | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).