Submitted:
20 May 2025
Posted:
21 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
Clarifying the Role of the Chronon Field.
2. Preliminaries
3. Soliton Moduli Space and Spin Structure
3.1. Non-Contractibility of Rotation
3.2. Spin Bundle Construction
4. Two-Soliton Configuration Space and Statistics
5. Path Integral Verification
6. Conclusion
Comparison with Operator-Based and Algebraic Approaches.
Appendix A. The Soliton Configuration Space and Moduli Space
Appendix A.1. Function Space Framework
Appendix A.2. Definition of the Moduli Space
Definition of G:
Appendix A.3. Topological Properties of
Appendix A.4. Conclusion
Appendix B. Construction of the Spin Bundle over
Appendix B.1. Motivation and Framework
Appendix B.2. Spin Structures and Double Covers
Appendix B.3. Quantized States as Sections of the Spin Bundle
Appendix B.4. Geometric Interpretation and Physical Significance
Appendix B.5. Conclusion
Appendix C. Topology of the Two-Soliton Configuration Space
Appendix C.1. Definition of the Configuration Space
Appendix C.2. Topological Tools and Strategy
Appendix C.3. Application to Soliton Configuration Space
Appendix C.4. Physical Interpretation
Appendix C.5. Conclusion
Appendix D. Berry Phase and Path Integral Derivation of Exchange Statistics
Appendix D.1. Overview and Goal
Appendix D.2. Geometric Setup: Hilbert Bundle and Parallel Transport
Appendix D.3. Topological Origin of the Phase
Appendix D.4. Path Integral Formulation
Appendix D.5. Relation to the Effective Action
Appendix D.6. Conclusion
Appendix E. Quantization of Soliton Sectors and Fermionic Fock Space
Appendix E.1. Motivation
- A definition of creation and annihilation operators for solitonic states,
- A Fock space encoding their antisymmetric behavior,
- Compatibility with the topology of moduli and configuration spaces.
Appendix E.2. Soliton Sector Hilbert Spaces
Appendix E.3. Chronon Soliton Fock Space
Appendix E.4. Creation and Annihilation Operators
Appendix E.5. Operator Algebra and Observables
Appendix E.6. Connection to Emergent Field Theory)
Appendix E.7. Conclusion
References
- H. Araki, Mathematical Theory of Quantum Fields, Oxford University Press, 1999.
- M. A. Armstrong. The fundamental group of the orbit space of a discontinuous group. Proc. Camb. Philos. Soc. 1967, 64, 299–301. [Google Scholar]
- M. F. Atiyah, The Geometry and Physics of Knots, Cambridge University Press, 1988.
- A. Bäuml and P. L. Saldanha. Topology and homotopy in classical and quantum field theory. Rev. Mod. Phys. 2020, 92, 045005. [Google Scholar]
- J. C. Baez. Link invariants of finite type and perturbation theory. Lett. Math. Phys. 1994, 31, 213–223. [Google Scholar]
- A. P. Balachandran, G. Marmo, B. S. Skagerstam, and A. Stern, Classical Topology and Quantum States, World Scientific, 1991.
- P. Bellingeri and S. Gervais. Surface braid groups and their representations. Algebr. Geom. Topol. 2010, 10, 1401–1436. [Google Scholar]
- F. A. Berezin, The Method of Second Quantization, Academic Press, 1966.
- M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. R. Soc. Lond. A 392, 45–57 (1984).
- O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 2, Springer-Verlag, 1997.
- F. R. Cohen, T. J. Lada, and J. P. May, The Homology of Iterated Loop Spaces, Springer-Verlag, 1976.
- S. Coleman, “More about the massive Schwinger model,” Ann. Phys. 101, 239–267 (1976).
- S. Doplicher, R. Haag, and J. E. Roberts, “Fields, observables and gauge transformations I,” Commun. Math. Phys. 13, 1–23 (1969); “Fields, observables and gauge transformations II,” 15, 173–200 (1969).
- E. Fadell and L. Neuwirth, “Configuration spaces,” Math. Scand. 10, 111–118 (1962).
- D. S. Freed, “Classical Chern–Simons theory I,” Adv. Math. 113, 237–303 (1995).
- L. Freidel, R. G. Leigh, and D. Minic. Background Independent Quantum Fields and Gravity. Phys. Lett. B 2023, 849, 138145. [Google Scholar]
- A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
- M. G. G. Laidlaw and C. M. DeWitt, “Feynman functional integrals for systems of indistinguishable particles,” Phys. Rev. D 3, 1375 (1971).
- H. B. Lawson and M.-L. Michelsohn, Spin Geometry, Princeton University Press, 1989.
- B. Li., Chronon Field Theory. Zenodo. Chronon Field Theory: Unification of Gravity and Gauge Interactions via Temporal Flow Dynamics. [CrossRef]
- N. Manton and P. Sutcliffe, Topological Solitons, Cambridge University Press, 2004.
- J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton University Press, 1974.
- J. Morava, “Stable homotopy and the fundamental group,” Topology 27, 459–469 (1988).
- M. Nakahara, Geometry, Topology and Physics, 2nd ed., Taylor & Francis, 2003.
- W. Pauli, “The connection between spin and statistics,” Phys. Rev. 58, 716 (1940).
- M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2: Fourier Analysis, Self-Adjointness, Academic Press, 1975.
- L. H. Ryder, Quantum Field Theory, 2nd ed., Cambridge University Press, 1996.
- I. E. Segal, “Mathematical Problems of Relativistic Physics,” Lectures in Applied Mathematics, Vol. 2, AMS, 1963.
- G. Segal, “Classifying spaces and spectral sequences,” Inst. Hautes Études Sci. Publ. Math. 34, 105–112 (1968).
- B. Simon, “Holonomy, the quantum adiabatic theorem, and Berry’s phase,” Phys. Rev. Lett. 51, 2167–2170 (1983).
- N. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951.
- P. J. Steinhardt, “Chronon Field Theory and the Emergence of Temporal Structure,” Found. Phys. 54, 1 (2024).
- R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That, Princeton University Press, 2000.
- R. M. Wald, General Relativity, University of Chicago Press, 1984.
- A. S. Wightman, “Quantum field theory in terms of vacuum expectation values,” Phys. Rev. 101, 860 (1956).
- E. Witten, “Current algebra theorems for the U(1) ’Goldstone boson’,” Nucl. Phys. B 156, 269–283 (1979).
- E. Witten, “Non-Abelian bosonization in two dimensions,” Commun. Math. Phys. 92, 455–472 (1984).
- E. Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys. 121, 351–399 (1989).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
