Submitted:
13 May 2025
Posted:
14 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Event Generators
2.1. AMPT
2.2. Pythia
2.3. EPOS4
3. Results and Discussion
3.1. Bjorken Energy Density
3.2. Transverse Momentum () Spectra
3.3. Particle Ratios
3.4. Mean Transverse Momentum ()
4. Conclusions
- The distribution of all charged-particle multiplicity () is successfully reproduced by all models used for the current study. However, EPOS4 predicts the higher multiplicity particularly in most central collisions where the core part is dominated. The comparison of these predictions with future experimental data from the LHC experiments will certainly be helpful to check the model’s capability of describing particle production in collisions.
- All of the models successfully reproduce the shape of spectra for , and . A clear mass ordering is observed, consistent with observations in other collision systems. The convergence of heavier particle (proton) spectra with lighter particle (pions) at intermediate is more pronounced in EPOS4 provides hint for the presence of radial flow in collisions.
- The difference in the of particle type is due to the interplay of different physics mechanisms between the models. exhibits a strongs centrality dependent for all models.
- We observed a strong centrality dependence in and ratios especially in EPOS4 and AMPT-SM compared to Pythia 8. The radial flow effects in ratio in Pythia 8 are less significant. ratios exhibits an increase in strangeness enhancement with increasing in EPOS4 and AMPT-SM. This effect is less significant in Pythia 8.
- We observe an increase in average transverse momentum () with increasing centrality indicating stronger radial flow in more central collisions. The models follow the trend established by the already existing data from different collision systems.
References
- Busza, W.; Rajagopal, K.; van der Schee, W. Heavy Ion Collisions: The Big Picture, and the Big Questions. Ann. Rev. Nucl. Part. Sci. 2018, arXiv:hep-ph/1802.04801]68, 339–376. [Google Scholar] [CrossRef]
- Becattini, F. The Quark Gluon Plasma and relativistic heavy ion collisions in the LHC era. J. Phys. Conf. Ser. 2014, 527, 012012. [Google Scholar] [CrossRef]
- Aoki, Y.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Szabo, K.K. The Order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 2006, 443, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Heinz, U.; Snellings, R. Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 2013, arXiv:nucl-th/1301.2826]63, 123–151. [Google Scholar] [CrossRef]
- Adam, J.; et al. Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions. Nature Phys. 2017, arXiv:nucl-ex/1606.07424]13, 535–539. [Google Scholar] [CrossRef]
- Khachatryan, V.; et al. Evidence for collectivity in pp collisions at the LHC. Phys. Lett. B 2017, arXiv:nucl-ex/1606.06198]765, 193–220. [Google Scholar] [CrossRef]
- Li, W. Observation of a ’Ridge’ correlation structure in high multiplicity proton-proton collisions: A brief review. Mod. Phys. Lett. A 2012, arXiv:nucl-ex/1206.0148]27, 1230018. [Google Scholar] [CrossRef]
- Abelev, B.B.; et al. Long-range angular correlations of π, K and p in p-Pb collisions at sNN = 5.02 TeV. Phys. Lett. B 2013, arXiv:nucl-ex/1307.3237]726, 164–177. [Google Scholar] [CrossRef]
- Werner, K.; Karpenko, I.; Pierog, T. The ’Ridge’ in Proton-Proton Scattering at 7 TeV. Phys. Rev. Lett. 2011, arXiv:hep-ph/1011.0375]106, 122004. [Google Scholar] [CrossRef]
- Werner, K.; Karpenko, I.; Pierog, T.; Bleicher, M.; Mikhailov, K. Evidence for hydrodynamic evolution in proton-proton scattering at 900 GeV. Phys. Rev. C 2011, arXiv:nucl-th/1010.0400]83, 044915. [Google Scholar] [CrossRef]
- Brewer, J.; Mazeliauskas, A.; van der Schee, W. Opportunities of OO and pO collisions at the LHC. In Proceedings of the Opportunities of OO and pO collisions at the LHC, [arXiv:hep-ph/2103.01939]. 3 2021. [Google Scholar]
- Rybczyński, M.; Broniowski, W. Glauber Monte Carlo predictions for ultrarelativistic collisions with 16O. Phys. Rev. C 2019, arXiv:hep-ph/1910.09489]100, 064912. [Google Scholar] [CrossRef]
- Lim, S.H.; Carlson, J.; Loizides, C.; Lonardoni, D.; Lynn, J.E.; Nagle, J.L.; Orjuela Koop, J.D.; Ouellette, J. Exploring New Small System Geometries in Heavy Ion Collisions. Phys. Rev. C 2019, arXiv:nucl-th/1812.08096]99, 044904. [Google Scholar] [CrossRef]
- Sievert, M.D.; Noronha-Hostler, J. CERN Large Hadron Collider system size scan predictions for PbPb, XeXe, ArAr, and OO with relativistic hydrodynamics. Phys. Rev. C 2019, arXiv:nucl-th/1901.01319]100, 024904. [Google Scholar] [CrossRef]
- Huang, S.; Chen, Z.; Jia, J.; Li, W. Disentangling contributions to small-system collectivity via scans of light nucleus-nucleus collisions. Phys. Rev. C 2020, arXiv:nucl-ex/1904.10415]101, 021901. [Google Scholar] [CrossRef]
- Schenke, B.; Shen, C.; Tribedy, P. Running the gamut of high energy nuclear collisions. Phys. Rev. C 2020, arXiv:nucl-th/2005.14682]102, 044905. [Google Scholar] [CrossRef]
- Zakharov, B.G. Jet quenching from heavy to light ion collisions. JHEP 2021, arXiv:hep-ph/2105.09350]09, 087. [Google Scholar] [CrossRef]
- Huss, A.; Kurkela, A.; Mazeliauskas, A.; Paatelainen, R.; van der Schee, W.; Wiedemann, U.A. Predicting parton energy loss in small collision systems. Phys. Rev. C 2021, arXiv:hep-ph/2007.13758]103, 054903. [Google Scholar] [CrossRef]
- Khan, A.M.; Ashraf, M.U.; Alfanda, H.M.; Aslam, M.U. Dynamics of identified particles production in oxygen–oxygen collisions at sNN=7 TeV using EPOS4. Eur. Phys. J. A 2024, arXiv:hep-ph/2402.13843]60, 207. [Google Scholar] [CrossRef]
- Ashraf, M.U.; Khan, A.M.; Singh, J.; Nigmatkulov, G.; Roch, H.; Kabana, S. Multiplicity dependence of (multi)strange hadrons in oxygen-oxygen collisions at s NN =7 TeV using EPOS4 and AMPT 2024. arXiv:hep-ph/2406.04096].
- Van Hove, L. Multiplicity Dependence of p(T) Spectrum as a Possible Signal for a Phase Transition in Hadronic Collisions. Phys. Lett. B 1982, 118, 138. [Google Scholar] [CrossRef]
- Lin, Z.W.; Ko, C.M.; Li, B.A.; Zhang, B.; Pal, S. A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 2005, 72, 064901. [Google Scholar] [CrossRef]
- Ma, G.L.; Lin, Z.W. Predictions for sNN=5.02 TeV Pb+Pb Collisions from a Multi-Phase Transport Model. Phys. Rev. C 2016, arXiv:nucl-th/1601.08160]93, 054911. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L.; Shah, H. The Angantyr model for Heavy-Ion Collisions in PYTHIA8. JHEP 2018, arXiv:hep-ph/1806.10820]10, 134. [Google Scholar] [CrossRef]
- Porteboeuf, S.; Pierog, T.; Werner, K. Producing Hard Processes Regarding the Complete Event: The EPOS Event Generator. In Proceedings of the 45th Rencontres de Moriond on QCD and High Energy Interactions. Gioi Publishers; 2010; p. 135. [Google Scholar]
- Werner, K.; Guiot, B. Perturbative QCD concerning light and heavy flavor in the EPOS4 framework. Phys. Rev. C 2023, arXiv:hep-ph/2306.02396]108, 034904. [Google Scholar] [CrossRef]
- Werner, K. Revealing a deep connection between factorization and saturation: New insight into modeling high-energy proton-proton and nucleus-nucleus scattering in the EPOS4 framework. Phys. Rev. C 2023, arXiv:hep-ph/2301.12517]108, 064903. [Google Scholar] [CrossRef]
- Werner, K. Core-corona procedure and microcanonical hadronization to understand strangeness enhancement in proton-proton and heavy ion collisions in the EPOS4 framework. Phys. Rev. C 2024, arXiv:hep-ph/2306.10277]109, 014910. [Google Scholar] [CrossRef]
- Werner, K. Parallel scattering, saturation, and generalized Abramovskii-Gribov-Kancheli (AGK) theorem in the EPOS4 framework, with applications for heavy-ion collisions at sNN of 5.02 TeV and 200 GeV. Phys. Rev. C 2024, arXiv:hep-ph/2310.09380]109, 034918. [Google Scholar] [CrossRef]
- Werner, K.; Jahan, J.; Karpenko, I.; Pierog, T.; Stefaniak, M.; Vintache, D. Heavy ion collisions from sNN of 62.4 GeV down to 7.7 GeV in the EPOS4 framework. Phys. Rev. C 2025, arXiv:hep-ph/2401.11275]111, 014903. [Google Scholar] [CrossRef]
- Wang, X.N.; Gyulassy, M. HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions. Phys. Rev. D 1991, 44, 3501–3516. [Google Scholar] [CrossRef]
- Zhang, B. ZPC 1.0.1: A Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 1998, 109, 193–206. [Google Scholar] [CrossRef]
- Li, B.A.; Ko, C.M. Formation of superdense hadronic matter in high-energy heavy ion collisions. Phys. Rev. C 1995, 52, 2037–2063. [Google Scholar] [CrossRef]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008, arXiv:hep-ph/0710.3820]178, 852–867. [Google Scholar] [CrossRef]
- Lin, Z.w.; Ko, C.M. Partonic effects on the elliptic flow at RHIC. Phys. Rev. C 2002, 65, 034904. [Google Scholar] [CrossRef]
- Bzdak, A.; Ma, G.L. Elliptic and triangular flow in p+Pb and peripheral Pb+Pb collisions from parton scatterings. Phys. Rev. Lett. 2014, arXiv:hep-ph/1406.2804]113, 252301. [Google Scholar] [CrossRef]
- Ma, G.L.; Bzdak, A. Long-range azimuthal correlations in proton–proton and proton–nucleus collisions from the incoherent scattering of partons. Phys. Lett. B 2014, arXiv:hep-ph/1404.4129]739, 209–213. [Google Scholar] [CrossRef]
- Heiselberg, H.; Baym, G.; Blaettel, B.; Frankfurt, L.L.; Strikman, M. Color transparency, color opacity, and fluctuations in nuclear collisions. Phys. Rev. Lett. 1991, 67, 2946–2949. [Google Scholar] [CrossRef] [PubMed]
- Blaettel, B.; Baym, G.; Frankfurt, L.L.; Heiselberg, H.; Strikman, M. Hadronic cross-section fluctuations. Phys. Rev. D 1993, 47, 2761–2772. [Google Scholar] [CrossRef]
- Alvioli, M.; Strikman, M. Color fluctuation effects in proton-nucleus collisions. Phys. Lett. B 2013, arXiv:hep-ph/1301.0728]722, 347–354. [Google Scholar] [CrossRef]
- Alvioli, M.; Frankfurt, L.; Guzey, V.; Strikman, M. Revealing “flickering” of the interaction strength in pA collisions at the CERN LHC. Phys. Rev. C 2014, arXiv:hep-ph/1402.2868]90, 034914. [Google Scholar] [CrossRef]
- Alvioli, M.; Cole, B.A.; Frankfurt, L.; Perepelitsa, D.V.; Strikman, M. Evidence for x-dependent proton color fluctuations in pA collisions at the CERN Large Hadron Collider. Phys. Rev. C 2016, arXiv:hep-ph/1409.7381]93, 011902. [Google Scholar] [CrossRef]
- Avsar, E.; Gustafson, G.; Lonnblad, L. Energy conservation and saturation in small-x evolution. JHEP 2005, 07, 062. [Google Scholar] [CrossRef]
- Avsar, E.; Gustafson, G.; Lonnblad, L. Small-x dipole evolution beyond the large-N(c) imit. JHEP 2007, 01, 012. [Google Scholar] [CrossRef]
- Flensburg, C.; Gustafson, G.; Lonnblad, L. Inclusive and Exclusive Observables from Dipoles in High Energy Collisions. JHEP 2011, arXiv:hep-ph/1103.4321]08, 103. [Google Scholar] [CrossRef]
- Sjöstrand, T.; Ask, S.; Christiansen, J.R.; Corke, R.; Desai, N.; Ilten, P.; Mrenna, S.; Prestel, S.; Rasmussen, C.O.; Skands, P.Z. An introduction to PYTHIA 8.2. Comput. Phys. Commun. 2015, arXiv:hep-ph/1410.3012]191, 159–177. [Google Scholar] [CrossRef]
- Andersson, B.; Gustafson, G.; Nilsson-Almqvist, B. A Model for Low p(t) Hadronic Reactions, with Generalizations to Hadron - Nucleus and Nucleus-Nucleus Collisions. Nucl. Phys. B 1987, 281, 289–309. [Google Scholar] [CrossRef]
- Bialas, A.; Bleszynski, M.; Czyz, W. Multiplicity Distributions in Nucleus-Nucleus Collisions at High-Energies. Nucl. Phys. B 1976, 111, 461–476. [Google Scholar] [CrossRef]
- Acharya, S.; et al. Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at sNN =5.44TeV. Phys. Lett. B 2019, arXiv:nucl-ex/1805.04432]790, 35–48. [Google Scholar] [CrossRef]
- Drescher, H.J.; Hladik, M.; Ostapchenko, S.; Pierog, T.; Werner, K. Parton based Gribov-Regge theory. Phys. Rept. 2001, 350, 93–289. [Google Scholar] [CrossRef]
- Werner, K. Strings, pomerons, and the venus model of hadronic interactions at ultrarelativistic energies. Phys. Rept. 1993, 232, 87–299. [Google Scholar] [CrossRef]
- Werner, K. Core-corona separation in ultra-relativistic heavy ion collisions. Phys. Rev. Lett. 2007, arXiv:nucl-th/0704.1270]98, 152301. [Google Scholar] [CrossRef]
- Werner, K.; Karpenko, I.; Pierog, T.; Bleicher, M.; Mikhailov, K. Event-by-Event Simulation of the Three-Dimensional Hydrodynamic Evolution from Flux Tube Initial Conditions in Ultrarelativistic Heavy Ion Collisions. Phys. Rev. C 2010, arXiv:nucl-th/1004.0805]82, 044904. [Google Scholar] [CrossRef]
- Werner, K.; Guiot, B.; Karpenko, I.; Pierog, T. Analysing radial flow features in p-Pb and p-p collisions at several TeV by studying identified particle production in EPOS3. Phys. Rev. C 2014, arXiv:nucl-th/1312.1233]89, 064903. [Google Scholar] [CrossRef]
- Werner, K.; Guiot, B.; Karpenko, I.; Pierog, T.; Sophys, G.; Stefaniak, M. Epos. EPJ Web Conf. 2019, 208, 11005. [Google Scholar] [CrossRef]
- Bjorken, J.D. Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region. Phys. Rev. D 1983, 27, 140–151. [Google Scholar] [CrossRef]
- Adam, J.; et al. Measurement of transverse energy at midrapidity in Pb-Pb collisions at sNN=2.76 TeV. Phys. Rev. C 2016, arXiv:nucl-ex/1603.04775]94, 034903. [Google Scholar] [CrossRef]
- Abelev, B.I.; et al. Systematic Measurements of Identified Particle Spectra in pp,d+ Au and Au+Au Collisions from STAR. Phys. Rev. C 2009, arXiv:nucl-ex/0808.2041]79, 034909. [Google Scholar] [CrossRef]
- Karsch, F. Lattice results on QCD thermodynamics. Nucl. Phys. A 2002, 698, 199–208. [Google Scholar] [CrossRef]
- Andronic, A. An overview of the experimental study of quark-gluon matter in high-energy nucleus-nucleus collisions. Int. J. Mod. Phys. A 2014, arXiv:nucl-ex/1407.5003]29, 1430047. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 2018, arXiv:nucl-th/1710.09425]561, 321–330. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Gündüz, D.; Kirchhoff, Y.; Köhler, M.K.; Stachel, J.; Winn, M. Influence of modified light-flavor hadron spectra on particle yields in the statistical hadronization model. Nucl. Phys. A 2021, arXiv:nucl-th/2011.03826]1010, 122176. [Google Scholar] [CrossRef]
- Aamodt, K.; et al. Production of pions, kaons and protons in pp collisions at s=900 GeV with ALICE at the LHC. Eur. Phys. J. C 2011, arXiv:hep-ex/1101.4110]71, 1655. [Google Scholar] [CrossRef]
- Adam, J.; et al. Measurement of pion, kaon and proton production in proton–proton collisions at s=7 TeV. Eur. Phys. J. C 2015, arXiv:nucl-ex/1504.00024]75, 226. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.; et al. Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p-Pb collisions at sNN = 5.02 TeV. Phys. Lett. B 2016, arXiv:nucl-ex/1601.03658]760, 720–735. [Google Scholar] [CrossRef]
- Abelev, B.; et al. Centrality dependence of π, K, p production in Pb-Pb collisions at sNN = 2.76 TeV. Phys. Rev. C 2013, arXiv:hep-ex/1303.0737]88, 044910. [Google Scholar] [CrossRef]





| Centrality (%) | Pythia 8 | AMPT-SM | EPOS4 |
|---|---|---|---|
| 0 – 5 | |||
| 5 – 10 | |||
| 10 – 20 | |||
| 20 – 30 | |||
| 30 – 40 | |||
| 40 – 50 | |||
| 50 – 60 | |||
| 60 – 80 | |||
| 80 – 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
