Submitted:
12 May 2025
Posted:
13 May 2025
Read the latest preprint version here
Abstract

Keywords:
1. Introduction
2. Methods
3. Results
3.1. Leveraging Phytocompounds in Cosmeceutical Formulations: Market Trends and Delivery Advances
- Penetration of Active Ingredients: The active compound must penetrate the stratum corneum in sufficient concentration to reach its target site within the skin.
- Known Mechanism of Action: The compound must have a clearly understood mechanism by which it achieves its effect, such as promoting collagen synthesis, inhibiting pigmentation, or reducing inflammation.
- Clinical efficacy: The product must demonstrate measurable results consistent with its claims through well-designed clinical trials.
3.2. Overview of Skin Care Products Delivery Technologies
3.3. Characterization of Olive Oil and Olive Oil Preparation Byproducts Composition: Applications in Dermatology
3.4. Anti-Aging, Photoprotective and Anti-Microbial Potential in Skin Applications
3.5. Anti-Inflammatory Effects and Pathway Modulation
3.6. Skin Cancer Prevention and Selective Antiproliferative Effects
3.7. Hair Health and Follicular Stimulation by OMWW
4. Conclusions
Future directions
Author Contributions
Funding
Acknowledgments
Institutional Review Board Statement
Informed Consent Statement
Data availability statement
Conflicts of interest
References
- Abu-Lafi, S.; Al-Natsheh, M.S.; Yaghmoor, R.; Al-Rimawi, F. (2017) 'Enrichment of Phenolic Compounds from Olive Mill Wastewater and In Vitro Evaluation of Their Antimicrobial Activities'. Evidence-Based Complementary and Alternative Medicine 2017, 3706915. [Google Scholar] [CrossRef] [PubMed]
- Addas, A.; Ragab, M.; Maghrabi, A.; Abo-Dahab, S.M.; El-Nobi, E.F. (2021) 'UV Index for Public Health Awareness Based on OMI/NASA Satellite Data at King Abdulaziz University, Saudi Arabia'. Advances in Mathematical Physics 2021, 2835393. [Google Scholar] [CrossRef]
- Aggoun, M.; Arhab, R.; Cornu, A.; Portelli, J.; Barkat, M. Olive mill wastewater: Phenolic composition and antioxidant activity. Journal of Environmental Management 2016, 170, 1–9. [Google Scholar]
- Agramunt, J.; Parke, B.; Mena, S.; Ubels, V.; Jimenez, F.; Williams, G.; Rhodes, A.D.; Limbu, S.; Hexter, M.; Knight, L.; Hashemi, P.; Kozlov, A.S.; Higgins, C.A. Mechanical stimulation of human hair follicle outer root sheath cultures activates adjacent sensory neurons. Science Advances 2023, 9, eadh3273. [Google Scholar] [CrossRef]
- Ahmed, B.; Qadir, M.I.; Ghafoor, S. Malignant Melanoma: Skin Cancer-Diagnosis, Prevention, and Treatment', Critical Reviews in Eukaryotic Gene Expression 2020, 30, pp. 291–297. [CrossRef]
- Aiello, A.; et al. Effect of a Phytochemical-Rich Olive-Derived Extract on Anthropometric, Hematological, and Metabolic Parameters. Nutrients 2024, 16, p 3068. [Google Scholar] [CrossRef] [PubMed]
- Albanesi, C.; De Pità, O.; Girolomoni, G. Resident skin cells in psoriasis: a special look at the pathogenetic functions of keratinocytes. Clinics in Dermatology 2005, 25, pp. 581–588. [Google Scholar] [CrossRef]
- Albini, A.; Albini, F.; Corradino, P.; Dugo, L.; Calabrone, L.; Noonan, D.M. From antiquity to contemporary times: how olive oil by-products and wastewater can contribute to health. Frontiers in Nutrition 2023, 10. [Google Scholar] [CrossRef]
- Albini, A.; et al. A Polyphenol-Rich Extract of Olive Mill Wastewater Enhances Cancer Chemotherapy Effects, While Mitigating Cardiac Toxicity. Frontiers in Pharmacology 2021, 12, 694762. [Google Scholar] [CrossRef]
- Albini, A.; et al. Nutraceuticals and ‘Repurposed’ Drugs of Phytochemical Origin in Prevention and Interception of Chronic Degenerative Diseases and Cancer. Current Medicinal Chemistry 2019, 26, 973–987. [Google Scholar] [CrossRef]
- Alkhalidi, H.; Sciubba, F.; Gallo, G. Olive mill wastewater: From by-product to smart antioxidant material. Sustainability 2023, 15, 1234. [Google Scholar]
- Almohanna, H.M.; Ahmed, A.A.; Tsatalis, J.P.; Tosti, A. The Role of Vitamins and Minerals in Hair Loss: A Review. Dermatology and Therapy (Heidelberg) 2019, 9, 51–70. [Google Scholar] [CrossRef]
- Aparicio-Soto, M.; Sánchez-Hidalgo, M.; Rosillo, M.Á.; Castejón, M.L.; Alarcón-de-la-Lastra, C. Extra virgin olive oil: a key functional food for prevention of immune-inflammatory diseases. Food & Function 2019, 10, 3805–3824. [Google Scholar]
- Avola, R.; Graziano, A.C.E.; Pannuzzo, G.; Bonina, F.; Cardile, V. Hydroxytyrosol from olive fruits prevents blue-light-induced damage in human keratinocytes and fibroblasts. Journal of Cellular Physiology 2019, 234, 9065–9076. [Google Scholar] [CrossRef] [PubMed]
- Baci, D.; et al. Downregulation of Pro-Inflammatory and Pro-Angiogenic Pathways in Prostate Cancer Cells by a Polyphenol-Rich Extract from Olive Mill Wastewater. International Journal of Molecular Sciences 2019, 20, 307. [Google Scholar] [CrossRef]
- Barone, M.; De Bernardis, R.; Persichetti, P. Aesthetic Medicine Across Generations: Evolving Trends and Influences. Aesthetic Plastic Surgery 2024. [CrossRef] [PubMed]
- Bassani, B.; et al. Potential Chemopreventive Activities of a Polyphenol Rich Purified Extract from Olive Mill Wastewater on Colon Cancer Cells. Journal of Functional Foods 2016, 27, 236–248. [Google Scholar] [CrossRef]
- Benedetto, N.; et al. An Olive Oil Mill Wastewater Extract Improves Chemotherapeutic Activity Against Breast Cancer Cells While Protecting From Cardiotoxicity. Frontiers in Cardiovascular Medicine 2022, 9, 867867. [Google Scholar] [CrossRef]
- Benincasa, C.; Santoro, I.; Nardi, M.; Cassano, A.; Sindona, G. Eco-Friendly Extraction and Characterisation of Nutraceuticals from Olive Leaves. Molecules 2019, 24, 3481. [Google Scholar] [CrossRef]
- Biniek, K.; Levi, K.; Dauskardt, R.H. Solar UV radiation reduces the barrier function of human skin. Proceedings of the National Academy of Sciences of the United States of America 2012, 109, 17111–17116. [Google Scholar] [CrossRef]
- Bressel, M.; Kauffmann, J.; Schmitt, S. Critical Review of Techniques for Food Emulsion Characterization: Rheological Analysis of Emulsions and Their Implications for Formulation Stability. Food Hydrocolloids 2024, 102, 1069–1085. [Google Scholar] [CrossRef]
- Caporaso, N.; Formisano, D.; Genovese, A. Valorization of lyophilized olive mill wastewater: Chemical and biological properties for functional applications. Sustainability 2023, 15, 3360. [Google Scholar]
- Cardinali, A.; De Marco, E.; De Santis, G. Phenolic compounds in olive mill wastewater: Analysis and characterization. Food Chemistry 2010, 120, 690–695. [Google Scholar]
- Carrara, M.; Kelly, M.T.; Roso, F.; Larroque, M.; Margout, D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. Journal of Agricultural and Food Chemistry 2021, 69, 7268–7284. [Google Scholar] [CrossRef]
- Carrara, M.; Beccali, M.; Cellura, M.; Pipitone, F. Olive mill wastewater: A source of biologically active compounds. Journal of Cleaner Production 2021, 279, 123841. [Google Scholar]
- Chinembiri, T.N.; du Plessis, L.H.; Gerber, M.; Hamman, J.H.; du Plessis, J. Review of natural compounds for potential skin cancer treatment. Molecules 2014, 19, 11679–11721. [Google Scholar] [CrossRef]
- Cuffaro, D.; Vassallo, A.; La Carrubba, V. Valorization of olive mill wastewater: Recovery of bioactive compounds for food applications. Sustainability 2023, 15, 1234. [Google Scholar]
- Dauber, C.; Parente, E.; Zucca, M.P.; Gámbaro, A.; Vieitez, I. Olea europea and By-Products: Extraction Methods and Cosmetic Applications. Cosmetics 2023, 10, 112. [Google Scholar] [CrossRef]
- De Cicco, P.; Catani, M.V.; Gasperi, V.; Sibilano, M.; Quaglietta, M.; Savini, I. Olive Leaf Extract Inhibits Proliferation, Epithelial-Mesenchymal Transition and Metastatic Potential of Human Melanoma Cells. Antioxidants 2022, 11, 263. [Google Scholar]
- Di Mauro, M.D.; Tomasello, B.; Giardina, R.C.; Dattilo, S.; Mazzei, V.; Sinatra, F.; Caruso, M.; D'Antona, N.; Renis, M. Sugar and mineral enriched fraction from olive mill wastewater for promising cosmeceutical application: Characterization, in vitro and in vivo studies. Food & Function 2017, 8, 4713–4722. [Google Scholar]
- Draelos, Z.D. The science behind skin care: Cleansers. Journal of Cosmetic Dermatology 2018, 17, 8–14. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Fadhl, B.M.; Khaireddine, A. Olive mill wastewater: A review on its composition and treatment methods. Journal of Environmental Management 2012, 95 (Suppl), S1–S15. [Google Scholar]
- Flohr, C.; Hay, R. Putting the burden of skin diseases on the global map. British Journal of Dermatology 2021, 184, 189–190. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Fulop, T.; Larbi, A.; Pawelec, G.; Khalil, A.; Cohen, A.A.; Hirokawa, K.; Witkowski, J.M.; Franceschi, C. Immunology of Aging: the Birth of Inflammaging. Clinical Reviews in Allergy & Immunology 2023, 64, 109–122. [Google Scholar] [CrossRef]
- Gallazzi, M.; et al. An Extract of Olive Mill Wastewater Downregulates Growth, Adhesion and Invasion Pathways in Lung Cancer Cells: Involvement of CXCR4. Nutrients 2020, 12, 903. [Google Scholar] [CrossRef] [PubMed]
- Galletti, F.; Peluso, G.; Bifulco, M.; Russo, G.L. Biological effects of the olive tree and its derivatives on the skin. Food & Function 2022, 13, 5952–5970. [Google Scholar]
- Ganesan, P.; Choi, D.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. International Journal of Nanomedicine 2016, 11, 1987–2007. [Google Scholar] [CrossRef]
- Goldminz, A.M.; Au, S.C.; Kim, N.; Gottlieb, A.B.; Lizzul, P.F. NF-κB: An essential transcription factor in psoriasis. Journal of Dermatological Science 2013, 69, 89–94. [Google Scholar] [CrossRef] [PubMed]
- González-Acedo, A.; Ramos-Torrecillas, J.; Illescas-Montes, R.; Costela-Ruiz, V.J.; Ruiz, C.; Melguizo-Rodríguez, L.; García-Martínez, O. The Benefits of Olive Oil for Skin Health: Study on the Effect of Hydroxytyrosol, Tyrosol, and Oleocanthal on Human Fibroblasts. Nutrients 2023, 15, 2077. [Google Scholar] [CrossRef]
- Gorini, I.; Iorio, S.; Ciliberti, R.; Licata, M.; Armocida, G. Olive oil in pharmacological and cosmetic traditions. Journal of Cosmetic Dermatology 2019, 18, 1575–1579. [Google Scholar] [CrossRef]
- Gorzelanny, C.; Meß, C.; Schneider, S.W.; Huck, V.; Brandner, J.M. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020, 12, 684. [Google Scholar] [CrossRef] [PubMed]
- Halloy, J.; Bernard, B.A.; Loussouarn, G.; Goldbeter, A. The follicular automaton model: Effect of stochasticity and of synchronization of hair cycles. Journal of Theoretical Biology 2002, 214, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Hirao, T. (2017) 'Structure and Function of Skin From a Cosmetic Aspect. In Elsevier eBooks; Elsevier BV; p. 673. [CrossRef]
- Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Frontiers in Pharmacology 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Hwa, C.; Bauer, E.A.; Cohen, D.E. Skin biology. Dermatologic Therapy 2011, 24, 464–470. [Google Scholar] [CrossRef]
- Kennedy, K.J.; Price, K.; Rando, T.L.; Boylan, J.; Dyer, A.R. Ensuring healthy skin as part of wound prevention: An integrative review of health professionals' actions. Journal of Wound Care 2018, 27, 707–715. [Google Scholar] [CrossRef]
- Kilic, A.; Masur, C.; Reich, H.; Knie, U.; Dähnhardt, D.; Dähnhardt-Pfeiffer, S.; Abels, C. Skin acidification with a water-in-oil emulsion (pH 4) restores disrupted epidermal barrier and improves structure of lipid lamellae in the elderly. Journal of Dermatology 2019, 46, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Cho, H.-E.; Moon, S.H.; Ahn, H.; Bae, S.; Cho, H.-D.; An, S. (2020) 'Transdermal delivery systems in cosmetics. In Biomedical Dermatology; BioMed Central; Vol. 4. [CrossRef]
- Kische, H.; Arnold, A.; Gross, S.; Wallaschofski, H.; Völzke, H.; Nauck, M.; Haring, R. Sex Hormones and Hair Loss in Men From the General Population of Northeastern Germany. JAMA Dermatology 2017, 153, 935–937. [Google Scholar] [CrossRef]
- Kligman, D. Cosmeceuticals. Dermatologic Clinics 2000, 18, 609–615. [Google Scholar] [CrossRef]
- Knaggs, H.; Lephart, E.D. Enhancing Skin Anti-Aging through Healthy Lifestyle Factors. Cosmetics 2023, 10, 142. [Google Scholar] [CrossRef]
- Ibrahim, A.A.E.; Bagherani, N.; Smoller, B.R.; Reyes-Baron, C.; Bagherani, N. Functions of the Skin. Atlas of Dermatology, Dermatopathology and Venereology 2021. [Google Scholar] [CrossRef]
- Janakat, S.; Al-Nabulsi, A.; Allehdan, S.; Olaimat, A.; Holley, R. Antimicrobial activity of amurca (olive oil lees) extract against selected foodborne pathogens. Food Science and Technology 2015, 35, 259–265. [Google Scholar] [CrossRef]
- Lasisi, T.; Smallcombe, J.W.; Kenney, W.L.; Shriver, M.D.; Zydney, B.; Jablonski, N.G.; Havenith, G. Human scalp hair as a thermoregulatory adaptation. Proceedings of the National Academy of Sciences of the United States of America 2023, 120, e2301760120. [Google Scholar] [CrossRef] [PubMed]
- Lecci, R.; Romani, A.; Ieri, F.; Mulinacci, N.; Pinelli, P.; Bernini, R.; Caporali, A. Antioxidant and Pro-Oxidant Capacities as Mechanisms of Photoprotection of Olive Polyphenols on UVA-Damaged Human Keratinocytes. Antioxidants 2021, 10, 600. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; He, H.; Liu, C.; Akanji, T.; Gutkowski, J.; Li, R.; Ma, H.; Wan, Y.; Wu, P.; Li, D.; Seeram, N.P.; Ma, H. Dietary polyphenol oleuropein and its metabolite hydroxytyrosol are moderate skin permeable elastase and collagenase inhibitors with synergistic cellular antioxidant effects in human skin fibroblasts. International Journal of Food Sciences and Nutrition 2022, 73, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhu, L.; He, J. Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles. Frontiers in Cell and Developmental Biology 2022, 10, 899095. [Google Scholar] [CrossRef]
- Litchman, G.; Nair, P.A.; Badri, T.; Kelly, S.E. (2022) 'Microneedling. In StatPearls [Internet]; StatPearls Publishing: Treasure Island (FL), 2025; Available online: https://www.ncbi.nlm.nih.gov/books/NBK470464/.
- Lodén, M. Effect of moisturizers on epidermal barrier function. Clinical Dermatology 2012, 30, 286–296. [Google Scholar] [CrossRef]
- López-Ojeda, W.; Pandey, A.; Alhajj, M.; Oakley, A. Anatomy, Skin (Integument). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, 2019. [Google Scholar]
- Mărănducă, A.; Mărănducă, L.; Simionescu, R. The structure and function of the skin. Romanian Journal of Morphology and Embryology 2020, 61, 7–14. [Google Scholar]
- Masaki, H. Role of antioxidants in the skin: Anti-aging effects. Journal of Dermatological Science 2010, 58, 85–90. [Google Scholar] [CrossRef]
- Mijatović, S.; Timotijević, G.; Miljković, Đ.; Radović, J.; Maksimović-Ivanić, D.; Dekanski, D.; Stošić-Grujičić, S. Multiple antimelanoma potential of dry olive leaf extract. International Journal of Cancer 2011, 128, 1955–1965. [Google Scholar] [CrossRef]
- Morávková, T.; Stern, P. Rheological and Textural Properties of Cosmetic Emulsions. Applied Rheology 2011, 21, 35200. [Google Scholar] [CrossRef]
- Natarelli, N.; Gahoonia, N.; Sivamani, R.K. Integrative and Mechanistic Approach to the Hair Growth Cycle and Hair Loss. Journal of Clinical Medicine 2023, 12, 893. [Google Scholar] [CrossRef] [PubMed]
- Nomikos, N.N.; Nomikos, G.N.; Kores, D.S. The use of deep friction massage with olive oil as a means of prevention and treatment of sports injuries in ancient times. Archives of Medical Science 2010, 6, 642–645. [Google Scholar] [CrossRef]
- Osmond, G.W.; Augustine, C.K.; Zipfel, P.A.; Padussis, J.; Tyler, D.S. Enhancing melanoma treatment with resveratrol. Journal of Surgical Research 2012, 172, 109–115. [Google Scholar] [CrossRef]
- Otto, A.; Du Plessis, J.; Wiechers, J.W. Formulation effects of topical emulsions on transdermal and dermal delivery. International Journal of Cosmetic Science 2009, 31, 1–19. [Google Scholar] [CrossRef]
- Pandey, A.; Jatana, G.K.; Sonthalia, S. Cosmeceuticals. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, 2023. [Google Scholar]
- Papadopoulou, A.; Petrotos, K.; Stagos, D.; Gerasopoulos, K.; Maimaris, A.; Makris, H.; Kafantaris, I.; Makri, S.; Kerasioti, E.; Halabalaki, M.; Brieudes, V.; Ntasi, G.; Kokkas, S.; Tzimas, P.; Goulas, P.; Zakharenko, A.M.; Golokhvast, K.S.; Tsatsakis, A.; Kouretas, D. (2017) 'Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters. Oxidative Medicine and Cellular Longevity 2017, 8273160. [Google Scholar] [CrossRef]
- Patel, M.; Joshi, A. Nanoemulsions for cosmeceutical applications: Advantages and formulation considerations. Advanced Drug Delivery Reviews 2012, 64, 670–685. [Google Scholar]
- Pegoraro, C.; MacNeil, S.; Battaglia, G. Transdermal drug delivery: from micro to nano. Nanoscale 2012, 4, 1881. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, V.; Jiménez-Martínez, C.; González-Escobar, J.L.; Corzo-Ríos, L.J. Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: trends and opportunities. Frontiers in Chemistry 2024, 12, 1423500. [Google Scholar] [CrossRef] [PubMed]
- Perugini, P.; Vettor, M.; Rona, C.; Troisi, L.; Villanova, L.; Genta, I.; Conti, B.; Pavanetto, F. Efficacy of oleuropein against UVB irradiation: preliminary evaluation. International Journal of Cosmetic Science 2008, 30, 113–120. [Google Scholar] [CrossRef]
- Phelps, A.H. Jr. Air pollution aspects of soap and detergent manufacture. Journal of the Air Pollution Control Association 1967, 17, 505–507. [Google Scholar] [CrossRef]
- Pojero, F.; Poma, P.; Spanò, V.; Montalbano, A.; Barraja, P.; Notarbartolo, M. Targeting senescence with olive oil polyphenols as a novel therapeutic strategy for chronic diseases. European Journal of Medicinal Chemistry 2022, 227, 113910. [Google Scholar]
- Ponphaiboon, J.; Limmatvapirat, S.; Limmatvapirat, C. Development and Evaluation of a Stable Oil-in-Water Emulsion with High Ostrich Oil Concentration for Skincare Applications. Molecules 2024, 29, 982. [Google Scholar] [CrossRef] [PubMed]
- Rager, E.L.; Bridgeford, E.P.; Ollila, D.W. Cutaneous melanoma: update on prevention, screening, diagnosis, and treatment. American Family Physician 2005, 72, 269–276. [Google Scholar] [PubMed]
- Raymond-Lezman, J.R.; Riskin, S.I. Sunscreen Safety and Efficacy for the Prevention of Cutaneous Neoplasm. Cureus 2024, 16, e56369. [Google Scholar] [CrossRef]
- Rivers, J.K. The role of cosmeceuticals in antiaging therapy. Skin Therapy Letter 2008, 13, 5–9. [Google Scholar]
- Ruzzolini, J.; Peppicelli, S.; Andreucci, E.; Bianchini, F.; Scardigli, A.; Romani, A.; la Marca, G.; Nediani, C.; Calorini, L. Oleuropein, the Main Polyphenol of Olea europaea Leaf Extract, Has an Anti-Cancer Effect on Human BRAF Melanoma Cells and Potentiates the Cytotoxicity of Current Chemotherapies. Nutrients 2018, 10, 1950. [Google Scholar] [CrossRef]
- Saluja, S.S.; Fabi, S.G. A Holistic Approach to Antiaging as an Adjunct to Antiaging Procedures: A Review of the Literature. Dermatologic Surgery 2017, 43, 475–484. [Google Scholar] [CrossRef]
- Sambhakar, P.; Malik, S.; Bhatia, R.; Al Harrasi, S.; Rani, A.; Saharan, R.C.; Kumar, R.; Suresh, G.; Sehrawat, R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. Journal of Pharmaceutical Sciences 2023, 112, 1–15. [Google Scholar] [CrossRef]
- Samra, T.; Lin, R.R.; Maderal, A.D. The Effects of Environmental Pollutants and Exposures on Hair Follicle Pathophysiology. Skin Appendage Disorders 2024, 10, 262–272. [Google Scholar] [CrossRef]
- Schlupp, P.; Schmidts, T.M.; Pössl, A.; Wildenhain, S.; Lo Franco, G.; Lo Franco, A.; Lo Franco, B. Effects of a Phenol-Enriched Purified Extract from Olive Mill Wastewater on Skin Cells. Cosmetics 2019, 6, 30. [Google Scholar] [CrossRef]
- Sciubba, F.; Chronopoulou, L.; Pizzichini, D.; Lionetti, V.; Fontana, C.; Aromolo, R.; Socciarelli, S.; Gambelli, L.; Bartolacci, B.; Finotti, E.; Benedetti, A.; Miccheli, A.; Neri, U.; Palocci, C.; Bellincampi, D. Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology (Basel) 2020, 9, 450. [Google Scholar] [CrossRef] [PubMed]
- Seah, B.C.-Q.; Teo, B.M. Recent advances in ultrasound-based transdermal drug delivery. International Journal of Nanomedicine 2018. 7749. Dove Medical Press. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Sarangdevot, K. Nanoemulsions: A new topical drug delivery system for the treatment of acne. Journal of Research in Pharmacy 2012, 27, 1–11. [Google Scholar]
- Sittek, L.-M.; Schmidts, T.M.; Schlupp, P. Polyphenol-Rich Olive Mill Wastewater Extract and Its Potential Use in Hair Care Products. Journal of Cosmetics, Dermatological Sciences and Applications 2021, 11, 356–370. [Google Scholar] [CrossRef]
- Smeriglio, A.; Denaro, M.; Mastracci, L.; Grillo, F.; Cornara, L.; Shirooie, S.; Nabavi, S.M.; Trombetta, D. Safety and efficacy of hydroxytyrosol-based formulation on skin inflammation: in vitro evaluation on reconstructed human epidermis model. DARU Journal of Pharmaceutical Sciences 2019, 27, 283–293. [Google Scholar] [CrossRef]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef]
- Svobodová, A.; Psotová, J.; Walterová, D. Natural phenolics in the prevention of UV-induced skin damage: A review. Biomedicine & Pharmacotherapy 2003, 147, 137–145. [Google Scholar]
- Urban, K.; Chu, S.; Giesey, R.L.; Mehrmal, S.; Uppal, P.; Delost, M.E.; Delost, G.R. Burden of skin disease and associated socioeconomic status in Asia: A cross-sectional analysis from the Global Burden of Disease Study 1990-2017. JAAD International 2020, 2, 40–50. [Google Scholar] [CrossRef]
- Urysiak-Czubatka, I.; Kmieć, M.L.; Broniarczyk-Dyła, G. Assessment of the usefulness of dihydrotestosterone in the diagnostics of patients with androgenetic alopecia. Postępy Dermatologii i Alergologii 2014, 31, 207–215. [Google Scholar] [CrossRef]
- Verma, A.; Zanoletti, A.; Kareem, K.Y.; et al. Skin protection from solar ultraviolet radiation using natural compounds: a review. Environmental Chemistry Letters 2024, 22, 273–295. [Google Scholar] [CrossRef]
- Visioli, F.; Galli, C.; Caruso, D. Antioxidant properties of olive oil phenols. Journal of Nutritional Biochemistry 1999, 10, 305–310. [Google Scholar]
- Wang, H.; Syrovets, T.; Kess, D.; Büchele, B.; Hainzl, H.; Lunov, O.; Simmet, T. Targeting NF-κB with a natural triterpenoid alleviates skin inflammation in a mouse model of psoriasis. Journal of Immunology 2009, 183, 4755–4763. [Google Scholar] [CrossRef] [PubMed]
- Wickett, R.R.; Visscher, M.O. Structure and function of the epidermal barrier. American Journal of Infection Control 2006, 34. [Google Scholar] [CrossRef]
- Wong, R.; Geyer, S.; Weninger, W.; Guimberteau, J.-C.; Wong, J.K. The dynamic anatomy and patterning of skin. Experimental Dermatology 2016, 25, 92–98. [Google Scholar] [CrossRef] [PubMed]
- World Health Assembly (WHA) (n.d.) 'Resolution on Skin Diseases'. (Accessed: [Insert Access Date]). Available online: https://globalskin.org/component/content/article/101-advocacy/641-wha-resolution-on-skin-diseases?Itemid=1710.
- Yousef, H.; Alhajj, M.; Fakoya, A.O.; et al. Epidermis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, 2025; Available at: https://www.ncbi.nlm.nih.gov/books/NBK470464/.
- Zhang, H.L.; Qiu, X.X.; Liao, X.H. Dermal Papilla Cells: From Basic Research to Translational Applications. Biology (Basel) 2024, 13, 842. [Google Scholar] [CrossRef]
- Zhao, J.; Harada, N.; Okajima, K. Dihydrotestosterone inhibits hair growth in mice by inhibiting insulin-like growth factor-I production in dermal papillae. Growth Hormone & IGF Research 2011, 21, 260–267. [Google Scholar] [CrossRef]
- Zhou, Q.; Mrowietz, U.; Rostami-Yazdi, M. Oxidative stress in the pathogenesis of psoriasis. Free Radical Biology and Medicine 2009, 47, 891–905. [Google Scholar] [CrossRef]
| Component Category | Percentage |
| Water | 83–94% |
| Organic Matter | 4–16% |
| Mineral Salts | 0.4–2.5% |
| Component Category | Molecular Details and Biological Functions |
| Sugars | Glucose, fructose, and mannitol, which serve as energy sources and contribute to osmolarity. |
| Nitrogenous Compounds | Proteins and amino acids involved in cellular repair and signaling. |
| Organic Acids | Acetic, malic, and citric acids—regulate pH and possess antimicrobial properties. |
| Lipids | Residual olive oil and derivatives—contain essential fatty acids beneficial for skin barrier function. |
| Phenolic Compounds | Over 50 identified, including hydroxytyrosol, tyrosol, oleuropein, caffeic acid, and verbascoside—potent antioxidants and anti-inflammatory agents. |
| Flavonoids | Luteolin, apigenin, and glycosides—exhibit anti-inflammatory, antioxidant, and photoprotective properties. |
| Lignans | Pinoresinol and acetoxypinoresinol—recognized for antioxidant and anticancer effects. |
| Vitamins | Mainly vitamin E (tocopherols), contributing to antioxidant protection and skin health. |
| Minerals | Potassium, sodium, calcium, and magnesium—support cellular function and hydration. |
| Dietary Fibers | Mucilage and pectin with moisturizing and protective properties |
| Cells | In vitro | In vivo |
| Keratinocyte (Schlupp et al., 2019) | Antibacterial effect against Gram-negative and Gram-positive bacteria. Antioxidant effect reducing ROS formation. Anti-inflammatory effect, reducing IL-8. Photoprotection in UVA-damaged human keratinocytes. | Improvement of skin hydration and collagen density, enhancement of skin elasticity and decrease of erythema index. |
| Human follicle dermal papilla (Sittek 2021) | Positive influence on cell proliferation and release of growth factors IGF-1. Antioxidant effect reducing ROS formation and preventing oxidative stress. | Help in improving and extending hair growth. |
| HaCaT cells (keratinocytes) (Schlupp et al., 2019) | Reduced IL-8 expression following TNF-α stimulation; confirmed anti-inflammatory effects of OMWW; hydrocortisone used as control. | — |
| Normal human epidermal keratinocytes (Lecci et al., 2021) | Improved cell growth and migration; protection from ROS damage; enhanced skin barrier function. | — |
| A375 melanoma cells (Schlupp 2019) | Selective cytotoxicity against melanoma cells; non-toxic to normal skin cells. | — |
| HFDPCs (Human follicle dermal papilla cells) (Sittek et al., 2021) | Stimulation of IGF-1 and VEGF secretion; increased proliferation; antioxidant protection. | — |
| Human skin (clinical) (Di Mauro et al., 2017) | — | Improved skin hydration and elasticity; decreased erythema index. |
| Bioactivity | Effect or Mechanism | Dermatological Applications |
| Antioxidant Activity | Neutralizes reactive oxygen species (ROS), prevents oxidative stress, and protects skin cells from UV-induced damage. | Anti-aging creams, sunscreens, protective serums |
| Anti-inflammatory Effects | Downregulates pro-inflammatory cytokines (e.g., IL-1β, IL-8, TNF-α); modulates NF-κB and MAPK pathways, reducing inflammation. | Eczema and psoriasis treatments, anti-inflammatory formulations |
| Photoprotection | Mitigates UVA and UVB-induced damage, reduces cytokine-mediated inflammation, and protects collagen structure. | Sunscreens, anti-photoaging products |
| Antimicrobial Activity | Inhibits the growth of skin pathogens such as Staphylococcus aureus, Propionibacterium acnes, and Candida spp. | Acne treatments, antibacterial creams, anti-fungal products |
| Skin Barrier Enhancement | Promotes keratinocyte repair, strengthens skin hydration and elasticity, and reinforces the epidermal barrier. | Moisturizers, barrier repair creams |
| Anti-aging Effects | Inhibits collagenase and elastase activity, preserves collagen matrix, and prevents wrinkle formation. | Regenerative serums, anti-wrinkle creams |
| Hair Growth Promotion | Stimulates IGF-1 and VEGF expression in dermal papilla cells, enhancing hair follicle growth and strength. | Hair growth serums, anti-alopecia formulations |
| Skin Cancer Prevention | Selectively induces apoptosis in melanoma cells while sparing healthy keratinocytes; modulates oxidative stress pathways. | Anti-melanoma treatments, preventive skincare |
| ROS Scavenging | Reduces ROS levels by over 60% in experimental models, preventing cellular oxidative damage. | Antioxidant serums, skin repair products |
| Wound Healing Support | Enhances fibroblast proliferation, promotes collagen synthesis, and accelerates tissue regeneration. | Healing ointments, post-surgical creams |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).