Preprint
Article

This version is not peer-reviewed.

Revised Electroweak and Asymmetry Terms of the Strong and Electroweak Mass Formula Associated with 4G Model of Final Unification

Submitted:

06 May 2025

Posted:

07 May 2025

You are already at the latest version

Abstract
Considering our 4G model of final unification, there exists a nuclear elementary charge of magnitude $2.9464e$ and strong coupling constant, $\alphas_s$ is the squared ratio of ordinary elementary charge to nuclear elementary charge. Nuclear elementary charge is having many applications in nuclear physics and other branches of physics like particle physics, super conductivity, condensed matter physics and unified physics. Starting from Z =1 to 137, by refining the general nuclear binding energy formula with 6 terms, there is a possibility for defining a set of binding energy coefficients assumed to be linked with the strong coupling constant. With reference to our 4G model of final unification, in our recent publications, we have developed a new formula for estimating nuclear binding energy in terms of strong and electroweak interactions. Our formula constitutes 4 simple terms and only one energy coefficient of magnitude 10.1 MeV. First term is a volume term, second term seems to be a representation of free nucleons associated with electroweak interaction, third term is a radial term and fourth one is an asymmetry term about the mean stable mass number. Common energy coefficient can be expressed as, $\frac{\left(2.95e\right)^2}{4 \pi \epsilon_0 \left(1.24\;fm\right)}\cong 10.1 $ MeV. In this paper, we have revised our electroweak term and asymmetry term for a better understanding and applicability for the entire range of atomic nuclides. With reference to an advanced binding energy formula and considering (2Z-1) and (3.5Z) as the lower and upper mass limits, for the revised 4 term formula, RMS deviation is 13.5 MeV and for the 6 term semi empirical mass formula, RMS deviation is 3.2 MeV. Point of concern is that, current version of exploring nuclear structure is not 100% inline with strong and weak interaction concepts and we argue that, our approach is far better, simple and cohesive. It can be understood and confirmed from the Fermi gas model of nucleus. By fitting the maximum binding energy associated with stable mass numbers, we have provided solid support for the existence of the proposed nuclear elementary charge, $e_n\cong 2.9464e$ and the proposed electroweak coefficient, $\beta \cong 0.001605$ associated with beta decay.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  

1. Introduction

With reference to our 4G model of final unification, in our recent publications [1-12], we have developed a new formula for estimating nuclear binding energy [13-24] in terms of strong and electroweak interactions [25,26]. Our formula constitutes 4 simple terms and only one energy coefficient of magnitude 10.1 MeV. First term is a volume term, second term seems to be a representation of free nucleons associated with electroweak interaction, third term is a radial term and fourth one is an asymmetry term about the mean stable mass number. Considering this kind of approach, nuclear structure can be understood in terms of strong and weak interactions and complicated concepts like cold nuclear fusion can be understood in a theoretical approach positively.
In this paper, we have presented our revised electroweak and asymmetry terms applicable for the entire range of atomic nuclides, starting from Z=1 to 137. Accuracy point of view, it needs further study. Proceeding further, we have proposed a very simple relation for estimating the maximum binding energy associated with stable mass numbers and thus provided strong support for the existence of the proposed nuclear elementary charge and corresponding electroweak coefficient;

2. Three Assumptions of 4G Model of Final Unification

Following our 4G model of final unification [1-12]
1)
There exists a characteristic electroweak fermion of rest energy, M w f c 2 584.725   GeV . It can be considered as the zygote of all elementary particles.
2)
There exists a nuclear elementary charge in such a way that, e e n 2 α s 0.1152 = Strong coupling constant and e n 2.9464 e .
3)
Each atomic interaction is associated with a characteristic large gravitational coupling constant. Their fitted magnitudes are,
G e Electromgnetic   gravitational   constant 2.374335 × 10 37   m 3 kg - 1 sec - 2 G n Nuclear   gravitational   constant 3.329561 × 10 28   m 3 kg - 1 sec - 2 G w Electroweak   gravitational   constant 2.909745 × 10 22   m 3 kg - 1 sec - 2
It may be noted that,
1)
Weak interaction point of view [25,26], following our assumptions, Fermi’s weak coupling constant can be fitted with the following relations.
G F m e m p 2 c R 0 2 G w M w f 2 R w 2   1.44021 × 10 62   J . m 3 where ,   R 0 2 G n m p c 2 1.24 × 10 15   m   R w 2 G w M w f c 2 6.75 × 10 19   m
2)
In a unified approach, most important point to be noted is that [10],
  c G w M w f 2
Clearly speaking, based on the electroweak interaction, the well believed quantum constant c seems to have a deep inner meaning. Following this kind of relation, there is a possibility to understand the integral nature of quantum mechanics with a relation of the form,   n 2 G w n M w f 2 c   where   n = 1 , 2 , 3 , .. It needs further study with reference to EPR argument [27-30] and [1,31]. String theory [32-36] can be made practical with reference to the three atomic gravitational constants associated with weak, strong and electromagnetic interaction gravitational constants. See Table 1. and Table 2. for sample string tensions and energies without any coupling constants.

2.1. Understanding the Electroweak Coefficient and Nuclear Stability

Our basic idea is that, all the nucleons are not participating in the nuclear binding energy scheme and non-participating nucleons can be called as ‘Free nucleons’. These free nucleons revolve round the nuclear core. Each free nucleon reduces the nuclear binding energy by 10.1 MeV. Protons and neutrons jointly play a crucial role in fixing the number of free nucleons. Electroweak interaction is having a key role in understanding free nucleons and nuclear stability against beta decay. In this context, we noticed that,
m p M w f 938.272   MeV 584.725   GeV 0.001605
m π c 2 ± m π c 2 0 m w c 2 ± m z c 2 0 139.57 × 134.98   MeV 80379.0 × 91187.6   MeV 0.001603
Here ratio of rest mass of proton to the assumed electroweak fermion is equal to the ratio of mean mass of pions to the mean mass of electroweak bosons. Based on this unique and concrete observation, we are very confident to say that, strong and weak interactions play a vital role exploring the secrets of nuclear structure. Thus, qualitatively and quantitatively, electroweak coefficient can be defined as,
m p M w f m π c 2 ± m π c 2 0 m w c 2 ± m z c 2 0 β 0.001605 Electroweak   coefficient
Based on this electroweak coefficient β 0.001605 , stability corresponding to nuclear beta decay can be understood with the following relation.
A s 2 Z + β 2 Z 2 2 Z + 0.00642 Z 2 2 Z + β s Z 2 where   β s 4 β 0.00642 Beta   stability   factor
One can find a similar relation in the literature [16]. This relation can be well tested for Z=21 to 92. For example,
45 2 × 21 4 21 2 0.00170 ; 63 2 × 29 4 29 2 0.00149 ;   89 2 × 39 4 39 2 0.00181 ; 109 2 × 47 4 47 2 0.0017 ; 169 2 × 69 4 69 2 0.00163 ; 238 2 × 92 4 92 2 0.001595 ;  
This is one best practical and quantitative application of our proposed electroweak fermion and bosons. Following this relation and based on various semi empirical mass formulae [13-21], by knowing any stable mass number, its corresponding proton number can be estimated with,
Z A s 1 + 1 + 0.0064 A s A s 2 + 0.0153 A s 2 / 3
where   a c 2 a a s y 0.71   MeV 2 × 23.21   MeV 0.6615   MeV 2 × 21.6091   MeV 0.0153
Considering this relation, we are working on understanding the stable super heavy elements.

2.2. Revised Strong and Electroweak Mass Formula

In this section, we present our revised strong and electroweak mass formula. It needs a review for accuracy and further simplicity. Point of interest and concern is that, in our approach, there exists only one common energy coefficient of magnitude 10.1 MeV. It can be understood in two different ways. One way of considering it as a form of potential. It may also be noted that, understanding nuclear binding energy for a wide range of proton numbers and neutron numbers with four terms and only one energy coefficient is a really a challenging and complicated task.
B 0 e n 2 4 π ε 0 R 0 1 α s e 2 4 π ε 0 R 0 10.1   MeV where   e n Nuclear   elementary   charge α s Strong   coupling   constant 0.115   to   0.12   R 0 1.24   to   1.25   fm
[37]
Another way of understanding 10.1 MeV is associated with 3 up quarks and 3 down quarks [38].
B 0 2 m u c 2 + m d c 2 + m u c 2 + 2 m d c 2 2 3 2 m u c 2 + m d c 2 where   m u c 2 2.16 ± 0.07   MeV 2 m u c 2 + m d c 2 Baby   Proton ' s   rest   energy   m d c 2 4.70 ± 0.07   MeV m u c 2 + 2 m d c 2 Baby   Neutron ' s   rest   energy
Proceeding further, for Z=1 to 137, nuclear binding energy cab be understood with the following relation.
B E T v o l T f r e e T r a d i a l T a s y A A f r e e A r a d i a l A a s y × 10.1   MeV
where, A × 10.1   MeV represents the volume term
A f r e e × 10.1   MeV represents the electroweak term linked with the number of free nucleons or loosely bound nucleons
A r a d i a l × 10.1   MeV represents the radial term
A a s y m × 10.1   MeV represents the asymmetry term
Here, first, third and fourth terms are simple to understand and follow. The second term (assumed be linked with electroweak interaction and number of free or loosely bound nucleons) seems to be complicated to understand and follow. Considering an error of ± 5   to   10   MeV , there is a possibility for understanding our efforts in developing the formulae.
Volume term can be expressed as,
T v o l A × 10.1   MeV
In this section, in a trial-error method, revised formula for Z=1 to 137 can be expressed as,
T f r e e A f r e e × 10.1   MeV 1 2 + β Z Z 2 + N 2 + Z 7 2 N 5 Z Z N I 2 10.1   MeV where   β Z 2 Z β s 0.3 × 0.001605 β s 4 × 0.001605 4 β 0.00642 I N Z A 2 and   2 Z β s 0.3 Electroweak   factor   of   Z
With reference to the proposed electroweak coefficient, β 0.001605 , and considering the entire range of atomic nuclides, for lower proton numbers, β Z seems to be higher than β and for higher proton numbers, β Z seems to approach β . This is the very important point to be noted in this paper. The newly developed ‘electroweak factor of Z, 2 Z β s 0.3 seems to be a very good approximation and needs fine tuning for light and medium atomic nuclides. See the following Figure 1 for understanding the decreasing trend of 2 Z β s 0.3 for the increasing trend of Z=1 to 137. It can be reviewed and reformulated for better accuracy.
In addition to that, the expression, Z 7 2 N 5 is also an approximation for reducing the binding energy of lower isotopes of any proton number having N Z . We are working in this direction. With a deep theoretical study, we are sure that, a correct expression can be developed for understanding the number of free nucleons associated with electroweak interaction.
Radial term can be expressed as,
T r a d i a l A r a d i a l × 10.1   MeV A 1 / 3 × 10.1   MeV
Revised asymmetry term can be expressed as
T a s y A a s y × 10.1   MeV γ k A s A 2 A s × 10.1   MeV where   γ 1 N Z A 2 and   k N Z 1 / 3
For evaluating the effectiveness of relations (5) to (14), we consider the following advanced relation as a reference [19].
B E 1 + 4 k v A 2 T z T z + 1 a v * A + 1 + 4 k s A 2 T z T z + 1 a s * A 2 3 + a c * Z 2 A 1 / 3 + f p * Z 2 A + E p
where, T z 3 rd   component   of   isospin = 1 2 Z N a v = 15.4963   MeV ,   a s = 17.7937   MeV k v = 1.8232 ,   k s = 2.2593 a c = 0.7093   MeV ,   f p = 1.2739   MeV d n = 4.6919   MeV ,   d p = 4.7230   MeV d n p = 6.4920   MeV and for   Z ,   N     Odd ,   E p d n N 1 / 3 + d p Z 1 / 3 + d n p A 2 / 3 for   Odd   Z ,   Even   N   ,   E p d p Z 1 / 3 for   Even   Z ,   Odd   N   ,   E p d n N 1 / 3 for   Even   Z ,   Even   N   ,   E p 0 See the following Table 3 prepared for estimating the nuclear binding energy of isotopes of Z=2,8,20,28, 50,70,82,100,118 and 137. Red curve is our fit and green curve is the reference binding energy curve [19]. Starting from Z=1 to 137, lower and upper mass numbers have been taken as (2Z)-1 and (3.5Z) respectively.
For our crude approximation, with reference to relation (15), for a wide range of protons and neutrons, relation (10) is having a root mean square deviation of 13.47 MeV. Error seems to be linked with the binding energy of higher mass numbers of heavy and super heavy proton numbers. Keeping this difficulty in view, based on the energy coefficient 10.1 MeV, we have developed a 6 term semi empirical relation (16) with a mean square deviation of 3.22 MeV where lower and upper mass limits are, (2Z)-1 and (3.5Z) respectively. See section 3.

3. Revised 6 Term Semi Empirical Mass Formula

In our very recent preprint paper [39], we have presented a revised form of the semi empirical mass formula (SEMF) with surface, coulomb and asymmetric energy coefficients as variables. This can be considered as a hybrid form of available SEMF. With a single set of energy coefficients, it seems to work for Z=1 to 137 and needs fine tuning for heavy isotopes of light proton numbers. In this context, we would like to emphasize the point that, strong coupling constant plays a vital role in fitting the nuclear binding energy coefficients. Clearly speaking, strong coupling constant can be inferred from nuclear binding energy coefficients. Considering our strong and electroweak mass formula and considering the proposed (revised) 6 term semi empirical mass formula, there is a chance to identify the strong coupling constant as a fundamental building block of atomic nuclei.
With reference to relation (10) and considering surface, Coulomb and asymmetry energy coefficients as variables, we have presented the following 6 term semi empirical mass formula. All the energy coefficients are having an inherent correlation with the proposed 10.1 MeV (common) energy coefficient and the strong coupling constant [37].
Let, Volume energy coefficient, a v 8 5 α s e 2 4 π ε 0 R 0 16.0   MeV Asymmetry energy coefficient, a a s y 1 1 A 12 5 α s e 2 4 π ε 0 R 0 1 1 A × 24.5   MeV Surface energy coefficient, a s 1 N Z A 2 2 a v a a s y a v + a a s y 1 N Z A 2 × 19.4   MeV Coulombic energy coefficient, a c 1 N Z A 2 x × 0.71   MeV   where   x 0.75 Z 2 A Pairing energy coefficient, a p 1 α s e 2 4 π ε 0 R 0 10.0   MeV Congruent energy coefficient, a c g 1 α s e 2 4 π ε 0 R 0 10.0   MeV Thus, 6 term semi empirical mass formula can be expressed as,
B E 16.0 × A γ × 19.4 × A 2 / 3 0.71 × Z 2 γ x A 1 / 3 1 1 A 24.5 A 2 Z 2 A ± 10 A + 10 × exp 4.2 N Z A  
where γ 1 ( N Z A ) 2 It seems to work from Z=1 to 137 without any difficulty and needs fine tuning for heavy isotopes of very light proton numbers. See the following Table 4 for the binding energy curves prepared for magic numbers [40], Z=2,8,20,28,50,82,100 and 114. Red curve is our fit and green curve is the reference binding energy curve [19]. Starting from Z=1 to 137, lower and upper mass numbers have been taken as (2Z)-1 and (3.5Z) respectively. For our crude approximation, with reference to relation (10), for a wide range of protons and neutrons, relation (5) is having a root mean square deviation of 3.22 MeV.

4. Nuclear Binding Energy Linked with Fermi Gas Model, Beta Stability, Strong Coupling Constant and Root Mean Square Radius of Proton

According to Fermi gas model of the nucleus [41], nucleons are weakly coupled to each other and total energy of any nucleus is,
E t o t 3 10 9 π 4 2 / 3 m n R 0 2 N 5 / 3 + Z 5 / 3 A 2 / 3
Based on this relation, close to beta stability, for medium and heavy atomic nuclides, nuclear binding energy [42] can be expressed as,
E B Z A E t o t 3 10 9 π 4 2 / 3 m n R 0 2 N 5 / 3 + Z 5 / 3 A 5 / 3 Z
Considering our 4G model of unification, above relations can be re-written as,
E t o t 0.27624 × α s m n c 2 N 5 / 3 + Z 5 / 3 A 2 / 3 where ,   c G n m n 2 2 e e n 2 α s   and   R 0 2 G n m n c 2 1.24   fm .
Considering our 4G model of unification, close to beta stability, for medium and heavy atomic nuclides, nuclear binding energy can be approximated with,
B E A s 0.27624 × Z α s m n c 2 N 5 / 3 + Z 5 / 3 A 5 / 3 0.032 × Z m n c 2 N 5 / 3 + Z 5 / 3 A 5 / 3 Z N 5 / 3 + Z 5 / 3 A 5 / 3 × 30.0   MeV where   A s 2 Z + 0.00642 Z 2
Close to beta stability, for light atomic nuclides, nuclear binding energy can be approximated with,
B E A s Z 30 α s 0.27624 × Z α s m n c 2 N 5 / 3 + Z 5 / 3 A 5 / 3 Z 30 α s 0.032 × Z m n c 2 N 5 / 3 + Z 5 / 3 A 5 / 3 Z 30 α s Z N 5 / 3 + Z 5 / 3 A 5 / 3 × 30.0   MeV where   3 Z 30 ,   α s 0.1152 ,   A s 2 Z + 0.00642 Z 2
Proceeding further, considering N 5 / 3 + Z 5 / 3 A 5 / 3 2 3 , close to the beta stability, for light atomic nuclides, nuclear binding energy can be approximated with,
B E A s Z 30 α s 1 Z β 2 Z 1 × 20.0   MeV where   3 Z 30 ,   α s 0.1152 , β 0.001605   and   A s 2 Z + 0.00642 Z 2
Close to beta stability, for medium and heavy atomic nuclides, nuclear binding energy can be approximated with,
B E A s 1 Z β 2 Z 1 × 20.0   MeV   where   Z > 30   and   A s 2 Z + 0.00642 Z 2
Following the concepts of Fermi gas model and our proposal, it seems that, all the nucleons are not strongly bound in the nucleus. Clearly speaking, some kind of weak interaction is playing a mysterious role among the nucleons. Proceeding further, it seems that, Fermi gas model seems to be associated with an energy unit [43] of α s m n c 2 108.0   to   111.0   MeV . This energy unit seems to be roughly (0.3 to 0.5) times the QCD lambda value [44]. In a unified approach, further research can be carried out.
With reference to assumed or observed stable mass numbers, for medium and heavy atomic nuclides, binding energy can be estimated as follows. Readers are encouraged to refer our paper published in 2015 [45].
B E A s A s × 1 exp A s β 1 3 × 9.1 ± 0.05   MeV where   A > 56 , β 0.001605   3 5 e n 2 4 π ε 0 R p 3 5 α s e 2 4 π ε 0 0.83   fm 9.04   MeV R p Root   mean   square   radius   of   proton   0.83   fm Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3
[46]
With reference to stable mass numbers, for light atomic nuclides, binding energy can be estimated as follows.
B E A s A 56 α s A s × 1 exp A s β 1 3 × 9.1 ± 0.05   MeV where   A < 56 , β 0.001605 ,   α s 0.1152 3 5 e n 2 4 π ε 0 R p 3 5 α s e 2 4 π ε 0 0.83   fm 9.04   MeV R p Root   mean   square   radius   of   proton   0.83   fm Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3
[45]
Here, point of concern is that, close to beta stability, normally considered asymmetry term can be approximated with [45].
A s 2 Z 2 A 23.2   MeV exp A s β 1 3 A s × 9.1 ± 0.05   MeV where   β 0.001605 ,   Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3
Thus, for medium and heavy stable mass numbers, nuclear binding energy can be approximated with,
B E A s A s × 9.1 ± 0.05   MeV exp A s β 1 3 A s × 9.1 ± 0.05   MeV where ,   Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3 , β 0.001605
For light and stable mass numbers, nuclear binding energy can be approximated with,
B E A s A s 56 α s A s × 9.1 ± 0.05   MeV exp A s β 1 3 A s × 9.1 ± 0.05   MeV where   A < 56 , α s 0.1152 , β 0 . 001605 Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3
One important point point to be noted here is that, self attractive (potential) energy of proton having a nuclear charge of e n 2.9464 e and root mean square radius of 0.83 fm, can be expressed as,
3 5 e n 2 4 π ε 0 R p 3 5 α s e 2 4 π ε 0 0.83   fm 9.04   MeV
With reference to the nuclear binding energy scheme, maximum binding energy per nucleon observed in the cases of Iron and Nickel atomic nuclei is around 8.8 MeV. Thus,
B E A max   1 exp A s β 1 3 × 9.1 ± 0.05   MeV where   A > 56 ,   Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3
Maximum binding energy per nucleon for light atomic nuclides can be expressed as,
B E A s A s × 1 exp A s β 1 3 × 9.1 ± 0.05   MeV where   A > 56 , β 0.001605   3 5 e n 2 4 π ε 0 R p 3 5 α s e 2 4 π ε 0 0.83   fm 9.04   MeV R p Root   mean   square   radius   of   proton   0.83   fm Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3
[46]
Accuracy point of view, for light, medium and heavy atomic nuclides, energy coefficient seems to be around 9.15 MeV and for super heavy atomic nuclides, energy coefficient seems to be around 9.05 MeV. See the following figure 2 and table 5 prepared with relations (30) and (31). Relations (30) and (31) help in estimating the maximum binding energy per nucleon independent of total binding energy.
Figure 2. Understanding the trend of the maximum binding energy per nucleon (MeV) - Relations (30) and (31).
Figure 2. Understanding the trend of the maximum binding energy per nucleon (MeV) - Relations (30) and (31).
Preprints 158546 g002
Table 5. Estimated maximum binding energy of assumed stable mass numbers.
Table 5. Estimated maximum binding energy of assumed stable mass numbers.
Assumed stable mass number A s ( A s β ) Estimated maximum binding energy (MeV) Estimated maximum binding energy per nucleon (MeV) Assumed stable mass number A s ( A s β ) Estimated maximum binding energy (MeV) Estimated maximum binding energy per nucleon (MeV)
4 0.00642 26.80 6.70 179 0.287295 1448.19 8.09
5 0.008025 34.35 6.87 180 0.2889 1455.11 8.08
6 0.00963 42.08 7.01 181 0.290505 1462.02 8.08
7 0.011235 49.94 7.13 182 0.29211 1468.91 8.07
8 0.01284 57.93 7.24 183 0.293715 1475.79 8.06
9 0.014445 66.03 7.34 184 0.29532 1482.65 8.06
10 0.01605 74.22 7.42 185 0.296925 1489.50 8.05
11 0.017655 82.49 7.50 186 0.29853 1496.33 8.04
12 0.01926 90.85 7.57 187 0.300135 1503.15 8.04
13 0.020865 99.28 7.64 188 0.30174 1509.95 8.03
14 0.02247 107.77 7.70 189 0.303345 1516.73 8.03
15 0.024075 116.33 7.76 190 0.30495 1523.50 8.02
16 0.02568 124.94 7.81 191 0.306555 1530.26 8.01
17 0.027285 133.61 7.86 192 0.30816 1537.00 8.01
18 0.02889 142.32 7.91 193 0.309765 1543.73 8.00
19 0.030495 151.08 7.95 194 0.31137 1550.44 7.99
20 0.0321 159.89 7.99 195 0.312975 1557.13 7.99
21 0.033705 168.73 8.03 196 0.31458 1563.81 7.98
22 0.03531 177.62 8.07 197 0.316185 1570.47 7.97
23 0.036915 186.54 8.11 198 0.31779 1577.12 7.97
24 0.03852 195.50 8.15 199 0.319395 1583.76 7.96
25 0.040125 204.49 8.18 200 0.321 1590.37 7.95
26 0.04173 213.51 8.21 201 0.322605 1596.98 7.95
27 0.043335 222.56 8.24 202 0.32421 1603.56 7.94
28 0.04494 231.64 8.27 203 0.325815 1610.13 7.93
29 0.046545 240.75 8.30 204 0.32742 1616.69 7.92
30 0.04815 249.88 8.33 205 0.329025 1623.23 7.92
31 0.049755 259.04 8.36 206 0.33063 1629.75 7.91
32 0.05136 268.22 8.38 207 0.332235 1636.26 7.90
33 0.052965 277.43 8.41 208 0.33384 1642.75 7.90
34 0.05457 286.65 8.43 209 0.335445 1649.22 7.89
35 0.056175 295.90 8.45 210 0.33705 1655.68 7.88
36 0.05778 305.17 8.48 211 0.338655 1662.13 7.88
37 0.059385 314.46 8.50 212 0.34026 1668.56 7.87
38 0.06099 323.76 8.52 213 0.341865 1674.97 7.86
39 0.062595 333.08 8.54 214 0.34347 1681.36 7.86
40 0.0642 342.42 8.56 215 0.345075 1687.74 7.85
41 0.065805 351.78 8.58 216 0.34668 1694.11 7.84
42 0.06741 361.15 8.60 217 0.348285 1700.46 7.84
43 0.069015 370.53 8.62 218 0.34989 1706.79 7.83
44 0.07062 379.93 8.63 219 0.351495 1713.10 7.82
45 0.072225 389.34 8.65 220 0.3531 1719.40 7.82
46 0.07383 398.77 8.67 221 0.354705 1725.68 7.81
47 0.075435 408.21 8.69 222 0.35631 1731.95 7.80
48 0.07704 417.66 8.70 223 0.357915 1738.20 7.79
49 0.078645 427.12 8.72 224 0.35952 1744.43 7.79
50 0.08025 436.59 8.73 225 0.361125 1750.65 7.78
51 0.081855 446.07 8.75 226 0.36273 1756.85 7.77
52 0.08346 455.56 8.76 227 0.364335 1763.04 7.77
53 0.085065 465.07 8.77 228 0.36594 1769.20 7.76
54 0.08667 474.58 8.79 229 0.367545 1775.35 7.75
55 0.088275 484.10 8.80 230 0.36915 1781.49 7.75
56 0.08988 493.63 8.81 231 0.370755 1787.61 7.74
57 0.091485 502.14 8.81 232 0.37236 1793.71 7.73
58 0.09309 510.64 8.80 233 0.373965 1799.79 7.72
59 0.094695 519.12 8.80 234 0.37557 1805.86 7.72
60 0.0963 527.60 8.79 235 0.377175 1811.91 7.71
61 0.097905 536.07 8.79 236 0.37878 1817.94 7.70
62 0.09951 544.52 8.78 237 0.380385 1823.96 7.70
63 0.101115 552.97 8.78 238 0.38199 1829.96 7.69
64 0.10272 561.40 8.77 239 0.383595 1835.94 7.68
65 0.104325 569.82 8.77 240 0.3852 1841.91 7.67
66 0.10593 578.23 8.76 241 0.386805 1847.86 7.67
67 0.107535 586.63 8.76 242 0.38841 1853.79 7.66
68 0.10914 595.01 8.75 243 0.390015 1859.70 7.65
69 0.110745 603.39 8.74 244 0.39162 1865.60 7.65
70 0.11235 611.75 8.74 245 0.393225 1871.48 7.64
71 0.113955 620.10 8.73 246 0.39483 1877.34 7.63
72 0.11556 628.45 8.73 247 0.396435 1883.19 7.62
73 0.117165 636.77 8.72 248 0.39804 1889.01 7.62
74 0.11877 645.09 8.72 249 0.399645 1894.82 7.61
75 0.120375 653.40 8.71 250 0.40125 1900.62 7.60
76 0.12198 661.69 8.71 251 0.402855 1906.39 7.60
77 0.123585 669.98 8.70 252 0.40446 1912.15 7.59
78 0.12519 678.25 8.70 253 0.406065 1917.89 7.58
79 0.126795 686.51 8.69 254 0.40767 1923.62 7.57
80 0.1284 694.75 8.68 255 0.409275 1929.32 7.57
81 0.130005 702.99 8.68 256 0.41088 1935.01 7.56
82 0.13161 711.21 8.67 257 0.412485 1940.68 7.55
83 0.133215 719.42 8.67 258 0.41409 1946.33 7.54
84 0.13482 727.62 8.66 259 0.415695 1951.97 7.54
85 0.136425 735.81 8.66 260 0.4173 1957.58 7.53
86 0.13803 743.99 8.65 261 0.418905 1963.18 7.52
87 0.139635 752.15 8.65 262 0.42051 1968.76 7.51
88 0.14124 760.31 8.64 263 0.422115 1974.33 7.51
89 0.142845 768.45 8.63 264 0.42372 1979.87 7.50
90 0.14445 776.57 8.63 265 0.425325 1985.40 7.49
91 0.146055 784.69 8.62 266 0.42693 1990.91 7.48
92 0.14766 792.80 8.62 267 0.428535 1996.40 7.48
93 0.149265 800.89 8.61 268 0.43014 2001.87 7.47
94 0.15087 808.97 8.61 269 0.431745 2007.33 7.46
95 0.152475 817.04 8.60 270 0.43335 2012.76 7.45
96 0.15408 825.09 8.59 271 0.434955 2018.18 7.45
97 0.155685 833.13 8.59 272 0.43656 2023.58 7.44
98 0.15729 841.17 8.58 273 0.438165 2028.96 7.43
99 0.158895 849.18 8.58 274 0.43977 2034.32 7.42
100 0.1605 857.19 8.57 275 0.441375 2039.67 7.42
101 0.162105 865.18 8.57 276 0.44298 2044.99 7.41
102 0.16371 873.17 8.56 277 0.444585 2050.30 7.40
103 0.165315 881.14 8.55 278 0.44619 2055.59 7.39
104 0.16692 889.09 8.55 279 0.447795 2060.86 7.39
105 0.168525 897.04 8.54 280 0.4494 2066.11 7.38
106 0.17013 904.97 8.54 281 0.451005 2071.35 7.37
107 0.171735 912.89 8.53 282 0.45261 2076.56 7.36
108 0.17334 920.80 8.53 283 0.454215 2081.76 7.36
109 0.174945 928.69 8.52 284 0.45582 2086.93 7.35
110 0.17655 936.57 8.51 285 0.457425 2092.09 7.34
111 0.178155 944.44 8.51 286 0.45903 2097.23 7.33
112 0.17976 952.30 8.50 287 0.460635 2102.35 7.33
113 0.181365 960.14 8.50 288 0.46224 2107.45 7.32
114 0.18297 967.97 8.49 289 0.463845 2112.53 7.31
115 0.184575 975.79 8.49 290 0.46545 2117.59 7.30
116 0.18618 983.59 8.48 291 0.467055 2122.64 7.29
117 0.187785 991.39 8.47 292 0.46866 2127.66 7.29
118 0.18939 999.17 8.47 293 0.470265 2132.67 7.28
119 0.190995 1006.93 8.46 294 0.47187 2137.65 7.27
120 0.1926 1014.69 8.46 295 0.473475 2142.62 7.26
121 0.194205 1022.43 8.45 296 0.47508 2147.57 7.26
122 0.19581 1030.16 8.44 297 0.476685 2152.50 7.25
123 0.197415 1037.87 8.44 298 0.47829 2157.41 7.24
124 0.19902 1045.57 8.43 299 0.479895 2162.29 7.23
125 0.200625 1053.26 8.43 300 0.4815 2167.16 7.22
126 0.20223 1060.94 8.42 301 0.483105 2172.01 7.22
127 0.203835 1068.60 8.41 302 0.48471 2176.85 7.21
128 0.20544 1076.25 8.41 303 0.486315 2181.66 7.20
129 0.207045 1083.89 8.40 304 0.48792 2186.45 7.19
130 0.20865 1091.51 8.40 305 0.489525 2191.22 7.18
131 0.210255 1099.12 8.39 306 0.49113 2195.97 7.18
132 0.21186 1106.72 8.38 307 0.492735 2200.70 7.17
133 0.213465 1114.30 8.38 308 0.49434 2205.42 7.16
134 0.21507 1121.87 8.37 309 0.495945 2210.11 7.15
135 0.216675 1129.43 8.37 310 0.49755 2214.78 7.14
136 0.21828 1136.97 8.36 311 0.499155 2219.43 7.14
137 0.219885 1144.50 8.35 312 0.50076 2224.06 7.13
138 0.22149 1152.01 8.35 313 0.502365 2228.68 7.12
139 0.223095 1159.52 8.34 314 0.50397 2233.27 7.11
140 0.2247 1167.01 8.34 315 0.505575 2237.84 7.10
141 0.226305 1174.48 8.33 316 0.50718 2242.39 7.10
142 0.22791 1181.94 8.32 317 0.508785 2246.92 7.09
143 0.229515 1189.39 8.32 318 0.51039 2251.43 7.08
144 0.23112 1196.83 8.31 319 0.511995 2255.92 7.07
145 0.232725 1204.25 8.31 320 0.5136 2260.39 7.06
146 0.23433 1211.66 8.30 321 0.515205 2264.84 7.06
147 0.235935 1219.05 8.29 322 0.51681 2269.27 7.05
148 0.23754 1226.43 8.29 323 0.518415 2273.68 7.04
149 0.239145 1233.80 8.28 324 0.52002 2278.07 7.03
150 0.24075 1241.15 8.27 325 0.521625 2282.44 7.02
151 0.242355 1248.49 8.27 326 0.52323 2286.78 7.01
152 0.24396 1255.81 8.26 327 0.524835 2291.11 7.01
153 0.245565 1263.12 8.26 328 0.52644 2295.42 7.00
154 0.24717 1270.42 8.25 329 0.528045 2299.70 6.99
155 0.248775 1277.70 8.24 330 0.52965 2303.96 6.98
156 0.25038 1284.97 8.24 331 0.531255 2308.21 6.97
157 0.251985 1292.22 8.23 332 0.53286 2312.43 6.97
158 0.25359 1299.46 8.22 333 0.534465 2316.63 6.96
159 0.255195 1306.69 8.22 334 0.53607 2320.81 6.95
160 0.2568 1313.90 8.21 335 0.537675 2324.97 6.94
161 0.258405 1321.10 8.21 336 0.53928 2329.10 6.93
162 0.26001 1328.28 8.20 337 0.540885 2333.22 6.92
163 0.261615 1335.45 8.19 338 0.54249 2337.32 6.92
164 0.26322 1342.61 8.19 339 0.544095 2341.39 6.91
165 0.264825 1349.75 8.18 340 0.5457 2345.44 6.90
166 0.26643 1356.87 8.17 341 0.547305 2349.47 6.89
167 0.268035 1363.99 8.17 342 0.54891 2353.48 6.88
168 0.26964 1371.08 8.16 343 0.550515 2357.47 6.87
169 0.271245 1378.17 8.15 344 0.55212 2361.44 6.86
170 0.27285 1385.23 8.15 345 0.553725 2365.38 6.86
171 0.274455 1392.29 8.14 346 0.55533 2369.30 6.85
172 0.27606 1399.33 8.14 347 0.556935 2373.21 6.84
173 0.277665 1406.35 8.13 348 0.55854 2377.09 6.83
174 0.27927 1413.36 8.12 349 0.560145 2380.94 6.82
175 0.280875 1420.36 8.12 350 0.56175 2384.78 6.81
176 0.28248 1427.34 8.11 351 0.563355 2388.59 6.81
177 0.284085 1434.30 8.10 352 0.56496 2392.39 6.80
178 0.28569 1441.25 8.10 353 0.566565 2396.16 6.79
It may also be noted that, based on 4G model of final unification, for light, medium, heavy and super heavy atomic nuclides, close to stable mass numbers, maximum binding energy can also be approximated with [3],
B E max   A s 1 2 + 0.000935 A s 2 A s 1 / 3 × 10.1   MeV   where ,   Z A s 1 + 1 + 0.00642 A s A s 2 + 0.015 A s 2 / 3 , A s > 4 G w G n m e c 2 M w f c 2 0.511   MeV 584725   MeV e e n β e e n × 0.001605 0.000935 G w Proposed   weak   gravitational   constant G n Proposed   nuclear   gravitational   constant m e Rest   mass   of   electron M w f Rest   mass   of   the   proposed   electroweak   fermion
See the following Figure 3 and Table 6 prepared with relation (32) and the experimental data [3].
Relations (24) to (32) clearly establish the physical existence of the proposed nuclear elementary charge, e n 2.9464 e and the proposed electroweak coefficient, β 0.001605 . It needs further study.

5. Conclusions

Within the acceptable error bars, the revised formulae for the electroweak and asymmetry terms can be given a chance in exploring the mystery of nuclear binding energy associated with wide range of protons and very wide range of neutrons. With reference to Fermi gas model and unification point of view, we would like to emphasize the point that, strong and weak interactions play a vital role in understanding nuclear stability and binding energy. Considering relations (1) to (32) and corresponding data and figures, we argue and appeal the science community to recommend this unified subject for further research.

Data Availability Statement

The data that support the findings of this study are openly available.

Acknowledgments

Author Seshavatharam is indebted to professors Padma Shri M. Nagaphani Sarma, Chairman, Shri K.V. Krishna Murthy, founder Chairman, Institute of Scientific Research in Vedas (I-SERVE), Hyderabad, India and Shri K.V.R.S. Murthy, former scientist IICT (CSIR), Govt. of India, Director, Research and Development, I-SERVE, for their valuable guidance and great support in developing this subject.

Conflicts of Interest

Authors declare no conflict of interest in this paper or subject.

References

  1. Seshavatharam, U.V. S and Lakshminarayana S. Radius, surface area and volume dependent electroweak term and isospin dependent asymmetry term of the strong and electroweak mass formula. Int. J. Phys. Appl. 2025, 7, 122–134. [Google Scholar] [CrossRef]
  2. Seshavatharam, U.V. S and Lakshminarayana S. Understanding the Origins of Quark Charges, Quantum of Magnetic Flux, Planck’s Radiation Constant and Celestial Magnetic Moments with the 4G Model of Nuclear Charge. Current Physics. 2024, 1, e090524229812. [Google Scholar] [CrossRef]
  3. Seshavatharam, U.V. S and Lakshminarayana S. Exploring condensed matter physics with refined electroweak term of the strong and electroweak mass formula. World Scientific News. 2024, 193, 105–113. [Google Scholar]
  4. Seshavatharam U., V. S, Gunavardhana Naidu T and Lakshminarayana S. Nuclear evidences for confirming the physical existence of 585 GeV weak fermion and galactic observations of TeV radiation. International Journal of Advanced Astronomy. 2025, 13, 1–17. [Google Scholar] [CrossRef]
  5. Seshavatharam U. V., S. , Gunavardhana Naidu T and Lakshminarayana S. To confirm the existence of heavy weak fermion of rest energy 585 GeV. AIP Conf. Proc. 2022, 2451, 020003. [Google Scholar]
  6. Seshavatharam U V S and Lakshminarayana, S. 4G model of final unification – A brief report. Journal of Physics: Conference Series 2022, 2197, 012029. [Google Scholar]
  7. Seshavatharam U., V. S and Lakshminarayana S., H. K. Cherop and K. M. Khanna, Three Unified Nuclear Binding Energy Formulae. World Scientific News 2022, 163, 30–77. [Google Scholar]
  8. Seshavatharam, U.V. S and Lakshminarayana, S., On the Combined Role of Strong and Electroweak Interactions in Understanding Nuclear Binding Energy Scheme. Mapana Journal of Sciences 2021, 20, 1–18. [Google Scholar]
  9. Seshavatharam, U.V. S and Lakshminarayana S., Strong and Weak Interactions in Ghahramany’s Integrated Nuclear Binding Energy Formula. World Scientific News 2021, 161, 111–129. [Google Scholar]
  10. Seshavatharam, U.V. S and Lakshminarayana S. Is reduced Planck’s constant - an outcome of electroweak gravity? Mapana Journal of Sciences. 2020, 19, 1–13. [Google Scholar]
  11. Seshavatharam, U.V. S and Lakshminarayana S. A very brief review on strong and electroweak mass formula pertaining to 4G model of final unification. Proceedings of the DAE Symp. on Nucl. Phys. 2023, 67, 1173. [Google Scholar]
  12. Seshavatharam, U.V. S and Lakshminarayana S. Computing unified atomic mass unit and Avogadro number with various nuclear binding energy formulae coded in Python. Int. J. Chem. Stud. 2025, 13, 24–30. [Google Scholar] [CrossRef]
  13. Bethe H., A. Thomas-Fermi Theory of Nuclei. Phys. Rev. 1968, 167, 879–907. [Google Scholar] [CrossRef]
  14. Myers W., D. and Swiatecki W. J. Nuclear Properties According to the Thomas-Fermi Model. LBL-36557 Rev. UC-413, 1995.
  15. Myers W., D. and Swiatecki W. J. Table of nuclear masses according to the 1994 Thomas-Fermi model. United States: N. p., 1994. Web.
  16. P. R. Chowdhury, C. Samanta, D.N. Basu, Modified Bethe– Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A 2005, 20, 1605–1618. [Google Scholar] [CrossRef]
  17. G. Royer, On the coefficients of the liquid drop model mass formulae and nuclear radii. Nuclear Physics A 2008, 807, 105–118. [Google Scholar] [CrossRef]
  18. Djelloul Benzaid, Salaheddine Bentridi, Abdelkader Kerraci, Naima Amrani. Bethe–Weizsa¨cker semiempirical mass formula coefficients 2019 update based on AME2016. NUCL. SCI. TECH. 2020, 31, 9. [Google Scholar] [CrossRef]
  19. Gao, Z.P. , Wang, YJ., Lü, HL. et al., Machine learning the nuclear mass. NUCL. SCI. TECH. 2021, 32, 109. [Google Scholar] [CrossRef]
  20. Peng Guo, et. al. (DRHBc Mass Table Collaboration), Nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum, II: Even-Z nuclei. Atomic Data and Nuclear Data Tables 2024, 158, 101661. [Google Scholar]
  21. Cht. Mavrodiev S, Deliyergiyev M.A. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe-Weizsäcker mass formula. Int. J. Mod. Phys. E 2018, 27, 1850015. [Google Scholar] [CrossRef]
  22. Ghahramany N, Gharaati, S. , & Ghanaatian, M. New approach to nuclear binding energy in integrated nuclear model. Journal of Theoretical and Applied Physics 2012, 6, 3. [Google Scholar]
  23. Ghahramany N, Sh Gharaati, Ghanaatian M, Hora H. New scheme of nuclide and nuclear binding energy from quark-like model. Iranian Journal of Science & Technology A3.
  24. N. Ghahramany M. Ghanaatian and M. Hooshmand. Quark-Gluon Plasma Model and Origin of Magic Numbers. Iranian Physical Journal 2007, 1-2, 35–38. [Google Scholar]
  25. C. Grojean. Higgs Physics. Proceedings of the 2015 CERN–Latin-American School of High-Energy Physics, 143-157, 2016, CERN-2016-005 (CERN, Geneva, 2016).
  26. Ahmed Abokhalil. The Higgs Mechanism and Higgs Boson: Unveiling the Symmetry of the Universe. arXiv:2306. 0101.
  27. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
  28. N. Bohr. Can quantum mechanical description of physical reality be considered complete? Phys. Rev. 1935, 480, 696. [Google Scholar]
  29. J.S. Bell. On the Einstein Podolsky Rosen paradox. Physics 1, 195, 1964.
  30. J. Bell, On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics. 1966, 38, 447. [Google Scholar] [CrossRef]
  31. Seshavatharam, U.V. S, Lakshminarayana S. EPR argument and mystery of the reduced Planck’s constant. Algebras, Groups, and Geometries. 2020, 36, 801–822. [Google Scholar]
  32. Sunil Mukhi. String theory: a perspective over the last 25 years. Class. Quantum Grav. 2011, 28, 153001. [Google Scholar] [CrossRef]
  33. Sachdev, Subir. Strange and stringy. Scientific American. 2013, 308, 44–51. [Google Scholar]
  34. Blumenhagen, R. , Lüst D., Theisen S. Basic Concepts of String Theory. Theoretical and Mathematical Physics Springer Heidelberg, Germany, 2013.
  35. Arnab Priya Saha and Aninda Sinha Phys. Field Theory Expansions of String Theory Amplitudes. Rev. Lett. 2024, 132, 221601. [Google Scholar] [CrossRef]
  36. Seshavatharam, U.V.S. and Lakshminarayana S. On the compactification and reformation of string theory with three large atomic gravitational constants. International Journal of Physical Research 2021, 9, 42–48. [Google Scholar] [CrossRef]
  37. D, d’Enterria; et al. The strong coupling constant: state of the art and the decade ahead. J. Phys. G: Nucl. Part. Phys. 2024, 51, 090501. [Google Scholar]
  38. S. Navas et al. Quarks. (Particle Data Group). Phys. Rev. D 2024, 110, 030001. [Google Scholar]
  39. Seshavatharam, U.V.S. and Lakshminarayana S. Understanding the Role of Nuclear Elementary Charge and Its Potential in Estimating Nuclear Binding Energy and Strong Coupling Constant. Preprints 2025, 2025042431. [Google Scholar] [CrossRef]
  40. M. Ismail1, W. M. Seif, and A. Abdurrahman. Relative stability and magic numbers of nuclei deduced from behavior of cluster emission half-lives. Phys. Rev. C 94, 024316.
  41. Maruhn, J.A. , Reinhard, PG., Suraud, E. The Fermi-Gas Model. In: Simple Models of Many-Fermion Systems. Springer, Berlin, Heidelberg. 2010.
  42. Seshavatharam, U.V.S.; et al. On the Role of Fermi Gas Model in Understanding the Binding Energy of Stable Atomic Nuclides. Prespacetime Journal 2015, 6. [Google Scholar]
  43. Seshavatharam, U.V.S. and Lakshminarayana S. Super symmetry in strong and weak interactions. Int. J. Mod. Phys. E 2010, 19, 263–280. [Google Scholar] [CrossRef]
  44. Deur Alexandre, Brodsky Stanley J, De Téramond, Guy F. The QCD running coupling. Progress in Particle and Nuclear Physics. 2016, 90, 1–74. [Google Scholar] [CrossRef]
  45. Seshavatharam, U.V.S. and Lakshminarayana S. Simplified & Unified Picture of Nuclear Binding Energy. Prespacetime journal 2015, 6, 1261–1273. [Google Scholar]
  46. H. Gao M. Vanderhaeghen, The proton charge radius. Rev. Mod. Phys. 2022, 94, 015002. [Google Scholar] [CrossRef]
Figure 1. Electroweak factors of Z=1 to 137.
Figure 1. Electroweak factors of Z=1 to 137.
Preprints 158546 g001
Figure 3. Stable mass number Vs Max. binding energy.
Figure 3. Stable mass number Vs Max. binding energy.
Preprints 158546 g003
Table 1. Charge dependent string tensions and string energies.
Table 1. Charge dependent string tensions and string energies.
S.No Interaction String Tension String energy
1 Weak c 4 4 G w 6.94 × 10 10   N e 2 4 π ε 0 c 4 4 G w 24.975   GeV
2 Strong c 4 4 G n 6.065 × 10 4   N e n 2 4 π ε 0 c 4 4 G n 68.79   MeV
3 Electromagnetic c 4 4 G e 8.505 × 10 5   N e 2 4 π ε 0 c 4 4 G e 874.3   eV
Table 2. Quantum string tensions and string energies.
Table 2. Quantum string tensions and string energies.
S.No Interaction String Tension String energy
1 Weak c 4 4 G w 6.94 × 10 10   N c c 4 4 G w 292.36   GeV
2 Strong c 4 4 G n 6.065 × 10 4   N c c 4 4 G n 273.3   MeV
3 Electromagnetic c 4 4 G e 8.505 × 10 5   N c c 4 4 G e 10234.77   eV
Table 3. Fitting the binding energy curves for Z=2,8,20,28,50,70,82,100,118 and 137 based on relations (10) & (15).
Table 3. Fitting the binding energy curves for Z=2,8,20,28,50,70,82,100,118 and 137 based on relations (10) & (15).
Preprints 158546 i001 Preprints 158546 i002
Preprints 158546 i003 Preprints 158546 i004
Preprints 158546 i005 Preprints 158546 i006
Preprints 158546 i007 Preprints 158546 i008
Preprints 158546 i009 Preprints 158546 i010
Table 4. Fitting the binding energy curves for Z=2,8,20,28,50,82,100 and 114 based on relations (15) & (16).
Table 4. Fitting the binding energy curves for Z=2,8,20,28,50,82,100 and 114 based on relations (15) & (16).
Preprints 158546 i011 Preprints 158546 i012
Preprints 158546 i013 Preprints 158546 i014
Preprints 158546 i015 Preprints 158546 i016
Preprints 158546 i017 Preprints 158546 i018
Table 6. Assumed stable mass number and its corresponding maximum binding energy.
Table 6. Assumed stable mass number and its corresponding maximum binding energy.
Assumed stable mass number As Estimated Max. Binding energy of As (MeV)
Relation (32)
Experimental Max. Binding energy of As(MeV) (Exp.- Est.) Binding energy(MeV) Estimated Binding energy per nucleon (MeV)
Experimental Binding energy per nucleon(MeV)
5 27.94 27.56 -0.38 5.59 5.51
6 36.86 31.99 -4.86 6.14 5.33
7 45.87 39.25 -6.62 6.55 5.61
8 54.95 56.50 1.55 6.87 7.06
9 64.08 58.16 -5.91 7.12 6.46
10 73.25 64.98 -8.27 7.32 6.50
11 82.45 76.20 -6.24 7.50 6.93
12 91.67 92.16 0.49 7.64 7.68
13 100.91 97.11 -3.80 7.76 7.47
14 110.16 105.28 -4.87 7.87 7.52
15 119.42 115.49 -3.92 7.96 7.70
16 128.68 127.62 -1.06 8.04 7.98
17 137.95 131.76 -6.19 8.11 7.75
18 147.22 139.81 -7.41 8.18 7.77
19 156.49 147.80 -8.69 8.24 7.78
20 165.76 160.64 -5.11 8.29 8.03
21 175.02 167.41 -7.61 8.33 7.97
22 184.28 177.77 -6.51 8.38 8.08
23 193.53 186.56 -6.97 8.41 8.11
24 202.78 198.26 -4.52 8.45 8.26
25 212.02 205.59 -6.43 8.48 8.22
26 221.24 216.68 -4.56 8.51 8.33
27 230.47 224.95 -5.51 8.54 8.33
28 239.68 236.54 -3.14 8.56 8.45
29 248.88 245.01 -3.87 8.58 8.45
30 258.07 255.62 -2.45 8.60 8.52
31 267.25 262.92 -4.33 8.62 8.48
32 276.41 271.78 -4.63 8.64 8.49
33 285.57 280.96 -4.61 8.65 8.51
34 294.71 291.84 -2.87 8.67 8.58
35 303.84 298.82 -5.02 8.68 8.54
36 312.96 308.71 -4.25 8.69 8.58
37 322.07 317.10 -4.97 8.70 8.57
38 331.16 327.34 -3.81 8.71 8.61
39 340.24 333.94 -6.29 8.72 8.56
40 349.30 343.81 -5.49 8.73 8.60
41 358.35 351.62 -6.73 8.74 8.58
42 367.38 361.90 -5.49 8.75 8.62
43 376.40 369.83 -6.58 8.75 8.60
44 385.41 380.96 -4.45 8.76 8.66
45 394.40 388.37 -6.03 8.76 8.63
46 403.38 398.77 -4.61 8.77 8.67
47 412.34 407.26 -5.08 8.77 8.67
48 421.29 418.70 -2.58 8.78 8.72
49 430.22 426.85 -3.37 8.78 8.71
50 439.13 437.78 -1.35 8.78 8.76
51 448.03 445.85 -2.19 8.78 8.74
52 456.92 456.35 -0.57 8.79 8.78
53 465.78 464.29 -1.50 8.79 8.76
54 474.64 474.01 -0.63 8.79 8.78
55 483.47 482.08 -1.40 8.79 8.77
56 492.29 492.26 -0.03 8.79 8.79
57 501.10 499.91 -1.19 8.79 8.77
58 509.89 509.95 0.06 8.79 8.79
59 518.66 517.31 -1.34 8.79 8.77
60 527.41 526.85 -0.57 8.79 8.78
61 536.15 534.67 -1.49 8.79 8.77
62 544.87 545.26 0.39 8.79 8.79
63 553.58 552.10 -1.48 8.79 8.76
64 562.27 561.76 -0.51 8.79 8.78
65 570.94 569.21 -1.73 8.78 8.76
66 579.60 578.14 -1.46 8.78 8.76
67 588.24 585.41 -2.83 8.78 8.74
68 596.86 595.39 -1.47 8.78 8.76
69 605.46 602.00 -3.47 8.77 8.72
70 614.05 611.09 -2.97 8.77 8.73
71 622.62 618.95 -3.67 8.77 8.72
72 631.18 628.69 -2.49 8.77 8.73
73 639.71 635.47 -4.25 8.76 8.71
74 648.23 645.66 -2.57 8.76 8.73
75 656.74 652.57 -4.17 8.76 8.70
76 665.22 662.07 -3.15 8.75 8.71
77 673.69 669.59 -4.10 8.75 8.70
78 682.14 679.99 -2.15 8.75 8.72
79 690.58 686.95 -3.62 8.74 8.70
80 698.99 696.87 -2.13 8.74 8.71
81 707.39 704.37 -3.02 8.73 8.70
82 715.77 714.27 -1.50 8.73 8.71
83 724.14 721.74 -2.39 8.72 8.70
84 732.48 732.27 -0.22 8.72 8.72
85 740.81 739.38 -1.43 8.72 8.70
86 749.12 749.23 0.11 8.71 8.71
87 757.42 757.86 0.44 8.71 8.71
88 765.70 768.47 2.77 8.70 8.73
89 773.95 775.54 1.59 8.70 8.71
90 782.20 783.90 1.70 8.69 8.71
91 790.42 791.09 0.67 8.69 8.69
92 798.63 799.73 1.10 8.68 8.69
93 806.81 806.46 -0.35 8.68 8.67
94 814.98 814.68 -0.30 8.67 8.67
95 823.14 821.63 -1.51 8.66 8.65
96 831.27 830.78 -0.49 8.66 8.65
97 839.39 837.60 -1.79 8.65 8.64
98 847.49 846.25 -1.24 8.65 8.64
99 855.57 852.75 -2.82 8.64 8.61
100 863.63 861.93 -1.70 8.64 8.62
101 871.68 868.73 -2.95 8.63 8.60
102 879.71 877.95 -1.76 8.62 8.61
103 887.72 884.19 -3.53 8.62 8.58
104 895.71 893.09 -2.62 8.61 8.59
105 903.69 900.13 -3.55 8.61 8.57
106 911.64 909.48 -2.16 8.60 8.58
107 919.58 916.02 -3.57 8.59 8.56
108 927.50 925.24 -2.26 8.59 8.57
109 935.41 931.72 -3.68 8.58 8.55
110 943.29 940.64 -2.65 8.58 8.55
111 951.16 947.62 -3.54 8.57 8.54
112 959.01 957.01 -2.00 8.56 8.54
113 966.84 963.55 -3.29 8.56 8.53
114 974.65 972.59 -2.06 8.55 8.53
115 982.44 979.40 -3.04 8.54 8.52
116 990.22 988.68 -1.54 8.54 8.52
117 997.98 995.62 -2.35 8.53 8.51
118 1005.72 1004.95 -0.77 8.52 8.52
119 1013.44 1011.43 -2.01 8.52 8.50
120 1021.15 1020.54 -0.61 8.51 8.50
121 1028.83 1026.71 -2.12 8.50 8.49
122 1036.50 1035.52 -0.98 8.50 8.49
123 1044.15 1042.10 -2.05 8.49 8.47
124 1051.78 1050.69 -1.10 8.48 8.47
125 1059.40 1057.27 -2.12 8.48 8.46
126 1066.99 1066.37 -0.62 8.47 8.46
127 1074.57 1072.66 -1.91 8.46 8.45
128 1082.13 1081.44 -0.69 8.45 8.45
129 1089.67 1088.24 -1.42 8.45 8.44
130 1097.19 1096.91 -0.29 8.44 8.44
131 1104.69 1103.51 -1.19 8.43 8.42
132 1112.18 1112.45 0.27 8.43 8.43
133 1119.65 1118.88 -0.77 8.42 8.41
134 1127.10 1127.43 0.34 8.41 8.41
135 1134.53 1134.18 -0.35 8.40 8.40
136 1141.94 1142.77 0.83 8.40 8.40
137 1149.34 1149.68 0.34 8.39 8.39
138 1156.71 1158.29 1.58 8.38 8.39
139 1164.07 1164.55 0.47 8.37 8.38
140 1171.41 1172.69 1.27 8.37 8.38
141 1178.74 1178.12 -0.62 8.36 8.36
142 1186.04 1185.28 -0.75 8.35 8.35
143 1193.32 1191.26 -2.06 8.34 8.33
144 1200.59 1199.08 -1.51 8.34 8.33
145 1207.84 1204.83 -3.01 8.33 8.31
146 1215.07 1212.40 -2.67 8.32 8.30
147 1222.28 1217.80 -4.48 8.31 8.28
148 1229.47 1225.39 -4.09 8.31 8.28
149 1236.65 1231.26 -5.39 8.30 8.26
150 1243.81 1239.24 -4.56 8.29 8.26
151 1250.95 1244.84 -6.11 8.28 8.24
152 1258.07 1253.10 -4.97 8.28 8.24
153 1265.17 1258.99 -6.18 8.27 8.23
154 1272.25 1266.93 -5.32 8.26 8.23
155 1279.32 1273.58 -5.73 8.25 8.22
156 1286.36 1281.59 -4.77 8.25 8.22
157 1293.39 1287.95 -5.44 8.24 8.20
158 1300.40 1295.89 -4.51 8.23 8.20
159 1307.39 1302.02 -5.37 8.22 8.19
160 1314.37 1309.45 -4.92 8.21 8.18
161 1321.32 1316.09 -5.23 8.21 8.17
162 1328.26 1324.10 -4.16 8.20 8.17
163 1335.17 1330.37 -4.80 8.19 8.16
164 1342.07 1338.03 -4.05 8.18 8.16
165 1348.95 1344.25 -4.71 8.18 8.15
166 1355.82 1351.56 -4.25 8.17 8.14
167 1362.66 1358.00 -4.66 8.16 8.13
168 1369.49 1365.77 -3.71 8.15 8.13
169 1376.29 1371.78 -4.52 8.14 8.12
170 1383.08 1379.03 -4.05 8.14 8.11
171 1389.85 1385.42 -4.43 8.13 8.10
172 1396.60 1392.76 -3.85 8.12 8.10
173 1403.34 1399.13 -4.21 8.11 8.09
174 1410.05 1406.59 -3.46 8.10 8.08
175 1416.75 1412.41 -4.34 8.10 8.07
176 1423.43 1419.28 -4.15 8.09 8.06
177 1430.09 1425.46 -4.62 8.08 8.05
178 1436.73 1432.80 -3.92 8.07 8.05
179 1443.35 1438.90 -4.45 8.06 8.04
180 1449.95 1446.29 -3.66 8.06 8.03
181 1456.54 1452.24 -4.30 8.05 8.02
182 1463.11 1459.33 -3.77 8.04 8.02
183 1469.65 1465.52 -4.13 8.03 8.01
184 1476.18 1472.94 -3.25 8.02 8.01
185 1482.70 1478.69 -4.01 8.01 7.99
186 1489.19 1485.88 -3.31 8.01 7.99
187 1495.66 1491.88 -3.78 8.00 7.98
188 1502.12 1499.09 -3.03 7.99 7.97
189 1508.56 1505.01 -3.55 7.98 7.96
190 1514.98 1512.80 -2.17 7.97 7.96
191 1521.38 1518.56 -2.82 7.97 7.95
192 1527.76 1526.12 -1.64 7.96 7.95
193 1534.12 1532.06 -2.06 7.95 7.94
194 1540.47 1539.58 -0.89 7.94 7.94
195 1546.79 1545.68 -1.11 7.93 7.93
196 1553.10 1553.60 0.50 7.92 7.93
197 1559.39 1559.45 0.06 7.92 7.92
198 1565.66 1567.00 1.34 7.91 7.91
199 1571.91 1573.48 1.57 7.90 7.91
200 1578.14 1581.18 3.03 7.89 7.91
201 1584.36 1587.41 3.05 7.88 7.90
202 1590.56 1595.16 4.61 7.87 7.90
203 1596.73 1601.16 4.42 7.87 7.89
204 1602.89 1608.65 5.76 7.86 7.89
205 1609.03 1615.07 6.04 7.85 7.88
206 1615.16 1622.32 7.17 7.84 7.88
207 1621.26 1629.06 7.80 7.83 7.87
208 1627.34 1636.43 9.09 7.82 7.87
209 1633.41 1640.37 6.96 7.82 7.85
210 1639.46 1645.55 6.09 7.81 7.84
211 1645.49 1649.97 4.48 7.80 7.82
212 1651.50 1655.77 4.27 7.79 7.81
213 1657.49 1660.13 2.64 7.78 7.79
214 1663.46 1666.01 2.55 7.77 7.79
215 1669.42 1670.16 0.74 7.76 7.77
216 1675.35 1675.90 0.55 7.76 7.76
217 1681.27 1680.58 -0.69 7.75 7.74
218 1687.17 1687.05 -0.12 7.74 7.74
219 1693.05 1691.51 -1.55 7.73 7.72
220 1698.91 1697.79 -1.12 7.72 7.72
221 1704.76 1702.42 -2.34 7.71 7.70
222 1710.58 1708.66 -1.92 7.71 7.70
223 1716.39 1713.82 -2.56 7.70 7.69
224 1722.17 1720.30 -1.87 7.69 7.68
225 1727.94 1725.21 -2.74 7.68 7.67
226 1733.69 1731.60 -2.09 7.67 7.66
227 1739.42 1736.71 -2.72 7.66 7.65
228 1745.14 1743.08 -2.06 7.65 7.65
229 1750.83 1748.33 -2.50 7.65 7.63
230 1756.51 1755.13 -1.38 7.64 7.63
231 1762.16 1760.25 -1.92 7.63 7.62
232 1767.80 1766.69 -1.12 7.62 7.62
233 1773.42 1771.93 -1.49 7.61 7.60
234 1779.02 1778.57 -0.46 7.60 7.60
235 1784.61 1783.86 -0.74 7.59 7.59
236 1790.17 1790.41 0.24 7.59 7.59
237 1795.71 1795.53 -0.18 7.58 7.58
238 1801.24 1801.69 0.45 7.57 7.57
239 1806.75 1806.97 0.23 7.56 7.56
240 1812.24 1813.45 1.21 7.55 7.56
241 1817.71 1818.69 0.98 7.54 7.55
242 1823.16 1825.00 1.84 7.53 7.54
243 1828.59 1830.03 1.44 7.53 7.53
244 1834.01 1836.05 2.04 7.52 7.52
245 1839.40 1841.36 1.96 7.51 7.52
246 1844.78 1847.82 3.04 7.50 7.51
247 1850.14 1852.98 2.83 7.49 7.50
248 1855.48 1859.19 3.71 7.48 7.50
249 1860.80 1864.02 3.22 7.47 7.49
250 1866.11 1869.99 3.88 7.46 7.48
251 1871.39 1875.09 3.70 7.46 7.47
252 1876.65 1881.27 4.61 7.45 7.47
253 1881.90 1886.07 4.17 7.44 7.45
254 1887.13 1892.10 4.97 7.43 7.45
255 1892.34 1896.64 4.30 7.42 7.44
256 1897.53 1902.54 5.01 7.41 7.43
257 1902.70 1907.50 4.80 7.40 7.42
258 1907.86 1911.69 3.84 7.39 7.41
259 1912.99 1906.33 -6.66 7.39 7.36
260 1918.11 1909.07 -9.04 7.38 7.34
261 1923.20 1923.93 0.72 7.37 7.37
262 1928.28 1923.39 -4.89 7.36 7.34
263 1933.34 1929.63 -3.71 7.35 7.34
264 1938.38 1937.23 -1.15 7.34 7.34
265 1943.41 1943.25 -0.16 7.33 7.33
266 1948.41 1950.31 1.90 7.32 7.33
267 1953.40 1956.31 2.91 7.32 7.33
268 1958.36 1963.37 5.01 7.31 7.33
269 1963.31 1968.54 5.23 7.30 7.32
270 1968.24 1974.78 6.54 7.29 7.31
271 1973.15 1979.66 6.50 7.28 7.31
272 1978.04 1985.87 7.83 7.27 7.30
273 1982.92 1990.44 7.53 7.26 7.29
274 1987.77 1994.17 6.40 7.25 7.28
275 1992.61 2000.08 7.47 7.25 7.27
276 1997.42 2004.86 7.44 7.24 7.26
277 2002.22 2009.64 7.41 7.23 7.26
278 2007.00 2013.00 6.00 7.22 7.24
279 2011.76 2019.40 7.64 7.21 7.24
280 2016.50 2023.56 7.06 7.20 7.23
281 2021.23 2028.82 7.59 7.19 7.22
282 2025.93 2031.81 5.88 7.18 7.21
283 2030.62 2038.45 7.83 7.18 7.20
284 2035.29 2042.53 7.24 7.17 7.19
285 2039.94 2047.73 7.79 7.16 7.19
286 2044.57 2050.33 5.77 7.15 7.17
287 2049.18 2057.22 8.04 7.14 7.17
288 2053.77 2060.64 6.87 7.13 7.16
289 2058.34 2066.06 7.72 7.12 7.15
290 2062.90 2068.28 5.38 7.11 7.13
291 2067.44 2075.12 7.69 7.10 7.13
292 2071.95 2078.16 6.21 7.10 7.12
293 2076.45 2083.52 7.07 7.09 7.11
294 2080.93 2085.34 4.41 7.08 7.09
295 2085.39 7.07
296 2089.84 7.06
297 2094.26 7.05
298 2098.67 7.04
299 2103.05 7.03
300 2107.42 7.02
301 2111.77 7.02
302 2116.10 7.01
303 2120.41 7.00
304 2124.71 6.99
305 2128.98 6.98
306 2133.24 6.97
307 2137.48 6.96
308 2141.69 6.95
309 2145.89 6.94
310 2150.07 6.94
311 2154.24 6.93
312 2158.38 6.92
313 2162.50 6.91
314 2166.61 6.90
315 2170.70 6.89
316 2174.77 6.88
317 2178.82 6.87
318 2182.85 6.86
319 2186.86 6.86
320 2190.85 6.85
321 2194.83 6.84
322 2198.78 6.83
323 2202.72 6.82
324 2206.64 6.81
325 2210.54 6.80
326 2214.42 6.79
327 2218.28 6.78
328 2222.13 6.77
329 2225.95 6.77
330 2229.76 6.76
331 2233.54 6.75
332 2237.31 6.74
333 2241.06 6.73
334 2244.79 6.72
335 2248.51 6.71
336 2252.20 6.70
337 2255.88 6.69
338 2259.53 6.69
339 2263.17 6.68
340 2266.79 6.67
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated