Submitted:
03 April 2025
Posted:
28 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction to the Current Understanding of Gravitation
2. Dynamic Vacuum for the Stability of the Universe
2.1. Definition of Vacuum and Energy Distribution Asymmetries
2.2. Distortion of the Euclidean Settings
2.3. Vacuum Distribution at Cosmic Levels
2.4. Quantum Fields and Spacetime Curvature
3. Cosmic Dance According to Thermodynamic Rules
3.1. Planetary Systems and General Concepts
3.2. Stellar Systems
3.3. Galaxies and Galactic Clusters
3.3.1. Thought Experiment with the Rogue Earth
3.3.2. Dynamics at Cosmic Scales
3.3.3. Derivation of Hubble’s Law from Gravitation
3.4. Explanation of Dynamics Deviations in Galaxies
3.5. Gravitational Lensing
3.6. The Bullet Cluster Phenomenon
3.6.1. The Bullet Cluster Structure
3.6.2. The Cosmological Constant
3.7. The Cosmic Coincidence Problem
3.8. Hubble Constant and MOND’s Acceleration Scale
4. Dark Sector Variability (Conceptual Introductory Notes
5. Discussion
5.1. Future Works
5.2. Testability
6. Summary and Conclusions
Author Contributions
Acknowledgments
References
- Khrennikov, A. The Present Situation in Quantum Theory and its Merging with General Relativity. Foundations of Physics 2017, 47, 1077–1099. [Google Scholar] [CrossRef]
- Deser, S. General Relativity and the Divergence Problem in Quantum Field Theory. Rev. Modern Phys. 1957, 29, 417. [Google Scholar] [CrossRef]
- Price, R.H. Spatial curvature, spacetime curvature, and gravity. American Journal of Physics 2016, 84, 588–592. [Google Scholar] [CrossRef]
- Bogolyubov, N.N.; Shirkov, D.V. Introduction to Quantum Fields Theory; Nauka, 1973. [Google Scholar]
- Saunders, S. Is the Zero-Point Energy Real? In Ontological Aspects of Quantum Field Theory; World Scientific, 2002; pp. 313–343. [Google Scholar] [CrossRef]
- Hollands, S.; Wald, R.M. Quantum fields in curved spacetime. Physics Reports 2015, 574, 1–35. [Google Scholar] [CrossRef]
- Brown, M.R.; Ottewill, A.C.; Page, D.N. Conformally invariant quantum field theory in static Einstein space-times. Physical Review D 1986, 33, 2840. [Google Scholar] [CrossRef] [PubMed]
- Kersting, M.; Steier, R. Understanding Curved Spacetime. Science & Education 2018, 27, 593–623. [Google Scholar] [CrossRef]
- Thorne, K.S. The dynamics of spacetime curvature: nonlinear aspects. In Nonlinear Phenomena in Physics: Proceedings of the 1984 Latin American School of Physics; Springer: Santiago, Chile, 1985; pp. 280–291. [Google Scholar]
- Bourguignon, J.P. Ricci curvature and einstein metrics. In Global Differential Geometry and Global Analysis; Ferus, D., Kühnel, W., Simon, U., Wegner, B., Eds.; Springer: Berlin, Heidelberg, 1981. [Google Scholar] [CrossRef]
- Sobczyk, G. Space-time algebra approach to curvature. Journal of Mathematical Physics 1981, 22, 333–342. [Google Scholar] [CrossRef]
- Schmitz, W. The Strong Force: Quantum Chromodynamics. In Particles, Fields and Forces; The Frontiers Collection, Springer: Cham, 2022. [Google Scholar] [CrossRef]
- Velan, K.A. Quantum Chromodynamics, the Strong Nuclear Force. In The Multi-Universe Cosmos; Springer: Boston, MA, 1992. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics, 2nd ed.; Cambridge University Press: Cambridge, 2018. [Google Scholar]
- DeWitt, B.S. Quantum field theory in curved spacetime. Physics Reports 1975, 19, 295–357. [Google Scholar] [CrossRef]
- Ford, L.H. Quantum vacuum energy in general relativity. Phys. Rev. D 1975, 11, 3370. [Google Scholar] [CrossRef]
- Overduin, J.; Fahr, H.J. Matter, spacetime and the vacuum. Naturwissenschaften 2001, 88, 491–503. [Google Scholar] [CrossRef]
- Falk, S.; Häussling, R.; Scheck, F. Renormalization in quantum field theory: an improved rigorous method. Journal of Physics A: Mathematical and Theoretical 2010, 43, 035401. [Google Scholar] [CrossRef]
- Carlip, S. Is quantum gravity necessary? Classical and Quantum Gravity 2010, 25, 154010. [Google Scholar] [CrossRef]
- Tseytlin, A.A.; Vafa, C. Elements of string cosmology. Nuclear Physics B 1992, 372, 443–466. [Google Scholar] [CrossRef]
- Schwarz, J.H. Superstring theory. Physics Reports 1982, 89, 223–322. [Google Scholar] [CrossRef]
- Damour, T.; Polyakov, A.M. String theory and gravity. General Relativity and Gravitation 1994, 26, 1171–1176. [Google Scholar] [CrossRef]
- Verlinde, E. On the origin of gravity and the laws of Newton. Journal of High Energy Physics 2011, 2011, 29. [Google Scholar] [CrossRef]
- Caroll, S.M.; Remmen, G.N. What is the entropy in entropic gravity? Phys. Rev. D 2016, 93, 124052. [Google Scholar] [CrossRef]
- Milgrom, M. MOND theory. Canadian Journal of Physics 2015, 93, 107–118. [Google Scholar] [CrossRef]
- Dodelson, S. The real problem with MOND. International Journal of Modern Physics D 2011, 20, 2749–2753. [Google Scholar] [CrossRef]
- Busch, P.; Heinonen, T.; Lahti, P. Heisenberg’s uncertainty principle. Physics Reports 2007, 452, 155–176. [Google Scholar] [CrossRef]
- Schwartz, M.D. Quantum field theory and the standard model; Cambridge University Press, 2014. [Google Scholar]
- Bordag, M.; Mohideen, U.; Mostepanenko, V.M. New developments in the Casimir effect. Physics Reports 2001, 353, 1–205. [Google Scholar] [CrossRef]
- Müller, I.; Weiss, W. Entropy and energy: A universal competition; Springer, 2005. [Google Scholar]
- de Groot, S.R.; Mazur, P. Nonequilibrium thermodynamics; Dover Publications, 1984. [Google Scholar]
- de Abreu, R.; Guerra, V. Introducing thermodynamics through energy and entropy. American Journal of Physics 2012, 80, 627–637. [Google Scholar] [CrossRef]
- Hu, W.; Dodelson, S. Cosmic Microwave Background Anisotropies. Annual Review of Astronomy and Astrophysics 2002, 40, 171–216. [Google Scholar] [CrossRef]
- Jacobson, T. Introduction to Quantum Fields in Curved Spacetime and the Hawking Effect. In Lectures on Quantum Gravity; Gomberoff, A., Marolf, D., Eds.; Series of the Centro De Estudios Científicos; Springer: Boston, MA, 2005. [Google Scholar] [CrossRef]
- Altunbulak, M.; Klyachko, A. The Pauli Principle Revisited. Communications in Mathematical Physics 2008, 282, 287–322. [Google Scholar] [CrossRef]
- Lyre, H. Does the Higgs Mechanism Exist? International Studies in the Philosophy of Science 2008, 22, 119–133. [Google Scholar] [CrossRef]
- Lares, M.; Ruiz, A.N.; Luparello, H.E.; Ceccarelli, L.; Lambas, D.G.; Paz, D.J. The sparkling Universe: clustering of voids and void clumps. Mon. Not. R. Astron. Soc. 2017, 468, 4822–4830. [Google Scholar] [CrossRef]
- Weidenschilling, S.J. The distribution of mass in the planetary system and solar nebula. Astrophysics and Space Science 1977, 51, 153–158. [Google Scholar] [CrossRef]
- Desch, S.J. Mass Distribution and Planet Formation in the Solar Nebula. Astrophys. J. 2007, 671, 878. [Google Scholar] [CrossRef]
- Kopejkin, S.M. Celestial coordinate reference systems in curved space-time. Celestial Mechanics 1988, 44, 87–115. [Google Scholar] [CrossRef]
- Damour, T.; Nagar, A. The Effective-One-Body Approach to the General Relativistic Two Body Problem. In Astrophysical Black Holes; Haardt, F., Gorini, V., Moschella, U., Treves, A., Colpi, M., Eds.; Springer: Cham, 2015. [Google Scholar] [CrossRef]
- Corbelli, E.; Salucci, P. The extended rotation curve and the dark matter halo of M33. Mon. Not. R. Astron. Soc. 2000, 311, 2. [Google Scholar] [CrossRef]
- McMillan, P.J. The mass distribution and gravitational potential of the Milky Way. Mon. Not. R. Astron. Soc. 2017, 465, 76–94. [Google Scholar] [CrossRef]
- Hogan, M.T.; McNamara, B.R.; Pulido, F.; Nulsen, P.E.J.; Russell, H.R.; Vantyghem, A.N.; Edge, A.C.; Main, R.A. Mass Distribution in Galaxy Cluster Cores. Astrophysical Journal 2017, 837, 51. [Google Scholar] [CrossRef]
- Fadda, D.; Girardi, M.; Giuricin, G.; Mardirossian, F.; Mezzetti, M. The Observational Distribution of Internal Velocity Dispersions in Nearby Galaxy Clusters. Astrophysical Journal 1996, 473, 178. [Google Scholar] [CrossRef]
- Dehnen, W.; McLaughlin, D.E.; Sachania, J. The velocity dispersion and mass profile of the Milky Way. Mon. Not. R. Astron. Soc. 2006, 369, 4. [Google Scholar] [CrossRef]
- Hui, L. Wave Dark Matter. Annual Review of Astronomy and Astrophysics 2021, 59, 247–289. [Google Scholar] [CrossRef]
- Calabrese, E.; Spergel, D.N. Ultra-light dark matter in ultra-faint dwarf galaxies. Mon. Not. R. Astron. Soc. 2016, 460, 4. [Google Scholar] [CrossRef]
- Cooper, A.P.; Cole, S.; Frenk, C.S.; White, S.D.M.; Helly, J.; Benson, A.J.; De Lucia, G.; Helmi, A.; Jenkins, A.; Navarro, J.F.; et al. Galactic stellar haloes in the CDM model. Mon. Not. R. Astron. Soc. 2010, 406, 2. [Google Scholar] [CrossRef]
- Foot, R. Dissipative dark matter explains rotation curves. Phys. Rev. D 2015, 91, 123543. [Google Scholar] [CrossRef]
- Minniti, D.; Zijlstra, A.A. Dwarf Galaxies Also Have Stellar Halos. Astrophysical Journal 1996, 467, L13. [Google Scholar] [CrossRef]
- Mihos, J.C.; Durrell, P.R.; Ferrarese, L.; Feldmeier, J.J.; Côté, P.; Peng, E.W.; Harding, P.; Liu, C.; Gwyn, S.; Cuillandre, J.C. Galaxies at the extremes: ultra-diffuse galaxies in the Virgo Cluster. Astrophysical Journal 2015, 809, L21. [Google Scholar] [CrossRef]
- Jackson, R.A.; Kaviraj, S.; Martin, G.; Devriendt, J.E.G.; Slyz, A.; Silk, J.; Dubois, Y.; Pichon, C.; Volonteri, M.; Choi, H.; et al. Dark matter-deficient dwarf galaxies form via tidal stripping of dark matter in interactions with massive companions. Mon. Not. R. Astron. Soc. 2021, 502, 1782–1796. [Google Scholar] [CrossRef]
- Bozza, V. Gravitational lensing by black holes. General Relativity and Gravitation 2010, 42, 2269–2300. [Google Scholar] [CrossRef]
- Ehlers, J.; Rindler, W. Local and Global Light Bending in Einstein’s and Other Gravitational Theories. General Relativity and Gravitation 1997, 29, 519–529. [Google Scholar] [CrossRef]
- Schneider, P. Detection of (dark) matter concentrations via weak gravitational lensing. Mon. Not. R. Astron. Soc. 1996, 283, 837–853. [Google Scholar] [CrossRef]
- Paraficz, D.; Kneib, J.P.; Richard, J.; Morandi, A.; Limousin, M.; Jullo, E.; Martinez, J. The Bullet cluster at its best: weighing stars, gas and dark matter. Astron. Astrophys. 2016, 594, A121. [Google Scholar] [CrossRef]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Velten, H.E.S.; vom Marttens, R.F.; Zimdahl, W. Aspects of the cosmological “coincidence problem”. European Physical Journal C 2014, 74, 3160. [Google Scholar] [CrossRef]
- Sahni, V.; Starobinsky, A. Reconstructing dark energy. International Journal of Modern Physics D 2006, 15, 2105–2132. [Google Scholar] [CrossRef]
- Riess, A.G. The expansion of the Universe is faster than expected. Nature Reviews Physics 2020, 2, 10–12. [Google Scholar] [CrossRef]
- Mörtsell, E.; Dhawan, S. Does the Hubble constant tension call for new physics? Journal of Cosmology and Astroparticle Physics 2018, 2018, 025. [Google Scholar] [CrossRef]
- Bojowald, M. What happened before the Big Bang? Nature Physics 2007, 3, 523–525. [Google Scholar] [CrossRef]
- Cai, R.G.; Yang, X.Y.; Zhao, L. On the energy of gravitational waves. General Relativity and Gravitation 2022, 54, 89. [Google Scholar] [CrossRef]
- Einstein, A.; Rosen, N. On gravitational waves. Journal of the Franklin Institute 1937, 223, 43–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).