Submitted:
22 April 2025
Posted:
23 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Material and Methods
2.1. Microorganism and Cultivation Conditions
2.2. Partial Sequencing of the 16S rDNA Gene
2.3. Safety Assessment
2.4. Exopolysaccharide Production
2.5. Biofilm Formation
2.6. Assessment of Antimicrobial Activity
2.7. Assessment of Probiotic Potential
2.7.1. Gastrointestinal Tract Tolerance
2.7.2. Ability to Adhere to Caco-2 Cells
2.7.3. Auto-Aggregation, Co-Aggregation and Hydrophobicity
2.8. Microencapsulation
3. Results
3.1. Partial Sequencing of the 16S rDNA gene
3.2. Safety Assessment
3.3. Exopolysaccharide Production
3.4. Biofilm Formation
3.5. Assessment of Antimicrobial Activity
3.6. Assessment of Probiotic Potential
3.6.1. Gastrointestinal Tract Tolerance
3.6.2. Ability to adhere to Caco-2 Cells
3.6.3. Auto-Aggregation, Co-Aggregation and Hydrophobicity
3.7. Microencapsulation
4. Discussion
5. Conclusion
References
- Luz, C., Quiles, J.M., Romano, R., Blaiotta, G., Rodríguez, L. and Meca, G. (2021), Application of whey of Mozzarella di Bufala Campana fermented by lactic acid bacteria as a bread biopreservative agent. Int. J. Food Sci. Technol., 56: 4585-4593. [CrossRef]
- Simões da Silva TM, Piazentin ACM, Mendonça CMN, Converti A, Bogsan CSB, Mora D, de Souza Oliveira RP. Buffalo milk increases viability and resistance of probiotic bacteria in dairy beverages under in vitro simulated gastrointestinal conditions. J Dairy Sci. 2020 Sep;103(9):7890-7897. Epub 2020 Jun 26. [CrossRef]
- D’Onofre Couto B, Novaes da Costa R, Castro Laurindo W, Moraes da Silva H, Rocha da Silva C, Sélia Dos Reis Coimbra J, Barbosa Mageste A, de Cássia Dias S, José Boggione Santos I. Characterization, techno-functional properties, and encapsulation efficiency of self-assembled β-lactoglobulin nanostructures. Food Chem. 2021 Sep 15; 356:129719. Epub 2021 Mar 30. [CrossRef]
- Alfano A, D’ambrosio S, D’Agostino A, Finamore R, Schiraldi C, Cimini D. Concentrated Buffalo Whey as Substrate for Probiotic Cultures and as Source of Bioactive Ingredients: A Local Circular Economy Approach towards Reuse of Wastewaters. Fermentation. 2021; 7(4):281. [CrossRef]
- Malvido, M.C., González, E.A., Bazán Tantaleán, D.L. et al. Batch and fed-batch production of probiotic biomass and nisin in nutrient-supplemented whey media. Braz J Microbiol 50, 915–925 (2019). [CrossRef]
- Escrivá L, Agahi F, Vila-Donat P, Mañes J, Meca G, Manyes L. Bioaccessibility Study of Aflatoxin B1 and Ochratoxin A in Bread Enriched with Fermented Milk Whey and/or Pumpkin. Toxins. 2022; 14(1):6. [CrossRef]
- FAO/WHO (2001) Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Acid Bacteria. Report of a Joint FAO/WHO Expert Consultation, Córdoba, Argentina. https://www.fao.org/3/a0512e/a0512e.pdf Accessed 11 July 2022.
- Sharma, N., Kang, DK., Paik, HD. et al. Beyond probiotics: a narrative review on an era of revolution. Food Sci Biotechnol 32, 413–421 (2023). [CrossRef]
- Battistini, C., Herkenhoff, M.E., de Souza Leite, M. et al. Brewer’s Spent Grain Enhanced the Recovery of Potential Probiotic Strains in Fermented Milk After Exposure to In Vitro-Simulated Gastrointestinal Conditions. Probiotics & Antimicro. Prot. 15, 326–337 (2023). [CrossRef]
- Pires AF, Marnotes NG, Rubio OD, Garcia AC, Pereira CD. Dairy By-Products: A Review on the Valorization of Whey and Second Cheese Whey. Foods. 2021; 10(5):1067. [CrossRef]
- Delikanlı-Kıyak B, Yılmaz İ. Metataxonomic Sequencing to Assess Microbial Safety of Buffalo Yogurts in Amasra Region. Foodborne Pathog Dis. 2024 Feb;21(2):134-136. Epub 2023 Nov 3. PMID: 37917929. [CrossRef] [PubMed]
- Müller, T., Maciel, M. J., & Rempel, C. (2023). Milk microbiota from dairy factories in the Central Region of Rio Grande do Sul, Brazil. Ciência E Agrotecnologia, 47, e018322.
- Jankiewicz, M., Łukasik, J., Kotowska, M., Kołodziej, M. and Szajewska, H. (2023), Strain-Specificity of Probiotics in Pediatrics. Journal of Pediatric Gastroenterology and Nutrition, 76: 227-231. [CrossRef]
- Khanna, H. N., Roy, S., Shaikh, A., & Bandi, V. (2022). Emerging Role and Place of Probiotics in the Management of Pediatric Neurodevelopmental Disorders. Euroasian journal of hepato-gastroenterology, 12(2), 102–108. [CrossRef]
- Terpou, A., Papadaki, A., Lappa, I. K., Kachrimanidou, V., Bosnea, L. A., & Kopsahelis, N. (2019). Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients, 11(7), 1591. [CrossRef]
- Gu, Y., Chen, H., Li, X., Li, D., Sun, Y., Yang, L., Ma, Y. and Chan, E.C.Y. (2023), Lactobacillus paracasei IMC 502 ameliorates type 2 diabetes by mediating gut microbiota–SCFA–hormone/inflammation pathway in mice. J Sci Food Agric, 103: 2949-2959. [CrossRef]
- Talib, N., Mohamad, N.E., Yeap, S.K. et al. Anti-Diabetic Effect of Lactobacillus paracasei isolated from Malaysian Water Kefir Grains. Probiotics & Antimicro. Prot. (2023). [CrossRef]
- Mei, X., Mell, B., Aryal, S., Manandhar, I., Tummala, R., Zubcevic, J., Lai, K., Yang, T., Li, Q., Yeoh, B. S., & Joe, B. (2023). Genetically engineered Lactobacillus paracasei rescues colonic angiotensin converting enzyme 2 (ACE2) and attenuates hypertension in female Ace2 knock out rats. Pharmacological research, 196, 106920. [CrossRef]
- Palmu, J., Salosensaari, A., Havulinna, A. S., Cheng, S., Inouye, M., Jain, M., Salido, R. A., Sanders, K., Brennan, C., Humphrey, G. C., Sanders, J. G., Vartiainen, E., Laatikainen, T., Jousilahti, P., Salomaa, V., Knight, R., Lahti, L., & Niiranen, T. J. (2020). Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals. Journal of the American Heart Association, 9(15), e016641. [CrossRef]
- Su Y, Ren J, Zhang J, Zheng J, Zhang Q, Tian Y, Zhang Y, Jiang Y, Zhang W. Lactobacillus paracasei JY062 Alleviates Glucolipid Metabolism Disorders via the Adipoinsular Axis and Gut Microbiota. Nutrients. 2024; 16(2):267. [CrossRef]
- Yang, J., Huang, J., Huang, Z., Xu, Y., Li, W., Zhu, S., Zhao, Y., Ye, B., Liu, L., Zhu, J., Xia, M., & Liu, Y. (2023). Cardiometabolic benefits of Lacticaseibacillus paracasei 8700:2: A randomized double-blind placebo-controlled trial. Clinical nutrition (Edinburgh, Scotland), 42(9), 1637–1646. [CrossRef]
- Kwon, H., Lee, E. H., Choi, J., Park, J. Y., Kim, Y. K., & Han, P. L. (2023). Extracellular Vesicles Released by Lactobacillus paracasei Mitigate Stress-induced Transcriptional Changes and Depression-like Behavior in Mice. Experimental neurobiology, 32(5), 328–342. [CrossRef]
- Xu M, Tian P, Zhu H, Zou R, Zhao J, Zhang H, Wang G, Chen W. Lactobacillus paracasei CCFM1229 and Lactobacillus rhamnosus CCFM1228 Alleviated Depression- and Anxiety-Related Symptoms of Chronic Stress-Induced Depression in Mice by Regulating Xanthine Oxidase Activity in the Brain. Nutrients. 2022; 14(6):1294. [CrossRef]
- Sim, S., Park, H. J., Kim, Y. K., Choi, Y., & Park, H. S. (2024). Lactobacillus paracasei-derived extracellular vesicles alleviate neutrophilic asthma by inhibiting the JNK pathway in airway epithelium. Allergology international: official journal of the Japanese Society of Allergology, 73(2), 302–312. [CrossRef]
- Uwaezuoke, S. N., Ayuk, A. C., Eze, J. N., Odimegwu, C. L., Ndiokwelu, C. O., & Eze, I. C. (2022). Postnatal probiotic supplementation can prevent and optimize treatment of childhood asthma and atopic disorders: A systematic review of randomized controlled trials. Frontiers in pediatrics, 10, 956141. [CrossRef]
- Moawad, M. H., Alkhawaldeh, I. M., & Naswhan, A. J. (2023). Efficacy of probiotics supplementation in amelioration of celiac disease symptoms and enhancement of immune system. World journal of clinical cases, 11(32), 7741–7744. [CrossRef]
- Oscarsson, E., Håkansson, Å., Andrén Aronsson, C., Molin, G., & Agardh, D. (2021). Effects of Probiotic Bacteria Lactobacillaceae on the Gut Microbiota in Children With Celiac Disease Autoimmunity: A Placebo-Controlled and Randomized Clinical Trial. Frontiers in nutrition, 8, 680771. [CrossRef]
- Shi, Y., Zhang, C., Cao, W., Li, L., Liu, K., Zhu, H., Balcha, F., & Fang, Y. (2024). Extracellular vesicles from Lacticaseibacillus paracasei PC-H1 inhibit HIF-1α-mediated glycolysis of colon cancer. Future microbiology, 19, 227–239. [CrossRef]
- Zhang, S. L., Han, B., Mao, Y. Q., Zhang, Z. Y., Li, Z. M., Kong, C. Y., Wu, Y., Chen, G. Q., & Wang, L. S. (2022). Lacticaseibacillus paracasei sh2020 induced antitumor immunity and synergized with anti-programmed cell death 1 to reduce tumor burden in mice. Gut microbes, 14(1), 2046246. [CrossRef]
- Damodharan, K., Palaniyandi, S.A., Suh, JW. et al. Probiotic Characterization of Lactobacillus paracasei subsp. paracasei KNI9 Inhibiting Adherence of Yersinia enterocolitica on Caco-2 Cells In Vitro. Probiotics & Antimicro. Prot. 12, 600–607 (2020). [CrossRef]
- Jiang, Y. H., Xin, W. G., Yang, L. Y., Ying, J. P., Zhao, Z. S., Lin, L. B., Li, X. Z., & Zhang, Q. L. (2022). A novel bacteriocin against Staphylococcus aureus from Lactobacillus paracasei isolated from Yunnan traditional fermented yogurt: Purification, antibacterial characterization, and antibiofilm activity. Journal of dairy science, 105(3), 2094–2107. [CrossRef]
- Acurcio, L.B., Wuyts, S., de Cicco Sandes, S.H. et al. Milk Fermented by Lactobacillus paracasei NCC 2461 (ST11) Modulates the Immune Response and Microbiota to Exert its Protective Effects Against Salmonella typhimurium Infection in Mice. Probiotics & Antimicro. Prot. 12, 1398–1408 (2020). [CrossRef]
- Madi-Moussa, D., Coucheney, F., & Drider, D. (2021). Expression of five class II bacteriocins with activity against Escherichia coli in Lacticaseibacillus paracasei CNCM I-5369, and in a heterologous host. Biotechnology reports (Amsterdam, Netherlands), 30, e00632. [CrossRef]
- Cappello, C., Acin-Albiac, M., Pinto, D. et al. Do nomadic lactobacilli fit as potential vaginal probiotics? The answer lies in a successful selective multi-step and scoring approach. Microb Cell Fact 22, 27 (2023). [CrossRef]
- Dashti, A.A.; Jadaon, M.M.; Dashti, H. Heat Treatment of Bacteria: A Simple Method of DNA Extraction for Molecular Techniques. Kuwait Medical Journal, v. 41, n. 2, p. 117-122, 2009.
- Lane, D.J. 16S/23S rRNA sequencing. Em Stackebrandt E, Goodfellow M (Eds). Nucleic acid techniques in bacterial systematics. John Wiley & Sons, Nova Iorque. 1991.
- Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular biology and evolution, 38(7), 3022–3027. [CrossRef]
- Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406–425. [CrossRef]
- Angmo, K., Kumari, A., Savitri, n., & Bhalla, T. C. (2015). Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT - Food Science and Technology. [CrossRef]
- Cruz, T. E. E.; Torres, J. M. O. Gelatin hydrolysis test protocol. Washington: Microbial Library American Society for Microbiology, 2012.
- Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493-6. [PubMed]
- Charteris, W. P., Kelly, P. M., Morelli, L., & Collins, J. K. (1998). Antibiotic susceptibility of potentially probiotic Lactobacillus species. Journal of food protection, 61(12), 1636–1643. [CrossRef]
- BrCast – Brazilian Committee on Antimicorbial Susceptibility Testing. Tabelas pontos de corte clínicos. 2019. Brazil. http://brcast.org.br/documentos/. Accessed 06 june 2022.
- Freeman, D. J., Falkiner, F. R., & Keane, C. T. (1989). New method for detecting slime production by coagulase negative staphylococci. Journal of clinical pathology, 42(8), 872–874. [CrossRef]
- Stepanović, S., Cirković, I., Ranin, L., & Svabić-Vlahović, M. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in applied microbiology, 38(5), 428–432. [CrossRef]
- Moura, T. M., Campos, F. S., Caierão, J., Franco, A. C., Roehe, P. M., d’Azevedo, P. A., Frazzon, J., & Frazzon, A. P. (2015). Influence of a subinhibitory concentration of vancomycin on the in vitro expression of virulence-related genes in the vancomycin-resistant Enterococcus faecalis. Revista da Sociedade Brasileira de Medicina Tropical, 48(5), 617–621. [CrossRef]
- Masebe RD, Thantsha MS. Anti-Biofilm Activity of Cell Free Supernatants of Selected Lactic Acid Bacteria against Listeria monocytogenes Isolated from Avocado and Cucumber Fruits, and from an Avocado Processing Plant. Foods. 2022; 11(18):2872. [CrossRef]
- Sabo, S. D. S., Mendes, M. A., Araújo, E. D. S., Muradian, L. B. A., Makiyama, E. N., LeBlanc, J. G., Borelli, P., Fock, R. A., Knöbl, T., & Oliveira, R. P. S. (2020). Bioprospecting of probiotics with antimicrobial activities against Salmonella Heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Scientific reports, 10(1), 7235. [CrossRef]
- Monteiro, C. R. A. V., do Carmo, M. S., Melo, B. O., Alves, M. S., Dos Santos, C. I., Monteiro, S. G., Bomfim, M. R. Q., Fernandes, E. S., & Monteiro-Neto, V. (2019). In Vitro Antimicrobial Activity and Probiotic Potential of Bifidobacterium and Lactobacillus against Species of Clostridium. Nutrients, 11(2), 448. [CrossRef]
- Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. The Journal of hygiene, 38(6), 732–749. [CrossRef]
- Iraporda C, Rubel IA, Manrique GD, Abraham AG. Influence in inulin rich carbohydrates from Jerusalem artichoke (Helianthus tuberosus L.) tubers on probiotic properties of Lactobacillus strains. LWT- Food Scienc. Technol. 2019;101:738–746. [CrossRef]
- Breyer GM, Arechavaleta NN, Siqueira FM, de Souza da Motta A. Characterization of Lactic Acid Bacteria in Raw Buffalo Milk: a Screening for Novel Probiotic Candidates and Their Transcriptional Response to Acid Stress. Probiotics Antimicrob Proteins. 2021 Apr;13(2):468-483. [CrossRef] [PubMed]
- Todorov, S.D., Dicks, L.M.T. Evaluation of lactic acid bacteria from kefir, molasses and olive brine as possible probiotics based on physiological properties. Ann. Microbiol. 58, 661–670 (2008). [CrossRef]
- Kumari M., Kumar R., Singh D., Bhatt S., Gupta M. Physiological and genomic characterization of an exopolysaccharide-producing Weissella cibaria CH2 from cheese of the western Himalayas. Food Biosci. 2020; 35:100570. [CrossRef]
- Handley, P. S., Harty, D. W., Wyatt, J. E., Brown, C. R., Doran, J. P., & Gibbs, A. C. (1987). A comparison of the adhesion, coaggregation and cell-surface hydrophobicity properties of fibrillar and fimbriate strains of Streptococcus salivarius. Journal of general microbiology, 133(11), 3207–3217. [CrossRef]
- Lee, S., Lee, J., Jin, Y., Jeong, J., Chang, Y.H., Lee, Y., Jeong, Y., & Kim, M. (2017). Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. Lwt - Food Science and Technology, 79, 518-524. [CrossRef]
- Hugues-Ayala, A. M., Sarabia-Sainz, J. A. I., González-Rios, H., Vázquez-Moreno, L., & Ramos-Clamont Montfort, G. (2020). Airbrush encapsulation of Lactobacillus rhamnosus GG in dry microbeads of alginate coated with regular buttermilk proteins. LWT, 117, Article 108639. [CrossRef]
- Bevilacqua, A., Campaniello, D., Speranza, B., Racioppo, A., Altieri, C., Sinigaglia, M., & Corbo, M. R. (2020). Microencapsulation of Saccharomyces cerevisiae into Alginate Beads: A Focus on Functional Properties of Released Cells. Foods (Basel, Switzerland), 9(8), 1051. [CrossRef]
- Romero-Luna, H. E., Peredo-Lovillo, A., Hernández-Mendoza, A., Hernández-Sánchez, H., Cauich-Sánchez, P. I., Ribas-Aparicio, R. M., & Dávila-Ortiz, G. (2020). Probiotic Potential of Lactobacillus paracasei CT12 Isolated from Water Kefir Grains (Tibicos). Current microbiology, 77(10), 2584–2592. [CrossRef]
- ANVISA – Agência Nacional de Vigilância Sanitária. RESOLUÇÃO DA DIRETORIA COLEGIADA – RDC Nº 241, 26 JULY 2018, BRAZIL https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2018/rdc0241_26_07_2018.pdf Accessed 11 july 2022.
- Cui, H. L., Li, M. F., Liu, S. Y., Yu, M., & Lou, W. Y. (2024). Regulation of Hepatocellular Cholesterol Metabolism By Lactobacillus Paracasei BY2 and Its Embedding Delivery. Probiotics and antimicrobial proteins, 16(1), 181–195. [CrossRef]
- Icer, M.A.; Özbay, S.; Ağagündüz, D.; Kelle, B.; Bartkiene, E.; Rocha, J.M.F.; Ozogul, F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023, 12, 2965. [CrossRef]
- Megur, A., Daliri, E. B., Balnionytė, T., Stankevičiūtė, J., Lastauskienė, E., & Burokas, A. (2023). In vitro screening and characterization of lactic acid bacteria from Lithuanian fermented food with potential probiotic properties. Frontiers in microbiology, 14, 1213370. [CrossRef]
- Rashid, H., A. Zaidi, M. A. Anwar, and M. Tariq. 2023. A synbiotic made of an autochthonous Enterococcus durans strain and microbial polysaccharides improves broiler chicken health. J. Agric. Food Res. 14:100812. [CrossRef]
- Valdiviezo-Marcelo J, Arana-Torres NM, Vega-Portalatino EJ, Ruiz-Flores LA, Tamariz-Angeles C, Olivera-Gonzales P, Rosales-Cuentas MM and Espinoza-Espinoza LA (2023) Technological potential of native lactic acid bacteria isolated from Swiss-type artisanal cheese (Ancash, Peru) for their application in food. Front. Sustain. Food Syst. 7:1212229. [CrossRef]
- Kullar, R., Goldstein, E. J. C., Johnson, S., & McFarland, L. V. (2023). Lactobacillus Bacteremia and Probiotics: A Review. Microorganisms, 11(4), 896. [CrossRef]
- Tang, Q., Hao, Y., Wang, L., Lu, C., Li, M., Si, Z., Wu, X., & Lu, Z. (2021). Characterization of a bacterial strain Lactobacillus paracasei LP10266 recovered from an endocarditis patient in Shandong, China. BMC microbiology, 21(1), 183. [CrossRef]
- Bengoa, A. A., Dardis, C., Garrote, G. L., & Abraham, A. G. (2021). Health-Promoting Properties of Lacticaseibacillus paracasei: A Focus on Kefir Isolates and Exopolysaccharide-Producing Strains. Foods (Basel, Switzerland), 10(10), 2239. [CrossRef]
- El Hage, R., El Hage, J., Snini, S. P., Ammoun, I., Touma, J., Rachid, R., Mathieu, F., Sabatier, J. M., Abi Khattar, Z., & El Rayess, Y. (2022). The Detection of Potential Native Probiotics Lactobacillus spp. against Salmonella Enteritidis, Salmonella Infantis and Salmonella Kentucky ST198 of Lebanese Chicken Origin. Antibiotics (Basel, Switzerland), 11(9), 1147. [CrossRef]
- Bhat B, Bajaj B.K., Hypocholesterolemic potential and bioactivity spectrum of an exopolysaccharide from a probiotic isolate Lactobacillus paracasei M7, Bioactive Carbohydrates and Dietary Fibre 19 (2019), 100191, . [CrossRef]
- Hooshdar P., Kermanshahi R.K., Ghadam P., Khosravi-Darani K. A review on production of exopolysaccharide and biofilm in probiotics like Lactobacilli and methods of analysis. Biointerface Res. Appl. Chem. 2020; 10:6058–6075. [CrossRef]
- 72. Chamignon C, Guéneau V, Medina S, Deschamps J, Gil-Izquierdo A, Briandet R, Mousset P-Y, Langella P, Lafay S, Bermúdez-Humarán LG. Evaluation of the Probiotic Properties and the Capacity to Form Biofilms of Various Lactobacillus Strains. Microorganisms. 2020; 8(7):1053. [CrossRef]
- Chen, T., Li, B., Zheng, K. et al. Lactobacillus paracasei R3 Alleviates Tumor Progression in Mice with Colorectal Cancer. Curr Microbiol 81, 38 (2024). [CrossRef]
- Baliyan, N., Dindhoria, K., Kumar, A., Thakur, A., & Kumar, R. (2021). Comprehensive Substrate-Based Exploration of Probiotics From Undistilled Traditional Fermented Alcoholic Beverage ‘Lugri’. Frontiers in microbiology, 12, 626964. [CrossRef]
- Martín I., Rodríguez A., Alía A., Martínez R., Córdoba J.J. Selection and characterization of lactic acid bacteria with activity against Listeria monocytogenes from traditional RTE ripened foods. LWT. 2022; 163:113579. [CrossRef]
- Poimenidou, S. V., Skarveli, A., Saxami, G., Mitsou, E. K., Kotsou, M., & Kyriacou, A. (2023). Inhibition of Listeria monocytogenes Growth, Adherence and Invasion in Caco-2 Cells by Potential Probiotic Lactic Acid Bacteria Isolated from Fecal Samples of Healthy Neonates. Microorganisms, 11(2), 363. [CrossRef]
- Jia, G., Liu, X., Zhi, A., Li, J., Wu, Y., & Zhang, Y. (2021). Characterization and Selection of Lactobacillus plantarum and Lactobacillus paracasei for prevention of oral bacterial infections from Chinese pickle. AMB Express, 11(1), 84. [CrossRef]
- Rajab, S., Tabandeh, F., Shahraky, M. K., & Alahyaribeik, S. (2020). The effect of lactobacillus cell size on its probiotic characteristics. Anaerobe, 62, 102103. [CrossRef]
- M’hamed AC, Ncib K, Merghni A, Migaou M, Lazreg H, Snoussi M, Noumi E, Mansour MB, Maaroufi RM. Characterization of Probiotic Properties of Lacticaseibacillus paracasei L2 Isolated from a Traditional Fermented Food “Lben”. Life. 2023; 13(1):21. [CrossRef]
- Tan, L. L., Tan, C. H., Ng, N. K. J., Tan, Y. H., Conway, P. L., & Loo, S. C. J. (2022). Potential Probiotic Strains From Milk and Water Kefir Grains in Singapore-Use for Defense Against Enteric Bacterial Pathogens. Frontiers in microbiology, 13, 857720. [CrossRef]
- Chen, L. A., Hourigan, S. K., Grigoryan, Z., Gao, Z., Clemente, J. C., Rideout, J. R., Chirumamilla, S., Rabidazeh, S., Saeed, S., Elson, C. O., Oliva-Hemker, M., Blaser, M. J., & Sears, C. L. (2019). Decreased Fecal Bacterial Diversity and Altered Microbiome in Children Colonized With Clostridium difficile. Journal of pediatric gastroenterology and nutrition, 68(4), 502–508. [CrossRef]
- Liu, D., Zeng, L., Yan, Z., Jia, J., Gao, J., & Wei, Y. (2020). The mechanisms and safety of probiotics against toxigenic clostridium difficile. Expert review of anti-infective therapy, 18(10), 967–975. [CrossRef]
- Lee, J. Y., Park, J. Y., Jeong, Y., & Kang, C. H. (2023). Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474. Journal of microbiology and biotechnology, 33(8), 1039–1049. [CrossRef]
- Goderska, K., & Agudo Pena, S. (2024). An in vitro gastrointestinal model to evaluate the tolerance of encapsulated Lactobacillus and Lactococcus strains with synbiotic containing lactobionic acid via lyophilization technique to harsh gastric conditions during storage time. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 197, 114147. [CrossRef]
- Zommara, M., El-Ghaish, S., Haertle, T. et al. Probiotic and technological characterization of selected Lactobacillus strains isolated from different egyptian cheeses. BMC Microbiol 23, 160 (2023). [CrossRef]
- Chen D, Guo C, Ren C, Xia Z, Xu H, Qu H, Wa Y, Guan C, Zhang C, Qian J, et al. Screening of Lactiplantibacillus plantarum 67 with Strong Adhesion to Caco-2 Cells and the Effects of Protective Agents on Its Adhesion Ability during Vacuum Freeze Drying. Foods. 2023; 12(19):3604. [CrossRef]
- Kiepś J, Juzwa W, Olejnik A, Sip A, Tomaszewska-Gras J, Dembczyński R. The Effects of Cellular Membrane Damage on the Long-Term Storage and Adhesion of Probiotic Bacteria in Caco-2 Cell Line. Nutrients. 2023; 15(15):3484. [CrossRef]
- Fonseca, H.C., de Sousa Melo, D., Ramos, C.L. et al. Probiotic Properties of Lactobacilli and Their Ability to Inhibit the Adhesion of Enteropathogenic Bacteria to Caco-2 and HT-29 Cells. Probiotics & Antimicro. Prot. 13, 102–112 (2021). [CrossRef]
- Zawistowska-Rojek, A., Kośmider, A., Stępień, K. et al. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Arch Microbiol 204, 285 (2022). [CrossRef]
- Rocha-Mendoza, D., Kosmerl, E., Miyagusuku-Cruzado, G., Giusti, M. M., Jiménez-Flores, R., & García-Cano, I. (2020). Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells. Journal of dairy science, 103(9), 7707–7718. [CrossRef]
- Juntarachot, N., Sunpaweravong, S., Kaewdech, A., Wongsuwanlert, M., Ruangsri, P., Pahumunto, N., & Teanpaisan, R. (2023). Characterization of adhesion, anti-adhesion, co-aggregation, and hydrophobicity of Helicobacter pylori and probiotic strains. Journal of Taibah University Medical Sciences, 18(5), 1048–1054. [CrossRef]
- Kardooni Z, Alizadeh Behbahani B, Jooyandeh H, Noshad M. Assessing Protection Mechanisms against Escherichia coli by Analyzing Auto-and Co-Aggregation, Adhesion Ability, Antagonistic Activity and Safety Characteristics of Potentially Probiotic Lactobacillus acidophilus B103. Nutr Food Sci Res 2023; 10 (1) :11-21.
- Jiang, X., Shekarforoush, E., Muhammed, M. K., Whitehead, K., Simonsen, A. C., Arneborg, N., & Risbo, J. (2021). Efficient chemical hydrophobization of lactic acid bacteria - One-step formation of double emulsion. Food research international (Ottawa, Ont.), 147, 110460. [CrossRef]
- Dehghani Champiri, I., Bamzadeh, Z., Rahimi, E. et al. Lacticaseibacillus paracasei LB12, a Potential Probiotic Isolated from Traditional Iranian Fermented Milk (Doogh). Curr Microbiol 80, 333 (2023). [CrossRef]
- Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of dairy science, 103(2), 1223–1237. [CrossRef]
- Amini, E., Salimi, F., Imanparast, S., & Mansour, F. N. (2022). Isolation and characterization of exopolysaccharide derived from Lacticaseibacillus paracasei AS20(1) with probiotic potential and evaluation of its antibacterial activity. Letters in applied microbiology, 75(4), 967–981. [CrossRef]
- Klimko, A.I., Cherdyntseva, T.A., Brioukhanov, A.L. et al. In Vitro Evaluation of Probiotic Potential of Selected Lactic Acid Bacteria Strains. Probiotics & Antimicro. Prot. 12, 1139–1148 (2020). [CrossRef]
- Salman MK, Abuqwider J, Mauriello G. Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health. Microorganisms. 2023; 11(3):793. [CrossRef]
- Lin, Q., Si, Y., Zhou, F., Hao, W., Zhang, P., Jiang, P., & Cha, R. (2024). Advances in polysaccharides for probiotic delivery: Properties, methods, and applications. Carbohydrate polymers, 323, 121414. [CrossRef]
- Singh, S., Gupta, R., Chawla, S., Gauba, P., Singh, M., Tiwari, R. K., Upadhyay, S., Sharma, S., Chanda, S., & Gaur, S. (2022). Natural sources and encapsulating materials for probiotics delivery systems: Recent applications and challenges in functional food development. Frontiers in nutrition, 9, 971784. [CrossRef]
- Razavi, S.; Janfaza, S.; Tasnim, N.; Gibson, D.L.; Hoorfar, M. Microencapsulating polymers for probiotics delivery systems: Preparation, characterization, and applications. Food Hydrocoll. 2021, 120, 106882. [CrossRef]
- Wang, X., Gao, S., Yun, S., Zhang, M., Peng, L., Li, Y., & Zhou, Y. (2022). Microencapsulating Alginate-Based Polymers for Probiotics Delivery Systems and Their Application. Pharmaceuticals (Basel, Switzerland), 15(5), 644. [CrossRef]
- Han, C., Xiao, Y., Liu, E., Su, Z., Meng, X., & Liu, B. (2020). Preparation of Ca-alginate-whey protein isolate microcapsules for protection and delivery of L. bulgaricus and L. paracasei. International journal of biological macromolecules, 163, 1361–1368. [CrossRef]
- Barajas-Álvarez P, González-Ávila M, Espinosa-Andrews H. 2021. Recent advances in probiotic encapsulation to improve viability under storage and gastrointestinal conditions and their impact on functional food formulation. Food Rev. Int. [CrossRef]
- Devarajan, A., Mudgil, P., Aldhaheri, F., Hamed, F., Dhital, S., & Maqsood, S. (2022). Camel milk-derived probiotic strains encapsulated in camel casein and gelatin complex microcapsules: Stability against thermal challenge and simulated gastrointestinal digestion conditions. Journal of dairy science, 105(3), 1862–1877. [CrossRef]
- Sekhavatizadeh, S.S., Afrasiabi, F. & Montaseri, Z. Encapsulation of probiotic Lactobacillus acidophilus ATCC 4356 in alginate–galbanum (Ferula Gummosa Boiss) gum microspheres and evaluation of the survival in simulated gastrointestinal conditions in probiotic Tahini halva. Braz J Microbiol 54, 1589–1601 (2023). [CrossRef]



| Indicators | Results (mm) |
|---|---|
| Citrobacter freundii F30 | 8.0 ± 1 |
| Clostridium difficile CTI/HU RT 106 | 6.67 ± 1.53 |
| Clostridium difficile ES11 | 10.33 ± 0.58 |
| Corynebacterium fimi NCTC 7547 | 10.33 ± 1.03 |
| Enterobacter aerogenes B01 | 9.5 ± 0.71 |
| Enterobacter cloacae | 6.0 ± 1 |
| Klebsiella pneumoniae | 10.67 ± 1.53 |
| Klebsiella pneumoniae 376 | 6.33 ± 0.58 |
| Klebsiella pneumoniae 378 | 6.0 ± 0 |
| Klebsiella pneumoniae 379 | 6.67 ± 0.58 |
| Klebsiella pneumoniae 381 | 5.67 ± 0.58 |
| Klebsiella pneumoniae 382 | 6.0 ± 1 |
| Listeria innocua C08 | 8.33 ± 0.58 |
| Proteus hauseri BJX | 9.67 ± 0.58 |
| Proteus vulgaris C30 | 10.0 ± 1 |
| Salmonella Enteritidis ATCC 13076 | 8.0 ± 1 |
| Staphylococcus sciuri A0902 | 3.33 ± 0.58 |
| Hydrophobicity | Auto-aggregation | Co-aggregation | |||||
|---|---|---|---|---|---|---|---|
| E.coli | L. monocytogenes | ||||||
| ATCC 10536 | ATCC 7644 | ||||||
| n-hexadecane | xylene | 3h | 24h | 3h | 24h | 3h | 24h |
| 15.9 ± 3.51 | 14.41 ± 2.11 | 6.03 ± 3.2 | 38.29 ± 3.6 | 7.22 ± 2 | 38.36 ± 2.3 | 11.99 ± 3.7 | 35.83 ± 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
