Submitted:
22 April 2025
Posted:
22 April 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Dataset
2.1. Data Introduction
2.2. Feature Selection
- Lon: reflects the longitude position of the trajectory
- Lat: reflects the latitude of the trajectory
- Temperature: reflects the temperature changes in the ocean environment
- Salinity: reflects changes in the salinity of the marine environment
2.3. Data Preprocessing
2.4. Data Standardization
- is the mean of the feature
- is the standard deviation of the feature
2.5. Sequence Construction
- Training set: 60% of the data for model training
- Validation set: 20% of the data for hyperparameter tuning
- Test set: 20% of the data for final evaluation
3. Methods
3.1. Model Architecture
- Time-Mixing: Mix features along the temporal dimension to capture temporal dependencies in the time series
- Feature-Mixing: Mix the data on the feature dimension to capture the correlation between different features
| Algorithm 1 Training of TSMixer |
|
3.2. Loss Function
3.3. Evaluation Index
4. Experiments
4.1. Experimental Setup
4.2. Training Process
4.3. Experimental Results
4.4. Comparative Experiments
4.5. Ablation Study
5. Discussion
5.1. Model Advantages
5.2. Model Performance Analysis
6. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Number of samples input into the model each time | |
| Length of the time series, that is, the number of time steps | |
| Number of features contained in each time step | |
| DL | Deep Learning; Temp = Temperature |
| Temp | Temperature |
| Lon/Lat | Longitude/Latitude |
| MLP | Multi-layer Perceptron |
References
- Lin, M.; Yang, C. Ocean Observation Technologies: A Review. Chinese Journal of Mechanical Engineering 2020, 33, 32. [Google Scholar] [CrossRef]
- Soreide, N.; Woody, C.; Holt, S. Overview of ocean based buoys and drifters: present applications and future needs. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), 2001, Vol. 4, pp. 2470–2472 vol.4. [CrossRef]
- Song, D.L.; Wang, H.J.; Zhou, L.Q.; et al. . 下放式海洋微结构湍流剖面仪运动学与动力学分析. 中国海洋大学学报(自科版) 2019, 49, 145–152. [Google Scholar] [CrossRef]
- Li, Y.; Yang, F.; Li, S.; Tang, X.; Sun, X.; Qi, S.; Gao, Z. Influence of Six-Degree-of-Freedom Motion of a Large Marine Data Buoy on Wind Speed Monitoring Accuracy. Journal of Marine Science and Engineering 2023, 11. [Google Scholar] [CrossRef]
- Mou, N.X.; Zhang, H.C.; Chen, J.; Zhang, L.X.; Dai, H.L. A Review on the Application Research of Trajectory Data Mining in Urban Cities. Journal of Geo-information Science 2015, 17, 1136–1142. [Google Scholar] [CrossRef]
- Wang, J.; Fu, L.L.; Haines, B.; Lankhorst, M.; Lucas, A.J.; Farrar, J.T.; Send, U.; Meinig, C.; Schofield, O.; Ray, R.; et al. On the Development of SWOT In Situ Calibration/Validation for Short-Wavelength Ocean Topography. Journal of Atmospheric and Oceanic Technology 2022, 39, 595–617. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature Using Long Short-Term Memory. IEEE Geoscience and Remote Sensing Letters 2017, 14, 1745–1749. [Google Scholar] [CrossRef]
- Song, M.; Hu, W.; Liu, S.; Chen, S.; Fu, X.; Zhang, J.; Li, W.; Xu, Y. Developing an Artificial Intelligence-Based Method for Predicting the Trajectory of Surface Drifting Buoys Using a Hybrid Multi-Layer Neural Network Model. Journal of Marine Science and Engineering 2024, 12. [Google Scholar] [CrossRef]
- Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent Neural Network Regularization, 2015. arXiv:cs.NE/1409.2329].
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Computation 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Çağlar Gülçehre.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint arXiv:1412.3555 2014. [CrossRef]
- Lea, C.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal Convolutional Networks: A Unified Approach to Action Segmentation, 2016.
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I.; Luxburg, U.V.; Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Eds. Curran Associates, Inc., 2017, Vol. 30.
- Zeng, A.; Chen, M.; Zhang, L.; Xu, Q. Are Transformers Effective for Time Series Forecasting? Proceedings of the AAAI Conference on Artificial Intelligence 2022, 37, 11121–11128. [Google Scholar] [CrossRef]
- Ekambaram, V.; Jati, A.; Nguyen, N.; Sinthong, P.; Kalagnanam, J. TSMixer: Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting. In Proceedings of the Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2023; KDD ’23, pp. 459–469. [CrossRef]
- Toole, J.; Krishfield, R.; Proshutinsky, A.; Ashjian, C.; Doherty, K.; Frye, D.; Hammar, T.; Kemp, J.; Peters, D.; Timmermans, M.L.; et al. Ice-tethered profilers sample the upper Arctic Ocean. Eos, Transactions American Geophysical Union 2006, 87, 434–438. [Google Scholar] [CrossRef]
- ITP, W. Ice-Tethered Profiler Observational Dataset, 2023. [Online]. Available: https://www2.whoi.edu/site/itp/. (Data can be shared upon request).
- Rhines, P.B. Slow oscillations in an ocean of varying depth Part 1. Abrupt topography. Journal of Fluid Mechanics 1969, 37, 161–189. [Google Scholar] [CrossRef]
- Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance. Applied Soft Computing 2020, 97, 105524. [Google Scholar] [CrossRef]






| Buoy | Profile Number | Buoy | Profile Number | Buoy | Profile Number |
|---|---|---|---|---|---|
| itp76 | 910 | itp93 | 1543 | itp114 | 4403 |
| itp77 | 2367 | itp95 | 878 | itp115 | 261 |
| itp78 | 1691 | itp97 | 699 | itp116 | 529 |
| itp79 | 1694 | itp98 | 179 | itp117 | 206 |
| itp80 | 3258 | itp99 | 224 | itp120 | 1927 |
| itp81 | 671 | itp100 | 176 | itp121 | 1101 |
| itp82 | 1087 | itp101 | 382 | itp122 | 1860 |
| itp83 | 937 | itp102 | 2140 | itp123 | 1100 |
| itp84 | 172 | itp103 | 5039 | itp125 | 151 |
| itp85 | 659 | itp104 | 6223 | itp126 | 941 |
| itp86 | 753 | itp105 | 6061 | itp127 | 862 |
| itp87 | 647 | itp107 | 296 | itp128 | 408 |
| itp88 | 30 | itp108 | 673 | itp129 | 1294 |
| itp89 | 429 | itp109 | 169 | itp130 | 338 |
| itp90 | 305 | itp110 | 630 | itp131 | 253 |
| itp91 | 328 | itp111 | 520 | itp136 | 434 |
| itp92 | 1855 | itp113 | 4842 | itp137 | 431 |
| Category | Setting/Parameter | Value | Description |
|---|---|---|---|
| Hardware | CPU | Intel Core i7-12700K | High perf multithreaded CPU |
| GPU | NVIDIA GeForce RTX 3090 | 24 GB VRAM, supports large-scale DL training | |
| Software | Python Version | 3.9 | Multi - thread high - perf CPU |
| PyTorch Version | 1.12.1 | Multi - thread high - perf CPU | |
| Dataset | Samples | 5847 | Multivariate time series |
| Model Parameters | Sequence Length | n | Input time series length |
| 492 | Features per timestep | ||
| Time-Mix Dim | 256 | Time-Mixing MLP dim | |
| Feature-Mix Dim | 2048 | Feature-Mixing MLP dim | |
| Dropout Rate | 0.1 | Anti - overfitting regularization | |
| Batch Size | 32 | Training mini-batch size | |
| Epochs | 30 | Total training iterations | |
| Learning Rate | Adam | Optimizer configuration (=0.001) | |
| Loss Function | BCELoss | Binary cross-entropy loss metric | |
| optimizer | Adam | For model parameter update | |
| Device | cuda | GPU acceleration enabled | |
| Training | Adam | Optimizer with learning rate | |
| BCELoss | Equations (12) | Binary cross-entropy loss function | |
| Metrics | Acc/Prec/Rec/F1 | Equations (13)–(15) | Classification metrics |
| MSE/R2 | Equations (16) and (17) | Regression metrics |
| n | Sequence length | fold | Accuracy | Training Time (s) | ||
| Train | Val | Test | ||||
| 5487 | 16 | 0 | 0.86746988 | 0.80952381 | 0.826923077 | 1.795639753 |
| 5487 | 16 | 1 | 0.879518072 | 0.80952381 | 0.807692308 | 2.921166658 |
| 5487 | 16 | 2 | 0.86746988 | 0.738095238 | 0.846153846 | 1.3659904 |
| 5487 | 16 | 3 | 0.880239521 | 0.853658537 | 0.846153846 | 1.690137386 |
| 5487 | 16 | 4 | 0.856287425 | 0.804878049 | 0.75 | 1.039544582 |
| Model | Train Loss | Val Loss | Val Acc | MSE | R² |
|---|---|---|---|---|---|
| TSMixer [15] | 0.4918 | 0.5178 | 0.7446 | 0.1759 | 0.2965 |
| GRU [11] | 0.4744 | 0.5299 | 0.7420 | 0.1747 | 0.3013 |
| TCN [12] | 0.5474 | 0.5187 | 0.7387 | 0.1753 | 0.2986 |
| Dlinear [14] | 0.5171 | 0.5397 | 0.7227 | 0.1841 | 0.2636 |
| LSTM [10] | 0.5537 | 0.5526 | 0.6913 | 0.1909 | 0.2366 |
| RNN [9] | 0.5543 | 0.5903 | 0.6769 | 0.2033 | 0.1869 |
| Transformer [13] | 0.6590 | 0.6628 | 0.6076 | 0.2352 | 0.0593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
