Submitted:
16 April 2025
Posted:
17 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
- the converged thermal conductivity is estimated for an infinitely long NVE simulation, according to
- the thermal conductivity for an infinitely long sample is obtained by a finite-size extrapolation, a commonly used approach in non-equilibrium simulations [31]
3. Results and Discussion
- AA: 1027.406 W·K−1
- AB: 1274.969 W·m−1·K−1
- SP: 1217.723 W·m−1·K−1
4. Conclusions
Data Availability Statement
Conflicts of Interest
References
- Balandin, A.A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.; Nika, D.; Balandin, A. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Seol, J.; Jo, I.; Moore, A.; Lindsay, L.; Aitken, Z.; Pettes, M.; Li, X.; Yao, Z.; Huang, R.; Broido, D. Two-dimensional phonon transport in supported graphene. Science 2010, 328, 213–216. [Google Scholar] [CrossRef]
- Nika, D.L.; Balandin, A.A. Two-dimensional phonon transport in graphene. J. Physics: Condens. Matter 2012, 24, 233203. [Google Scholar] [CrossRef]
- Xu, X.; Pereira, L.F.C.; Wang, Y.; Wu, J.; Zhang, K.; Zhao, X.; Bae, S.; Tinh Bui, C.; Xie, R.; Thong, J.T.L.; et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 2014, 5, 3689. [Google Scholar] [CrossRef]
- Chen, S.; Moore, A.; Cai, W.; Suk, J.; An, J.; Mishra, C.; Amos, C.; Magnuson, C.; Kang, J.; Shi, L.; et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 2011, 5, 321–328. [Google Scholar] [CrossRef]
- Nika, D.L.; Pokatilov, E.P.; Askerov, A.S.; Balandin, A.A. Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, G.; Khan, J.; Balandin, A. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. MRS Bull. 2012, 37, 1245–1251. [Google Scholar] [CrossRef]
- Kong, B.; Paul, S.; Nardelli, M.; Kim, K. First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene. Phys. Rev. B 2009, 80, 033406. [Google Scholar] [CrossRef]
- Barbarino, G.; Melis, C.; Colombo, L. Effect of hydrogenation on graphene thermal transport. Carbon 2014, 80, 167–173. [Google Scholar] [CrossRef]
- Hahn, K.; Melis, C.; Colombo, L. Thermal transport in nanocrystalline graphene investigated by approach-to-equilibrium molecular dynamics simulations. Carbon 2016, 96, 429–438. [Google Scholar] [CrossRef]
- Li, C.; Wu, R.; Zhao, X.; Feng, K.; Huang, W. Interfacial Thermal Transport in Functionalized Graphene Layers: The Role of Fluorination. J. Phys. Chem. C 2023, 127, 72353–72361. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Wang, J.; Guo, Y.; Wei, J. Seamless Graphene/Fluorinated Graphene Lateral Heterostructures for Enhanced Heat Dissipation in Transistor Devices. Adv. Sci. 2024, 11, 2401586. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y.; Li, T.; Wang, H.; Chen, Y. Lattice thermal conductivity and phonon transport properties of monolayer fluorographene: A first-principles study. J. Appl. Phys. 2023, 136, 134305. [Google Scholar] [CrossRef]
- Ran, Y.; Meng, C.; Ma, Y.; Li, Q.; Zhu, H. Reduced Thermal Conductivity in SnSe2 Moiré Superlattices. ACS Nano 2025. [Google Scholar] [CrossRef]
- Bistritzer, R.; MacDonald, A.H. Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. 2011, 108, 12233–12237. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84. [Google Scholar] [CrossRef]
- Dettori, R.; Melis, C.; Colombo, L. SixGe1-x alloy as efficient phonon barrier in Ge/Si superlattices for thermoelectric applications. Eur. Phys. J. B 2015, 88. [Google Scholar] [CrossRef]
- Dettori, R.; Siddi, F.; Colombo, L.; Melis, C. Superlattice Thermal Modulation in MoS2MoS2 by Defect Engineering. Adv. Theory Simulations 2024, 8. [Google Scholar] [CrossRef]
- Cheng, Y.; Fan, Z.; Zhang, T.; Nomura, M.; Volz, S.; Zhu, G.; Li, B.; Xiong, S. Magic angle in thermal conductivity of twisted bilayer graphene. Mater. Today Phys. 2023, 35, 101093. [Google Scholar] [CrossRef]
- Han, W.; Li, Y.; Chen, H.; Zhou, J.; Zhang, G. Twist-Angle Dependent Phonon Transport in Twisted Bilayer Graphene. Adv. Mater. 2023, 35, e2209876. [Google Scholar] [CrossRef]
- Cocemasov, A.I.; Nika, D.L.; Balandin, A.A. Phonons in Twisted Bilayer Graphene. Phys. Rev. B 2013, 88, 035428. [Google Scholar] [CrossRef]
- Melis, C.; Dettori, R.; Vandermeulen, S.; Colombo, L. Calculating thermal conductivity in a transient conduction regime: theory and implementation. Eur. Phys. J. B 2014, 87, 1–9. [Google Scholar] [CrossRef]
- Lampin, E.; Palla, P.L.; Francioso, P.A.; Cleri, F. Thermal conductivity from approach-to-equilibrium molecular dynamics. J. Appl. Phys. 2013, 114. [Google Scholar] [CrossRef]
- Cappai, A.; Melis, C.; Colombo, L.; Dettori, R. Molecular Dynamics Simulations of Thermal Transport in Solid State Systems. In Comprehensive Computational Chemistry; Elsevier, 2024; pp. 804–820. [Google Scholar] [CrossRef]
- Yang, G.; Li, L.; Lee, W.B.; Ng, M.C. Structure of graphene and its disorders: A review. Sci. Technol. Adv. Mater. 2018, 19, 613–648. [Google Scholar] [CrossRef]
- Walimbe, P.; Chaudhari, M. State-of-the-art advancements in studies and applications of graphene: A comprehensive review. Mater. Today Sustain. 2019, 6, 100026. [Google Scholar] [CrossRef]
- Chung, D.D.L. Review graphite. J. Mater. Sci. 2002, 37, 1475–1489. [Google Scholar] [CrossRef]
- Feuerbacher, M. Moiré, Euler, and self-similarity—the lattice parameters of twisted hexagonal crystals. arXiv preprint arXiv:2007.03542, arXiv:2007.03542 2020.
- LAMMPS. LAMMPS Molecular Dynamics Simulator, Thu 22th August 2024.
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef]
- LAMMPS. pair_style airebo command, Sat 3rd August 2024.
- Melis, C.; Dettori, R.; Vandermeulen, S.; Colombo, L. Calculating thermal conductivity in a transient conduction regime: theory and implementation. Eur. Phys. J. B 2014, 87, 1–9. [Google Scholar] [CrossRef]
- Chen, S.; Moore, A.L.; Cai, W.; Suk, J.W.; An, J.; Mishra, C.; Amos, C.; Magnuson, C.W.; Kang, J.; Shi, L.; et al. Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments. ACS Nano 2011, 5, 321–328. [Google Scholar] [CrossRef]
- Cai, W.; Moore, A.L.; Zhu, Y.; Li, X.; Chen, S.; Shi, L.; Ruoff, R.S. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 2010, 10, 1645–1651. [Google Scholar] [CrossRef]
- Chen, S.; Wu, Q.; Mishra, C.; Kang, J.; Zhang, H.; Cho, K.; Cai, W.; Balandin, A.A.; Ruoff, R.S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Barbarino, G.; Melis, C.; Colombo, L. Intrinsic thermal conductivity in monolayer graphene is ultimately upper limited: A direct estimation by atomistic simulations. Phys. Rev. B 2015, 91. [Google Scholar] [CrossRef]
- Han, Z.; Ruan, X. Thermal conductivity of monolayer graphene: Convergent and lower than diamond. Phys. Rev. B 2023, 108, L121412. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Liao, N.; Yang, P. Investigation on thermal conductivity of bilayer graphene nanoribbons. RSC Adv. 2014, 4, 54474–54479. [Google Scholar] [CrossRef]
- Rezania, H.; Yarmohammadi, M. Dynamical thermal conductivity of bilayer graphene in the presence of bias voltage. Phys. E: Low-Dimens. Syst. Nanostructures 2016, 75, 125–135. [Google Scholar] [CrossRef]
- Rozhkov, A.V.; Sboychakov, A.O.; Rakhmanov, A.L.; Nori, F. Electronic properties of graphene-based bilayer systems. Phys. Rep. 2016, 648, 1–104. [Google Scholar] [CrossRef]
- Cheng, Y.; Fan, Z.; Zhang, T.; Nomura, M.; Volz, S.; Zhu, G.; Li, B.; Xiong, S. Magic angle in thermal conductivity of twisted bilayer graphene. Mater. Today Phys. 2023, 35, 101093. [Google Scholar] [CrossRef]
- Si, C.; Wang, X.D.; Fan, Z.; Feng, Z.H.; Cao, B.Y. Impacts of potential models on calculating the thermal conductivity of graphene using non-equilibrium molecular dynamics simulations. Int. J. Heat Mass Transf. 2017, 107, 450–460. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Chen, H.; Xu, L. Comparative studies of thermal conductivity for bilayer graphene with different potential functions in molecular dynamic simulations. Results Phys. 2021, 22, 103894. [Google Scholar] [CrossRef]
- Diao, C.; Dong, Y.; Lin, J. Reactive force field simulation on thermal conductivities of carbon nanotubes and graphene. Int. J. Heat Mass Transf. 2017, 112, 903–912. [Google Scholar] [CrossRef]
- Barbalinardo, G.; Chen, Z.; Lundgren, N.W.; Donadio, D. Efficient anharmonic lattice dynamics calculations of thermal transport in crystalline and disordered solids. J. Appl. Phys. 2020, 128, 135104–12. [Google Scholar] [CrossRef]
- Barbalinardo, G.; Chen, Z.; Lundgren, N.W.; Donadio, D. kALDo: Advanced Thermal Property Predictions via Lattice Dynamics and Machine Learning for Nanoscale Materials. https://github.com/nanotheorygroup/kaldo. Accessed: 2025-03-11.
- Siddi, F.; Cappai, A.; Colombo, L.; Melis, C. An Ab Initio Investigation of Ultra-Low Thermal Conductivity in Organically Functionalized TaS2TaS2. Adv. Theory Simulations 2024, 7. [Google Scholar] [CrossRef]
- Lindsay, L.; Broido, D.A.; Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 2010, 82. [Google Scholar] [CrossRef]
- Melis, C.; Colombo, L. Lattice Thermal Conductivity of Si1-xGex Nanocomposites. Phys. Rev. Lett. 2014, 112. [Google Scholar] [CrossRef]
- Lee, J.K.; Kim, J.G.; Hembram, K.P.S.S.; Kim, Y.I.; Min, B.K.; Park, Y.; Lee, J.K.; Moon, D.J.; Lee, W.; Lee, S.G.; et al. The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
| 1 | The cutoff radius in LAMMPS AIREBO pair style [33] is defined as a fixed sigma value nm multiplied by a scale factor set to 3. |





| 0° | ° | ° | ° | ° | ° | ° | ° | ° | |
|---|---|---|---|---|---|---|---|---|---|
| N | 39688 | 30248 | 25352 | 23816 | 22328 | 20888 | 18152 | 14408 | 11096 |
| L (nm) | 29.7 | 26.9 | 24.0 | 23.2 | 22.5 | 21.8 | 20.3 | 18.1 | 15.9 |
| d (nm) | 17.5 | 15.5 | 17.2 | 13.4 | 13.0 | 12.6 | 11.7 | 10.4 | 9.2 |
| Monolayer | AA stack | AB stack |
|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
