Submitted:
10 April 2025
Posted:
11 April 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Maxwell Equation in Curved Spacetime
2.1. The Lagrangian Density
2.2. Apparent Sources
2.3. Rainich Conditions
3. A Nonlinear Equation
4. Gauge Fixing
5. Weak Field Solutions
6. Gravitoelectromagnetic Waves
6.1. Null Fields
6.2. Non-Null Fields
7. Discussion and Conclusions
Acknowledgments
Appendix A. Gauge Transformation
References
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations, 2 ed.Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2003. [Google Scholar]
- Rainich, G.Y. Electrodynamics in the general relativity theory. Transactions of the american Mathematical Society 1925, 27, 106–136. [Google Scholar] [CrossRef]
- Misner, C.W.; Wheeler, J.A. Classical physics as geometry. Annals of physics 1957, 2, 525–603. [Google Scholar] [CrossRef]
- Wien, W. Ueber die Möglichkeit einer elektromagnetischen Begründung der Mechanik. Annalen der Physik 1901, 310, 501–513. [Google Scholar] [CrossRef]
- López, Á.G. On an electrodynamic origin of quantum fluctuations. Nonlinear Dynamics 2020, 102, 621–634. [Google Scholar] [CrossRef]
- López, A.G. Stability analysis of the uniform motion of electrodynamic bodies. Physica Scripta 2020, 96, 015506. [Google Scholar] [CrossRef]
- López, Á.G. The Electrodynamic Origin of the Wave-Particle Duality; Springer, 2022; pp. 1043–1055. [Google Scholar]
- Bush, J.W.; Oza, A.U. Hydrodynamic quantum analogs. Reports on Progress in Physics 2020, 84, 017001. [Google Scholar] [CrossRef]
- Higgs, P.W. Broken symmetries and the masses of gauge bosons. Physical Review Letters 1964, 13, 508. [Google Scholar] [CrossRef]
- Anderson, P.W. Plasmons, gauge invariance, and mass. Physical Review 1963, 130, 439. [Google Scholar] [CrossRef]
- Belinfante, F.J. On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 1940, 7, 449–474. [Google Scholar] [CrossRef]
- Poincaré, H. Sur les résidus des intégrales doubles. Acta Mathematica 1887, 9, 321–380. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Quantised singularities in the electromagnetic field. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1931, 133, 60–72. [Google Scholar]
- Alqrayan, W.A.; Arbab, A.I. A connection between massive electrodynamics and the Einstein-Maxwell equations. Physica Scripta 2024, 99, 115526. [Google Scholar] [CrossRef]
- Faber, M. Particles as stable topological solitons. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing, 2012; Vol. 361, p. 012022. [Google Scholar]
- Hadley, M.J. Electrodynamics and time orientability. International Journal of Theoretical Physics 2017, 56, 2007–2018. [Google Scholar] [CrossRef]
- Santos, W.C.d. Introduction to Einstein-Maxwell equations and the Rainich conditions. arXiv preprint arXiv:1606.08527 2016.
- Bialynicki-Birula, I. Photon wave function. Progress in Optics 1996, 36, 245–294. [Google Scholar]
- Proca, A. Sur la théorie ondulatoire des électrons positifs et négatifs. Journal de Physique et le Radium 1936, 7, 347–353. [Google Scholar] [CrossRef]
- López, A.G. Contextuality and correlation loopholes are equivalent. Europhysics Letters 2023, 142, 20001. [Google Scholar] [CrossRef]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables. I. Phys. Rev. 1952, 85, 166–179. [Google Scholar] [CrossRef]
- Schrödinger, E. Quantisierung als Eigenwertproblem. Annalen der Physik 1926, 384, 361–376. [Google Scholar] [CrossRef]
- Penrose, R. Cycles of time: an extraordinary new view of the universe; Random House, 2013. [Google Scholar]
- Carroll, S.M. Spacetime and geometry; Cambridge University Press, 2019. [Google Scholar]
- Ranada, A.F.; Trueba, J. Electromagnetic knots. Physics Letters A 1995, 202, 337–342. [Google Scholar] [CrossRef]
- Casimir, H.B.G.; Polder, D. The Influence of Retardation on the London-van der Waals Forces. Phys. Rev. 1948, 73, 360–372. [Google Scholar] [CrossRef]
- Sakhno, D.; Koreshin, E.; Belov, P.A. Longitudinal electromagnetic waves with extremely short wavelength. Phys. Rev. B 2021, 104, L100304. [Google Scholar] [CrossRef]
- Newman, E.; Penrose, R. An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics 1962, 3, 566–578. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The mathematical theory of black holes; Vol. 69, Oxford University Press, 1998. [Google Scholar]
- Wheeler, J.A. Geons. Physical Review 1955, 97, 511. [Google Scholar] [CrossRef]
- Gullu, I.; Mazharimousavi, S.H. Double-logarithmic nonlinear electrodynamics. Physica Scripta 2021, 96, 045217. [Google Scholar] [CrossRef]
- Rohrlich, F. Classical charged particles; CRC Press, 2020. [Google Scholar]
- de Oliveira, O. The Implicit and Inverse Function Theorems: Easy Proofs. Real Analysis Exchange 2013, 39, 207–218. [Google Scholar] [CrossRef]
- Meredith, L. On the Cauchy-Kowalevski theorem for analytic nonlinear partial differential equations. 2018. [Google Scholar]
| 1 | The present identities are all written up to , but the order approximation is omitted for simplicity in the notation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
