Submitted:
02 April 2025
Posted:
02 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Design and Synthesis of PNA Sequences
2.2. Design and Synthesis of Peptide Building Blocks
2.3. Hydrogels Formulation
2.4. Rheology
2.5. Hydrogel Stability Studies
2.6. Swelling Kinetics
2.7. Multicomponent PNA-Hydrogels’ Secondary Structure Characterization
2.7.1. Circular Dichroism Spectroscopy (CD)
2.7.2. Fourier Transform Infrared Spectroscopy (FT-IR)
2.7.3. Peptides and PNAs 1H-NMR Spectroscopy
2.7.4. Fluorescence Spectroscopic Assay
2.7.5. Scanning Electron Microscopy (SEM)

2.8. Release and Permeation Studies of PNAs

3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. PNA and Peptides Synthesis, Purification, and Analysis
4.3. Hydrogels Formulation
4.4. Rheology
4.5. Hydrogel Stability Studies
4.6. Swelling Kinetics
4.7. Circular Dichroism (CD) Spectroscopy
4.8. Fourier Transform Infrared Spectroscopy (FT-IR)
4.9. Peptides and PNAs 1H-NMR Spectroscopy
4.10. Fluorescence Spectroscopic Assay
4.11. Scanning Electron Microscopy (SEM)
4.12. Release and Permeation Studies of PNAs
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Yan, L.; Wang, X.; Zhu, S.; Chen, C.; Gu, Z.; Zhao, Y. Progress, Challenges, and Future of Nanomedicine. Nano Today 2020, 35, 101008. [Google Scholar] [CrossRef]
- Mondal, S.; Das, S.; Nandi, A.K. A Review on Recent Advances in Polymer and Peptide Hydrogels. Soft Matter 2020, 16, 1404–1454. [Google Scholar] [CrossRef] [PubMed]
- Karchoubi, F.; Afshar Ghotli, R.; Pahlevani, H.; Baghban Salehi, M. New Insights into Nanocomposite Hydrogels; a Review on Recent Advances in Characteristics and Applications. Advanced Industrial and Engineering Polymer Research 2024, 7, 54–78. [Google Scholar] [CrossRef]
- Binaymotlagh, R.; Chronopoulou, L.; Haghighi, F.H.; Fratoddi, I.; Palocci, C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. Materials 2022, 15, 5871. [Google Scholar] [CrossRef]
- Das, S.; Das, D. Rational Design of Peptide-Based Smart Hydrogels for Therapeutic Applications. Front Chem 2021, 9. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.H.; Dezhbord, M.; Lee, E.-H.; Jeon, Y.; Jung, D.; Gu, S.H.; Yu, C.; Lee, S.H.; Kim, S.C.; et al. Cell-Permeable Peptide Nucleic Acid Antisense Oligonucleotide Platform Targeting Human Betacoronaviruses. Front Microbiol 2023, 14. [Google Scholar] [CrossRef]
- Diaferia, C.; Rosa, E.; Gallo, E.; Morelli, G.; Accardo, A. Differently N-Capped Analogues of Fmoc-FF. Chemistry – A European Journal 2023, 29. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, Q.; Zhang, Y.; Adler-Abramovich, L.; Fan, X.; Mei, D.; Gazit, E.; Tao, K. Fmoc-Diphenylalanine Gelating Nanoarchitectonics: A Simplistic Peptide Self-Assembly to Meet Complex Applications. J Colloid Interface Sci 2023, 636, 113–133. [Google Scholar] [CrossRef]
- Choe, R.; Il Yun, S. Fmoc-Diphenylalanine-Based Hydrogels as a Potential Carrier for Drug Delivery. e-Polymers 2020, 20, 458–468. [Google Scholar] [CrossRef]
- Giordano, S.; Gallo, E.; Diaferia, C.; Rosa, E.; Carrese, B.; Borbone, N.; Scognamiglio, P.L.; Franzese, M.; Oliviero, G.; Accardo, A. Multicomponent Peptide-Based Hydrogels Containing Chemical Functional Groups as Innovative Platforms for Biotechnological Applications. Gels 2023, 9, 903. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Giordano, S.; Rosa, E.; Carrese, B.; Piccialli, G.; Borbone, N.; Morelli, G.; Oliviero, G.; Accardo, A. Ultrashort Cationic Peptide Fmoc-FFK as Hydrogel Building Block for Potential Biomedical Applications. Gels 2023, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Uhlmann, E.; Peyman, A.; Breipohl, G.; Will, D.W. PNA: Synthetic Polyamide Nucleic Acids with Unusual Binding Properties. Angewandte Chemie International Edition 1998, 37, 2796–2823. [Google Scholar] [CrossRef]
- Falanga, A.P.; Cerullo, V.; Marzano, M.; Feola, S.; Oliviero, G.; Piccialli, G.; Borbone, N. Peptide Nucleic Acid-Functionalized Adenoviral Vectors Targeting G-Quadruplexes in the P1 Promoter of Bcl-2 Proto-Oncogene: A New Tool for Gene Modulation in Anticancer Therapy. Bioconjug Chem 2019, 30, 572–582. [Google Scholar] [CrossRef]
- Hanvey, J.C.; Peffer, N.J.; Bisi, J.E.; Thomson, S.A.; Cadilla, R.; Josey, J.A.; Ricca, D.J.; Hassman, C.F.; Bonham, M.A.; Au, K.G.; et al. Antisense and Antigene Properties of Peptide Nucleic Acids. Science (1979) 1992, 258, 1481–1485. [Google Scholar] [CrossRef]
- Terracciano, M.; Fontana, F.; Falanga, A.P.; D’Errico, S.; Torrieri, G.; Greco, F.; Tramontano, C.; Rea, I.; Piccialli, G.; De Stefano, L.; et al. Development of Surface Chemical Strategies for Synthesizing Redox-Responsive Diatomite Nanoparticles as a Green Platform for On-Demand Intracellular Release of an Antisense Peptide Nucleic Acid Anticancer Agent. Small 2022, 18. [Google Scholar] [CrossRef]
- MacLelland, V.; Kravitz, M.; Gupta, A. Therapeutic and Diagnostic Applications of Antisense Peptide Nucleic Acids. Mol Ther Nucleic Acids 2024, 35, 102086. [Google Scholar] [CrossRef]
- Falanga, A.P.; Greco, F.; Terracciano, M.; D’Errico, S.; Marzano, M.; Feola, S.; Sepe, V.; Fontana, F.; Piccialli, I.; Cerullo, V.; et al. Engineering an Oncolytic Adenoviral Platform for Precise Delivery of Antisense Peptide Nucleic Acid to Modulate PD-L1 Overexpression in Cancer Cells. Int J Pharm 2025, 668, 124941. [Google Scholar] [CrossRef]
- Zarrilli, F.; Amato, F.; Morgillo, C.M.; Pinto, B.; Santarpia, G.; Borbone, N.; D’Errico, S.; Catalanotti, B.; Piccialli, G.; Castaldo, G.; et al. Peptide Nucleic Acids as MiRNA Target Protectors for the Treatment of Cystic Fibrosis. Molecules 2017, 22, 1144. [Google Scholar] [CrossRef]
- Gaglione, M.; Milano, G.; Chambery, A.; Moggio, L.; Romanelli, A.; Messere, A. PNA-Based Artificial Nucleases as Antisense and Anti-MiRNA Oligonucleotide Agents. Mol Biosyst 2011, 7, 2490. [Google Scholar] [CrossRef]
- Moretta, R.; Terracciano, M.; Borbone, N.; Oliviero, G.; Schiattarella, C.; Piccialli, G.; Falanga, A.P.; Marzano, M.; Dardano, P.; De Stefano, L.; et al. PNA-Based Graphene Oxide/Porous Silicon Hybrid Biosensor: Towards a Label-Free Optical Assay for Brugada Syndrome. Nanomaterials 2020, 10, 2233. [Google Scholar] [CrossRef]
- Crisci, T.; Falanga, A.P.; Casalino, M.; Borbone, N.; Terracciano, M.; Chianese, G.; Gioffrè, M.; D’Errico, S.; Marzano, M.; Rea, I.; et al. Bioconjugation of a PNA Probe to Zinc Oxide Nanowires for Label-Free Sensing. Nanomaterials 2021, 11, 523. [Google Scholar] [CrossRef] [PubMed]
- Pooga, M.; Land, T.; Bartfai, T.; Langel, Ü. PNA Oligomers as Tools for Specific Modulation of Gene Expression. Biomol Eng 2001, 17, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Lächelt, U.; Wagner, E. Dynamic Carriers for Therapeutic RNA Delivery. Proceedings of the National Academy of Sciences 2024, 121. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bahal, R.; Gupta, M.; Glazer, P.M.; Saltzman, W.M. Nanotechnology for Delivery of Peptide Nucleic Acids (PNAs). Journal of Controlled Release 2016, 240, 302–311. [Google Scholar] [CrossRef]
- Ambasht, P.K. Use of Group-Specific Reagents in Active Site Functional Group Elucidation I: Cys, Ser, Tyr, and Trp Residues. In Frontiers in Protein Structure, Function, and Dynamics; Springer Singapore: Singapore, 2020; pp. 71–94. [Google Scholar]
- Choi, H.; Go, M.; Cha, Y.; Choi, Y.; Kwon, K.-Y.; Jung, J.H. A Facile Method to Fabricate Hydrogels from DMSO Polymer Gels via Solvent Exchange. New Journal of Chemistry 2017, 41, 4793–4796. [Google Scholar] [CrossRef]
- Tang, C.; Smith, A.M.; Collins, R.F.; Ulijn, R. V.; Saiani, A. Fmoc-Diphenylalanine Self-Assembly Mechanism Induces Apparent p K a Shifts. Langmuir 2009, 25, 9447–9453. [Google Scholar] [CrossRef]
- Katoueizadeh, E.; Rasouli, M.; Zebarjad, S.M. The Rheological Behavior of the Non-Newtonian Thixotropic Colloidal Silica Gels from Sodium Silicate. Mater Chem Phys 2021, 272, 124994. [Google Scholar] [CrossRef]
- Stojkov, G.; Niyazov, Z.; Picchioni, F.; Bose, R.K. Relationship between Structure and Rheology of Hydrogels for Various Applications. Gels 2021, 7, 255. [Google Scholar] [CrossRef]
- Adams, D.J.; Mullen, L.M.; Berta, M.; Chen, L.; Frith, W.J. Relationship between Molecular Structure, Gelation Behaviour and Gel Properties of Fmoc-Dipeptides. Soft Matter 2010, 6, 1971. [Google Scholar] [CrossRef]
- Orbach, R.; Mironi-Harpaz, I.; Adler-Abramovich, L.; Mossou, E.; Mitchell, E.P.; Forsyth, V.T.; Gazit, E.; Seliktar, D. The Rheological and Structural Properties of Fmoc-Peptide-Based Hydrogels: The Effect of Aromatic Molecular Architecture on Self-Assembly and Physical Characteristics. Langmuir 2012, 28, 2015–2022. [Google Scholar] [CrossRef]
- Chronopoulou, L.; Margheritelli, S.; Toumia, Y.; Paradossi, G.; Bordi, F.; Sennato, S.; Palocci, C. Biosynthesis and Characterization of Cross-Linked Fmoc Peptide-Based Hydrogels for Drug Delivery Applications. Gels 2015, 1, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.-H.; Woody, R.W.; Rohl, C.A.; Baldwin, R.L. Circular Dichroism Spectra of Short, Fixed-Nucleus Alanine Helices. Proceedings of the National Academy of Sciences 2002, 99, 15416–15421. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, J.K.; Roy, S.; Javid, N.; Duncan, K.; Aitken, L.; Ulijn, R. V. Pathway-Dependent Gold Nanoparticle Formation by Biocatalytic Self-Assembly. Nanoscale 2017, 9, 12330–12334. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, Q.; Zhang, Y.; Adler-Abramovich, L.; Fan, X.; Mei, D.; Gazit, E.; Tao, K. Fmoc-Diphenylalanine Gelating Nanoarchitectonics: A Simplistic Peptide Self-Assembly to Meet Complex Applications. J Colloid Interface Sci 2023, 636, 113–133. [Google Scholar] [CrossRef]
- Ryan, K.; Beirne, J.; Redmond, G.; Kilpatrick, J.I.; Guyonnet, J.; Buchete, N.-V.; Kholkin, A.L.; Rodriguez, B.J. Nanoscale Piezoelectric Properties of Self-Assembled Fmoc–FF Peptide Fibrous Networks. ACS Appl Mater Interfaces 2015, 7, 12702–12707. [Google Scholar] [CrossRef]
- Goormaghtigh, E.; Ruysschaert, J.-M.; Raussens, V. Evaluation of the Information Content in Infrared Spectra for Protein Secondary Structure Determination. Biophys J 2006, 90, 2946–2957. [Google Scholar] [CrossRef]
- Zandomeneghi, G.; Krebs, M.R.H.; McCammon, M.G.; Fändrich, M. FTIR Reveals Structural Differences between Native Β-sheet Proteins and Amyloid Fibrils. Protein Science 2004, 13, 3314–3321. [Google Scholar] [CrossRef]
- Arrondo, J.L.R.; Goñi, F.M. Structure and Dynamics of Membrane Proteins as Studied by Infrared Spectroscopy. Prog Biophys Mol Biol 1999, 72, 367–405. [Google Scholar] [CrossRef]
- Sardaru, M.-C.; Marangoci, N.-L.; Palumbo, R.; Roviello, G.N.; Rotaru, A. Nucleic Acid Probes in Bio-Imaging and Diagnostics: Recent Advances in ODN-Based Fluorescent and Surface-Enhanced Raman Scattering Nanoparticle and Nanostructured Systems. Molecules 2023, 28, 3561. [Google Scholar] [CrossRef]
- Lakshmanan, A.; Cheong, D.W.; Accardo, A.; Di Fabrizio, E.; Riekel, C.; Hauser, C.A.E. Aliphatic Peptides Show Similar Self-Assembly to Amyloid Core Sequences, Challenging the Importance of Aromatic Interactions in Amyloidosis. Proceedings of the National Academy of Sciences 2013, 110, 519–524. [Google Scholar] [CrossRef]
- McFetridge, M.L.; Kulkarni, K.; Hilsenstein, V.; Del Borgo, M.P.; Aguilar, M.-I.; Ricardo, S.D. A Comparison of Fixation Methods for SEM Analysis of Self-Assembling Peptide Hydrogel Nanoarchitecture. Nanoscale 2023, 15, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Coin, I.; Beyermann, M.; Bienert, M. Solid-Phase Peptide Synthesis: From Standard Procedures to the Synthesis of Difficult Sequences. Nat Protoc 2007, 2, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Rosa, E.; Gallo, E.; Sibillano, T.; Giannini, C.; Rizzuti, S.; Gianolio, E.; Scognamiglio, P.L.; Morelli, G.; Accardo, A.; Diaferia, C. Incorporation of PEG Diacrylates (PEGDA) Generates Hybrid Fmoc-FF Hydrogel Matrices. Gels 2022, 8, 831. [Google Scholar] [CrossRef] [PubMed]
- Sunde, M.; Serpell, L.C.; Bartlam, M.; Fraser, P.E.; Pepys, M.B.; Blake, C.C.F. Common Core Structure of Amyloid Fibrils by Synchrotron X-Ray Diffraction 1 1Edited by F. E. Cohen. J Mol Biol 1997, 273, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Diaferia, C.; Rosa, E.; Gallo, E.; Smaldone, G.; Stornaiuolo, M.; Morelli, G.; Accardo, A. Self-Supporting Hydrogels Based on Fmoc-Derivatized Cationic Hexapeptides for Potential Biomedical Applications. Biomedicines 2021, 9, 678. [Google Scholar] [CrossRef]
- Jorbágy, A.; Király, K. Chemical Characterization of Fluorescein Isothiocyanate-Protein Conjugates. Biochimica et Biophysica Acta (BBA) - General Subjects 1966, 124, 166–175. [Google Scholar] [CrossRef]







| Sample | Sequence (C→N) | Chemical formula | M.W. calc. (a.m.u.) | M.W. det. (a.m.u.) | Rt(min) |
| PNA-E | C49H65N17O20 | 1211.46 | |||
| PNA-E* | C82H98N20O31S | 1891.64 | |||
| PNA-C | C47H64N18O17S | ||||
| PNA-C* | C80H97N21O28S2 | 1865.63 |
|
System (HGs) |
Ratio with Fmoc-FF (w/w) |
Gelation Time (min) | Gelation Time of solely HGs (min) |
|---|---|---|---|
| Fmoc-FFK/Fmoc-FF + PNA-E [50µM] | 1/1 1/5 1/10 1/20 |
26 112 164 34 |
10 78 138 216 |
| Fmoc-FFC/Fmoc-FF + PNA-C [50µM] | 1/5 1/10 1/20 |
80 25 10 |
75 4 2 |
| Fmoc-FFK/Fmoc-FF + PNA-E | Fmoc-FFC/Fmoc-FF + PNA-C | ||||||
|---|---|---|---|---|---|---|---|
| Ratio with Fmoc-FF | G’ (Pa) | G’’ (Pa) | tan δ | Ratio with Fmoc-FF | G’ (Pa) | G’’ (Pa) | tan δ |
| 1/1 | 140 | 20 | 0.143 | ||||
| 1/5 | 19320 | 1770 | 0.0920 | 1/5 | 648 | 112 | 0.173 |
| 1/10 | 6243 | 444 | 0.0710 | 1/10 | 6941 | 1019 | 0.147 |
| 1/20 | 8711 | 486 | 0.0557 | 1/20 | 22471 | 2371 | 0.105 |
| Fmoc-FFK/Fmoc-FF | Fmoc-FFC/Fmoc-FF | ||||||
|---|---|---|---|---|---|---|---|
| Ratio with Fmoc-FF | W0 (g) |
Wt (g) |
ΔW (%) | Ratio with Fmoc-FF | W0 (g) |
Wt (g) |
ΔW (%) |
| 1/1 | 1.3438 | 1.3263 | 1 | ||||
| 1/5 | 1.3411 | 1.3200 | 2 | 1/5 | 1.3362 | 1.3229 | 1 |
| 1/10 | 1.3320 | 1.3290 | 0 | 1/10 | 1.3429 | 1.3298 | 1 |
| 1/20 | 1.3363 | 1.2979 | 3 | 1/20 | 1.3417 | 1.3393 | 0 |
| Fmoc-FFK/Fmoc-FF + PNA-E | Fmoc-FFC/Fmoc-FF + PNA-C | ||||||
|---|---|---|---|---|---|---|---|
| Ratio with Fmoc-FF | W0 (g) |
Wt (g) |
ΔW (%) | Ratio with Fmoc-FF | W0 (g) |
Wt (g) |
ΔW (%) |
| 1/1 | 1.3023 | 1.2849 | 1 | ||||
| 1/5 | 1.3280 | 1.3089 | 1 | 1/5 | 1.2802 | 1.2244 | 4 |
| 1/10 | 1.3266 | 1.3034 | 2 | 1/10 | 1.2927 | 1.2401 | 4 |
| 1/20 | 1.3306 | 1.2869 | 3 | 1/20 | 1.3015 | 1.2519 | 4 |
| Sample (Empty HGs) |
Ratio with Fmoc-FF | q (%) |
| Fmoc-FFK/Fmoc-FF | 1/1 | 36.1 |
| 1/5 | 36.8 | |
| 1/10 | 35.0 | |
| 1/20 | 34.8 | |
| Fmoc-FFC/Fmoc-FF | 1/5 | 38.7 |
| 1/10 | 37.2 | |
| 1/20 | 36.2 |
| Sample (Loaded HGs) |
Ratio with Fmoc-FF | q (%) |
| Fmoc-FFK/Fmoc-FF + PNA-E | 1/1 | 37.7 |
| 1/5 | 37.7 | |
| 1/10 | 37.3 | |
| 1/20 | 37.9 | |
| Fmoc-FFC/Fmoc-FF + PNA-C | 1/5 | 36.7 |
| 1/10 | 36.9 | |
| 1/20 | 37.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
