Submitted:
31 March 2025
Posted:
01 April 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The General Frame
3. Set Up of the Model
4. Results
4.1. The First Principle and the Entropy of Macro-Gas
4.2. Free Energy
4.3. Gibbs Potential
4.4. Stability Analysis
4.4.1. Canonical Ensemble
4.4.2. Grand canonical ensemble
5. Discussion
5.1. Basic Assumptions and Main Results
5.2. Number of Microstates
5.3. Caveats
6. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MC(s) | Molecular Cloud(s) |
| ISM | Interstellar Medium |
| 6D phase-space | six-dimensional phase-space |
| AGN | Active Galactic Nuclei |
Appendix A. Legendre Transformations for the Free Energy and Gibbs Potential
Appendix B. The Off-Equilibrium Form of the Gibbs Potential
References
- Ferriere, K. M. The interstellar environment of our galaxy. Reviews of Modern Physics 2001, 73, 1031–1066. [Google Scholar] [CrossRef]
- Elmegreen, B.; Scalo, J. Interstellar Turbulence I: Observations and Processes. Annual Review of Astronomy & Astrophysics 2004, 42, 211–273. [Google Scholar]
- Hennebelle, P.; Falgarone, E. Turbulent molecular clouds. The Astronomy & Astrophysics Review 2012, 20, id. 55. [Google Scholar]
- Klessen, R. S.; Glover, S.C.O. Physical Processes in the Interstellar Medium. In Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality, Saas-Fee Advanced Course; Springer-Verlag: Berlin/Heidelberg, Germany, 2016; pp. 85–249. ISBN 978-3-662-47889-9. [Google Scholar]
- Frisch, U.; Donnelly, R.J. Turbulence: The Legacy of A. N. Kolmogorov. Physics Today 1995, 49, p.82. [Google Scholar] [CrossRef]
- Kolmogorov, A. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds’ Numbers. Dokl. Akad. Nauk SSSR 1941, 30, 301–305. [Google Scholar]
- Galtier, S.; Banerjee, S. Exact Relation for Correlation Functions in Compressible Isothermal Turbulence. Physical Review Letters 2011, 107, id–134501. [Google Scholar] [CrossRef] [PubMed]
- Kritsuk, A.; Norman, M.; Padoan, P.; Wagner, Wagner. The Statistics of Supersonic Isothermal Turbulence. The Astrophysical Journal 2007, 665, 416–431. [Google Scholar]
- Aluie, H. Compressible Turbulence: The Cascade and its Locality. Physical Review Letters 2011, 106, id–174502. [Google Scholar] [CrossRef]
- Antonov, V. A. Most probable phase distribution in spherical star systems and conditions for its existence. Vest. Leningr. Gos. Univ. 1962, 7, p.135. [Google Scholar] [CrossRef]
- Katz, J. On the number of unstable modes of an equilibrium. Monthly Notices of the Royal Astronomical Society 1978, 183, 765–770. [Google Scholar] [CrossRef]
- Lynden-Bell, D.; Wood, R. The gravo-thermal catastrophe in isothermal spheres and the onset of red-giant structure for stellar systems. Monthly Notices of the Royal Astronomical Society 1968, 138, 495–525. [Google Scholar] [CrossRef]
- Padmanabhan, T. Antonov Instability and Gravothermal Catastrophe–Revisited. Astrophysical Journal Supplement 1989, 71, p.651. [Google Scholar] [CrossRef]
- Padmanabhan, T. Statistical mechanics of gravitating systems. Physics Reports 1990, 188, 285–362. [Google Scholar] [CrossRef]
- Chavanis, P.-H. Gravitational instability of finite isothermal spheres. Astronomy & Astrophysics 2002, 381, 340–356. [Google Scholar]
- Chavanis, P.-H. Gravitational instability of isothermal and polytropic spheres. Astronomy & Astrophysics 2003, 401, 15–42. [Google Scholar]
- Chavanis, P.-H. Dynamical stability of collisionless stellar systems and barotropic stars: The nonlinear Antonov first law. Astronomy & Astrophysics 2006, 451, 109–123. [Google Scholar]
- de Vega, H. J.; Sanchez, N.; Combes, F. Self-gravity as an explanation of the fractal structure of the interstellar medium. Nature 1996, 383, 56–58. [Google Scholar] [CrossRef]
- de Vega, H. J.; Sanchez, N.; Combes, F. Fractal dimensions and scaling laws in the interstellar medium: A new field theory approach. Physical Review D 1996, 54, 6008–6020. [Google Scholar] [CrossRef] [PubMed]
- de Vega, H. J.; Sanchez, N. The statistical mechanics of the self-gravitating gas: equation of state and fractal dimension. Physics Letters B 2000, 490, 180–186. [Google Scholar] [CrossRef]
- Sormani, M. C.; Bertin, G. Gravothermal catastrophe: The dynamical stability of a fluid model. Astronomy & Astrophysics 2013, 552, id–A37. [Google Scholar]
- Vázquez-Semadeni, E.; Palau, A., Ballesteros-Paredes. Global hierarchical collapse in molecular clouds. Towards a comprehensive scenario. Monthly Notices of the Royal Astronomical Society 2019, 490, 3061–3097. [Google Scholar] [CrossRef]
- Keto, E.; Field, G.B.; Blackman, E.G. A turbulent-entropic instability and the fragmentation of star-forming clouds. Monthly Notices of the Royal Astronomical Society 2020, 492, 5870–5877. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic dynamics. Galactic Dynamics (Princeton Series in Astrophysics); Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Bonnor, W. B. Boyle’s Law and gravitational instability. Monthly Notices of the Royal Astronomical Society 1956, 116, 351–359. [Google Scholar] [CrossRef]
- Ebert, R. Zur Instabilität kugelsymmetrischer Gasverteilungen. Mit 2 Textabbildungen. Zeitschrift für Astrophysik 1957, 42, 263. [Google Scholar]
- Yabushita, S. Jeans’s type gravitational instability of finite isothermal gas spheres. Monthly Notices of the Royal Astronomical Society 1968, 140, 109–120. [Google Scholar] [CrossRef]
- Lombardi, M.; Bertin, G. Boyle’s law and gravitational instability. Astronomy & Astrophysics 2001, 375, 1091–1099. [Google Scholar]
- Federrath, C.; Roman-Duval, J.; Klessen, R.; Schmidt, W.; Mac Low, M.-M. Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing. Astronomy & Astrophysics 2010, 512, id 81, 28p. [Google Scholar]
- Larson, R. Turbulence and star formation in molecular clouds. Monthly Notices of the Royal Astronomical Society 1981, 194, 809–826. [Google Scholar] [CrossRef]
- Padoan, P.; Juvela, M.; Kritsuk, A.; Norman, M. The Power Spectrum of Supersonic Turbulence in Perseus. The Astrophysical Journal 2006, 653, L125–L128. [Google Scholar] [CrossRef]
- Shapiro, S. L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects; A Wiley-Interscience Publication; Wiley: New York, NY, USA, 1983; pp. 32–63. [Google Scholar]
- Reif, F. Fundamentals of Statistical and Thermal Physics; Published by Waveland Press, Inc.: Nong Grove, IL USA, 1965; pp. 288–319. ISBN 978-1-57766-612-7. [Google Scholar]
- Donkov, S.; Stefanov, I.Z.; Veltchev, T.V. Thermodynamics of fluid elements in the context of saturated isothermal turbulence in molecular clouds. Bulgarian Astronomical Journal 2023, 38, 91–97. [Google Scholar]
- Ballesteros-Paredes, J.; Hartmann, L.W.; Vázquez-Semadeni, E.; Heitsch, F.; Zamora-Avilés, M.A. Gravity or turbulence? Velocity dispersion-size relation. Monthly Notices of the Royal Astronomical Society 2011, 411, 65–70. [Google Scholar] [CrossRef]
- Ballesteros-Paredes, J.; Vázquez-Semadeni, E.; Gazol, A.; Hartmann, L.W.; Heitsch, F.; Colin, P. Gravity or turbulence? - II. Evolving column density probability distribution functions in molecular clouds. Monthly Notices of the Royal Astronomical Society 2011, 416, 1436–1442. [Google Scholar] [CrossRef]
- Burkert, A. A bathtub model for the star-forming interstellar medium. Memorie della Societa Astronomica Italiana 2017, 88, 533–537. [Google Scholar]
- Schneider, N.; Bontemps, S.; Girichidis, P.; Rayner, T.; Motte, F.; et al. Detection of two power-law tails in the probability distribution functions of massive GMCs. Monthly Notices of the Royal Astronomical Society 2015, 453, L41–L45. [Google Scholar] [CrossRef]
- Veltchev, T.V.; Ossenkopf-Okada, V.; Stanchev, O.; Schneider, N.; Donkov, S.; Klessen, R.S. Spatially associated clump populations in Rosette from CO and dust maps. Monthly Notices of the Royal Astronomical Society 2018, 475, 2215–2235. [Google Scholar] [CrossRef]
- Collins, D.C.; Kritsuk, A.; Padoan, P.; Li, H.; Xu, H.; Ustyugov, S.; Norman, M. The Two States of Star-forming Clouds. The Astrophysical Journal 2012, 750, id. 13, 18p. [Google Scholar] [CrossRef]
- Girichidis, P.; Konstandin, L.; Whitworth, A.; Klessen, R. On the Evolution of the Density Probability Density Function in Strongly Self-gravitating Systems. The Astrophysical Journal 2014, 781, id. 91, 12p. [Google Scholar] [CrossRef]
- Kritsuk, A.; Norman, M.; Wagner, R. On the Density Distribution in Star-forming Interstellar Clouds. The Astrophysical Journal 2011, 727, id. L20, 5p. [Google Scholar]
| 1 | To avoid the so called "Jeans swindle": the assumption for infinite homogeneous medium is actually not really consistent, because the Poisson equation cannot be solved unless the medium density is zero. |
| 2 | Hereafter we will omit this term, because we suppose and regard fluid elements as a simple particles. |
| 3 | The thermodynamic limit hypothesis presumes that if the volume of the system V and the number of particles N in it tend to infinity simultaneously, then the number density keeps a constant value. |
| 4 | For the obtaining the differential forms of free energy and Gibbs potential see the calculations in Appendix A
|
| 5 | The detailed derivation of the off-equilibrium form for the Gibbs potential is performed in Appendix B. The derivation for the free energy is not made, because the calculations in the case of canonical ensemble are (a subcase and) simpler than that for the grand canonical ensemble. |
| 6 | See the Appendix B
|
| 7 | Note that the number density of molecular gas is proportional to the number density of macro-gas through a constant . |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
