Submitted:
24 March 2025
Posted:
26 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Current Trends in Personalized Medicine
2.1. Genomics and Biomarkers
2.2. Treatment Personalization
2.2.1. AI-Based Imaging
2.2.2. Hepatobiliary and Pancreatic (HBP) Imaging
2.2.3. Gastric Cancer
2.2.4. Colorectal Cancer (CRC)
2.3. AI-Based Natural Language Processing (NLP) for Clinical Record Analysis
2.3.1. HBP Cancer
2.3.2. Gastric Cancer
2.3.3. CRC
3. Role of Personalized Medicine in Gastrointestinal Surgical Oncology
3.1. Genomic Profiling and Biomarker-Driven Surgery
3.2. Individualized Surgical Strategies in Gastrointestinal Cancers
3.2.1. HBP Surgery
3.2.2. Gastric Cancer
3.2.3. CRC
3.3. Functional and Physiological Considerations
3.3.1. Nutritional Status
3.3.2. Frailty and Comorbidity Assessment:
3.3.3. Neoadjuvant Therapy Selection
3.4. Integration of Advanced Imaging and Real-Time Decision Support
3.4.1. HBP Surgery
3.4.2. Gastric Cancer
3.4.3. CRC
3.5. Future Perspectives
3.5.1. Advances Toward Truly Personalized Care
3.5.2. Data Integration and Quality
3.5.3. Ethical and Privacy Concerns in Data Usage
3.5.4. Clinical Validation and Trust
3.5.5. Multidisciplinary Collaboration and Human Expertise
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial intelligence |
| NGS | Next-generation sequencing |
| ML | Machine learning |
| CT | Computed tomography |
| MRI | Magnetic resonance imaging |
| CNN | Convolutional neural network |
| HBP | Hepatobiliary and pancreatic |
| DSC | Dice similarity coefficient |
| 3D | Three-dimensional |
| IRCADb-1 | Image Reconstruction for Comparison of Algorithm Database-1 |
| AUC | Area under the curve |
| HCC | Hepatocellular carcinoma |
| MRCP | Magnetic resonance cholangiopancreatography |
| CCA | Cholangiocarcinoma |
| CECT | Contrast-enhanced computed tomography |
| GBC | Gallbladder cancer |
| PDAC | Pancreatic ductal adenocarcinoma |
| CRT | Chemoradiotherapy |
| PET-CT | Positron emission tomography-computed tomography |
| MDCT | Multidetector computed tomography |
| NAC | Neoadjuvant chemotherapy |
| pCR | Pathological complete response |
| NLP | Natural language processing |
| EHR | Electronic health record |
| MSI | Microsatellite instability |
| CI | Confidence interval |
| HER2 | Human epidermal growth factor receptor 2 |
| FLR | Future liver remnant |
| FHIR | Fast Healthcare Interoperability Resources |
References
- Visvikis-Siest, S.; Theodoridou, D.; Kontoe, M.S.; Kumar, S.; Marschler, M. Milestones in Personalized Medicine: From the Ancient Time to Nowadays-the Provocation of COVID-19. Front Genet 2020, 11, 569175.
- Oñate-Ocaña, L.F.; Aiello-Crocifoglio, V.; Mondragón-Sánchez, R.; Ruiz-Molina, J.M. Survival benefit of D2 lympadenectomy in patients with gastric adenocarcinoma. Ann Surg Oncol 2000, 7, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.P. Surgical results in gastric cancer. Semin Surg Oncol 1999, 17, 132–138. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Takeuchi, H.; Takagi, Y.; Natsugoe, S.; Terashima, M.; Murakami, N.; Fujimura, T.; Tsujimoto, H.; Hayashi, H.; Yoshimizu, N.; et al. Sentinel node mapping for gastric cancer: a prospective multicenter trial in Japan. J Clin Oncol 2013, 31, 3704–3710. [Google Scholar] [CrossRef]
- Nagaraju, G.P.; Sandhya, T.; Srilatha, M.; Ganji, S.P.; Saddala, M.S.; El-Rayes, B.F. Artificial intelligence in gastrointestinal cancers: Diagnostic, prognostic, and surgical strategies. Cancer Lett 2025, 612, 217461. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Rosenthal, E.L.; Warram, J.M.; Bland, K.I.; Zinn, K.R. The status of contemporary image-guided modalities in oncologic surgery. Ann Surg 2015, 261, 46–55. [Google Scholar] [CrossRef]
- Wang, P.; Xiao, X.; Glissen Brown, J.R.; Berzin, T.M.; Tu, M.; Xiong, F.; Hu, X.; Liu, P.; Song, Y.; Zhang, D.; et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng 2018, 2, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med Image Anal 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Khranovska, N.; Gorbach, O.; Skachkova, O.; Klimnyuk, G. Application of Next-Generation Sequencing to Realize Principles of Precision Therapy in Management of Cancer Patients. Exp Oncol 2025, 46, 295–304. [Google Scholar] [CrossRef]
- Dongare, D.B.; Nishad, S.S.; Mastoli, S.Y.; Saraf, S.A.; Srivastava, N.; Dey, A. High-throughput sequencing: a breakthrough in molecular diagnosis for precision medicine. Funct Integr Genomics 2025, 25, 22. [Google Scholar] [CrossRef] [PubMed]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel) 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Casolino, R.; Beer, P.A.; Chakravarty, D.; Davis, M.B.; Malapelle, U.; Mazzarella, L.; Normanno, N.; Pauli, C.; Subbiah, V.; Turnbull, C.; et al. Interpreting and integrating genomic tests results in clinical cancer care: Overview and practical guidance. CA Cancer J Clin 2024, 74, 264–285. [Google Scholar] [CrossRef] [PubMed]
- Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol 2017, 18, 83. [Google Scholar] [CrossRef]
- Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015, 13, 8–17. [Google Scholar] [CrossRef]
- Pantel, K.; Alix-Panabières, C. Liquid biopsy and minimal residual disease - latest advances and implications for cure. Nat Rev Clin Oncol 2019, 16, 409–424. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future - Big Data, Machine Learning, and Clinical Medicine. N Engl J Med 2016, 375, 1216–1219. [Google Scholar] [CrossRef]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann Surg 2018, 268, 70–76. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Yasaka, K.; Akai, H.; Abe, O.; Kiryu, S. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study. Radiology 2018, 286, 887–896. [Google Scholar] [CrossRef]
- Berbís, M.A.; Paulano Godino, F.; Royuela Del Val, J.; Alcalá Mata, L.; Luna, A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J Gastroenterol 2023, 29, 1427–1445. [Google Scholar] [CrossRef] [PubMed]
- Hamm, C.A.; Wang, C.J.; Savic, L.J.; Ferrante, M.; Schobert, I.; Schlachter, T.; Lin, M.; Duncan, J.S.; Weinreb, J.C.; Chapiro, J.; et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol 2019, 29, 3338–3347. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.; Bukht, T.F.N.; Imran, A.; Tariq, J.; Tu, S.; Alzahrani, A. A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet. Bioengineering (Basel) 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wu, F.; Hu, P.; Peng, Z.; Kong, D. Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int J Comput Assist Radiol Surg 2017, 12, 171–182. [Google Scholar] [CrossRef]
- Eugene Vorontsov, A.T. , Chris Pal, Samuel Kadoury. Liver lesion segmentation informed by joint liver segmentation. IEEE Transactions on Medical Imaging 2019, 38, 2198–2210. [Google Scholar] [CrossRef]
- Kim, J.; Nickel, M.D.; Knoll, F. Deep Learning-Based Accelerated MR Cholangiopancreatography Without Fully-Sampled Data. NMR Biomed 2025, 38, e70002. [Google Scholar] [CrossRef]
- Haghbin, H.; Aziz, M. Artificial intelligence and cholangiocarcinoma: Updates and prospects. World J Clin Oncol 2022, 13, 125–134. [Google Scholar] [CrossRef]
- Yin, Y.; Yakar, D.; Slangen, J.J.G.; Hoogwater, F.J.H.; Kwee, T.C.; de Haas, R.J. The Value of Deep Learning in Gallbladder Lesion Characterization. Diagnostics (Basel) 2023, 13. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, X.; Liang, M.; Li, D.; Ma, P.; Wang, S.; Wu, Z.; Zhao, X. Prediction for early recurrence of intrahepatic mass-forming cholangiocarcinoma: quantitative magnetic resonance imaging combined with prognostic immunohistochemical markers. Cancer Imaging 2019, 19, 49. [Google Scholar] [CrossRef]
- Jolissaint, J.S.; Wang, T.; Soares, K.C.; Chou, J.F.; Gönen, M.; Pak, L.M.; Boerner, T.; Do, R.K.G.; Balachandran, V.P.; D'Angelica, M.I.; et al. Machine learning radiomics can predict early liver recurrence after resection of intrahepatic cholangiocarcinoma. HPB (Oxford) 2022, 24, 1341–1350. [Google Scholar] [CrossRef]
- Viganò, L.; Zanuso, V.; Fiz, F.; Cerri, L.; Laino, M.E.; Ammirabile, A.; Ragaini, E.M.; Viganò, S.; Terracciano, L.M.; Francone, M.; et al. CT-based radiogenomics of intrahepatic cholangiocarcinoma. Dig Liver Dis 2025, 57, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Patra, A.; Khasawneh, H.; Korfiatis, P.; Rajamohan, N.; Suman, G.; Majumder, S.; Panda, A.; Johnson, M.P.; Larson, N.B.; et al. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Gastroenterology 2022, 163, 1435–1446. [Google Scholar] [CrossRef]
- Chu, L.C.; Park, S.; Kawamoto, S.; Fouladi, D.F.; Shayesteh, S.; Zinreich, E.S.; Graves, J.S.; Horton, K.M.; Hruban, R.H.; Yuille, A.L.; et al. Utility of CT Radiomics Features in Differentiation of Pancreatic Ductal Adenocarcinoma From Normal Pancreatic Tissue. AJR Am J Roentgenol 2019, 213, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yao, Q.; Xiao, J.; Li, M.; Yang, J.; Hou, W.; Du, M.; Chen, K.; Qu, Y.; Li, L.; et al. Contrast-enhanced CT radiomics for predicting lymph node metastasis in pancreatic ductal adenocarcinoma: a pilot study. Cancer Imaging 2020, 20, 12. [Google Scholar] [CrossRef]
- Gu, Q.; Sun, H.; Liu, P.; Hu, X.; Yang, J.; Chen, Y.; Xing, Y. Multiscale deep learning radiomics for predicting recurrence-free survival in pancreatic cancer: A multicenter study. Radiother Oncol 2025, 205, 110770. [Google Scholar] [CrossRef] [PubMed]
- Bereska, J.I.; Janssen, B.V.; Nio, C.Y.; Kop, M.P.M.; Kazemier, G.; Busch, O.R.; Struik, F.; Marquering, H.A.; Stoker, J.; Besselink, M.G.; et al. Artificial intelligence for assessment of vascular involvement and tumor resectability on CT in patients with pancreatic cancer. Eur Radiol Exp 2024, 8, 18. [Google Scholar] [CrossRef]
- Christiaan Viviers, M.R., Amaan Valiuddin, Terese Hellström, Nick Tasios, John van der Ven, Igor Jacobs, Lotte Ewals, Joost Nederend, Peter de With, Misha Luyer, Fons van der Sommen. Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical Resectability Prediction of Pancreatic Ductal Adenocarcinoma. Electrical Engineering and Systems Science 2023, arXiv:2310.00639v1, 1-11.
- Nasief, H.; Zheng, C.; Schott, D.; Hall, W.; Tsai, S.; Erickson, B.; Allen Li, X. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. NPJ Precis Oncol 2019, 3, 25. [Google Scholar] [CrossRef]
- Noda, Y.; Goshima, S.; Miyoshi, T.; Kawada, H.; Kawai, N.; Tanahashi, Y.; Matsuo, M. Assessing Chemotherapeutic Response in Pancreatic Ductal Adenocarcinoma: Histogram Analysis of Iodine Concentration and CT Number in Single-Source Dual-Energy CT. AJR Am J Roentgenol 2018, 211, 1221–1226. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, F.; Wang, L.; Li, E.; Xu, Z.; Wels, M.; Yao, W.; Zhang, H. Evaluation of dual-energy CT derived radiomics signatures in predicting outcomes in patients with advanced gastric cancer after neoadjuvant chemotherapy. Eur J Surg Oncol 2022, 48, 339–347. [Google Scholar] [CrossRef]
- Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.; Matsuo, K.; Fujisaki, J.; et al. Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 2018, 21, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, W.; Yu, Y.; Liu, J.J.; Xue, H.D.; Qi, Y.F.; Lei, J.; Yu, J.C.; Jin, Z.Y. CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur Radiol 2020, 30, 976–986. [Google Scholar] [CrossRef]
- Matsuki, M.; Kani, H.; Tatsugami, F.; Yoshikawa, S.; Narabayashi, I.; Lee, S.W.; Shinohara, H.; Nomura, E.; Tanigawa, N. Preoperative assessment of vascular anatomy around the stomach by 3D imaging using MDCT before laparoscopy-assisted gastrectomy. AJR Am J Roentgenol 2004, 183, 145–151. [Google Scholar] [CrossRef]
- Adili, D.; Mohetaer, A.; Zhang, W. Diagnostic accuracy of radiomics-based machine learning for neoadjuvant chemotherapy response and survival prediction in gastric cancer patients: A systematic review and meta-analysis. Eur J Radiol 2024, 173, 111249. [Google Scholar] [CrossRef]
- Huang, L.; Feng, B.; Yang, Z.; Feng, S.T.; Liu, Y.; Xue, H.; Shi, J.; Chen, Q.; Zhou, T.; Chen, X.; et al. A Transfer Learning Radiomics Nomogram to Predict the Postoperative Recurrence of Advanced Gastric Cancer. J Gastroenterol Hepatol 2024. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat Rev Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Yamada, M.; Saito, Y.; Imaoka, H.; Saiko, M.; Yamada, S.; Kondo, H.; Takamaru, H.; Sakamoto, T.; Sese, J.; Kuchiba, A.; et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci Rep 2019, 9, 14465. [Google Scholar] [CrossRef]
- He, J.; Wang, S.X.; Liu, P. Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: a systematic review and meta-analysis. Br J Radiol 2024, 97, 1243–1254. [Google Scholar] [CrossRef]
- Jia, L.L.; Zheng, Q.Y.; Tian, J.H.; He, D.L.; Zhao, J.X.; Zhao, L.P.; Huang, G. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Front Oncol 2022, 12, 1026216. [Google Scholar] [CrossRef]
- Rajkomar, A.; Oren, E.; Chen, K.; Dai, A.M.; Hajaj, N.; Hardt, M.; Liu, P.J.; Liu, X.; Marcus, J.; Sun, M.; et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med 2018, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Shool, S.; Adimi, S.; Saboori Amleshi, R.; Bitaraf, E.; Golpira, R.; Tara, M. A systematic review of large language model (LLM) evaluations in clinical medicine. BMC Med Inform Decis Mak 2025, 25, 117. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Ban, H.; Li, C.; Chen, S. Advanced NLP-Driven Predictive Modeling for Tailored Treatment Strategies in Gastrointestinal Cancer. SLAS Technol 2025, 100264. [Google Scholar] [CrossRef]
- Stammers, M.; Ramgopal, B.; Owusu Nimako, A.; Vyas, A.; Nouraei, R.; Metcalf, C.; Batchelor, J.; Shepherd, J.; Gwiggner, M. A foundation systematic review of natural language processing applied to gastroenterology & hepatology. BMC Gastroenterol 2025, 25, 58. [Google Scholar]
- Wang, L.; Fu, S.; Wen, A.; Ruan, X.; He, H.; Liu, S.; Moon, S.; Mai, M.; Riaz, I.B.; Wang, N.; et al. Assessment of Electronic Health Record for Cancer Research and Patient Care Through a Scoping Review of Cancer Natural Language Processing. JCO Clin Cancer Inform 2022, 6, e2200006. [Google Scholar] [CrossRef] [PubMed]
- Pai, R.K.; Hartman, D.; Schaeffer, D.F.; Rosty, C.; Shivji, S.; Kirsch, R.; Pai, R.K. Development and initial validation of a deep learning algorithm to quantify histological features in colorectal carcinoma including tumour budding/poorly differentiated clusters. Histopathology 2021, 79, 391–405. [Google Scholar] [CrossRef]
- Bektaş, M.; Tuynman, J.B.; Costa Pereira, J.; Burchell, G.L.; van der Peet, D.L. Machine Learning Algorithms for Predicting Surgical Outcomes after Colorectal Surgery: A Systematic Review. World J Surg 2022, 46, 3100–3110. [Google Scholar] [CrossRef]
- Kather, J.N.; Krisam, J.; Charoentong, P.; Luedde, T.; Herpel, E.; Weis, C.A.; Gaiser, T.; Marx, A.; Valous, N.A.; Ferber, D.; et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Med 2019, 16, e1002730. [Google Scholar] [CrossRef]
- Abbaspour, E.; Karimzadhagh, S.; Monsef, A.; Joukar, F.; Mansour-Ghanaei, F.; Hassanipour, S. Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis. Int J Surg 2024, 110, 3795–3813. [Google Scholar] [CrossRef]
- Nakanishi, R.; Morooka, K.; Omori, K.; Toyota, S.; Tanaka, Y.; Hasuda, H.; Koga, N.; Nonaka, K.; Hu, Q.; Nakaji, Y.; et al. Artificial Intelligence-Based Prediction of Recurrence after Curative Resection for Colorectal Cancer from Digital Pathological Images. Ann Surg Oncol 2023, 30, 3506–3514. [Google Scholar] [CrossRef]
- Lucas, K.; Melling, N.; Giannou, A.D.; Reeh, M.; Mann, O.; Hackert, T.; Izbicki, J.R.; Perez, D.; Grass, J.K. Lymphatic Mapping in Colon Cancer Depending on Injection Time and Tracing Agent: A Systematic Review and Meta-Analysis of Prospective Designed Studies. Cancers (Basel) 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef]
- Ordovas, J.M.; Ferguson, L.R.; Tai, E.S.; Mathers, J.C. Personalised nutrition and health. BMJ 2018, 361, bmj–k2173. [Google Scholar] [CrossRef] [PubMed]
- Disalvo, D.; Garcia, M.V.; Soo, W.K.; Phillips, J.; Lane, H.; Treleaven, E.; To, T.; Power, J.; Amgarth-Duff, I.; Agar, M. The effect of comprehensive geriatric assessment on treatment decisions, supportive care received, and postoperative outcomes in older adults with cancer undergoing surgery: A systematic review. J Geriatr Oncol 2025, 16, 102197. [Google Scholar] [CrossRef]
- Montroni, I.; Rostoft, S.; Spinelli, A.; Van Leeuwen, B.L.; Ercolani, G.; Saur, N.M.; Jaklitsch, M.T.; Somasundar, P.S.; de Liguori Carino, N.; Ghignone, F.; et al. GOSAFE - Geriatric Oncology Surgical Assessment and Functional rEcovery after Surgery: early analysis on 977 patients. J Geriatr Oncol 2020, 11, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Takamoto, T.; Ban, D.; Nara, S.; Mizui, T.; Nagashima, D.; Esaki, M.; Shimada, K. Automated Three-Dimensional Liver Reconstruction with Artificial Intelligence for Virtual Hepatectomy. J Gastrointest Surg 2022, 26, 2119–2127. [Google Scholar] [CrossRef]
- Hameed, B.S.; Krishnan, U.M. Artificial Intelligence-Driven Diagnosis of Pancreatic Cancer. Cancers (Basel) 2022, 14. [Google Scholar] [CrossRef]
- Elhaddad, M.; Hamam, S. AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. Cureus 2024, 16, e57728. [Google Scholar] [CrossRef]
- Ayaz, M.; Pasha, M.F.; Alzahrani, M.Y.; Budiarto, R.; Stiawan, D. The Fast Health Interoperability Resources (FHIR) Standard: Systematic Literature Review of Implementations, Applications, Challenges and Opportunities. JMIR Med Inform 2021, 9, e21929. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
