Submitted:
16 March 2025
Posted:
17 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.4. Measurement equipment and data acquisition
2.5. Variables analyzed
2.6. Statistical analysis
3. Results
4. Discussion
5. Practical Implications
6. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phillips, S.M. Short-term training: when do repeated bouts of resistance exercise become training? Canadian Journal of Applied Physiology 2000, 25, 185–193. [Google Scholar]
- Schoenfeld, B.J. The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef]
- Collins, B.C.; Laakkonen, E.K.; Lowe, D.A. The impact of resistance training on the musculoskeletal system in aging women: a review. Current Osteoporosis Reports 2018, 16, 38–47. [Google Scholar]
- Folland, J.P.; Williams, A.G. Morphological and neurological contributions to increased strength. Sports Medicine 2007, 37, 145–168. [Google Scholar] [PubMed]
- Hansen, M.; Jensen, B.; Sjodin, A. Insulin sensitivity during menstrual cycle. Diabetes Care 2003, 26, 2777–2782. [Google Scholar]
- Oxfeldt, M.; Dalgaard, L.B.; Jørgensen, A.A.; Hansen, M. Hormonal contraceptive use and muscle adaptations to resistance training: a randomized controlled trial of well-trained women. Journal of Strength and Conditioning Research 2020, 34, 977–986. [Google Scholar]
- Phillips, S.K.; Sanderson, A.G.; Birch, K.; A Bruce, S.; Woledge, R.C. Changes in maximal voluntary force of human adductor pollicis muscle during the menstrual cycle. J. Physiol. 1996, 496, 551–557. [Google Scholar] [CrossRef]
- Bambaeichi, E.; Reilly, T.; Cable, N.T.; Giacomoni, M. Variability in exercise performance during the menstrual cycle: a series of studies. European Journal of Applied Physiology 2004, 93, 53–60. [Google Scholar]
- Elliott, K.J.; Cable, N.T.; Reilly, T.; Diver, M.J. Effect of menstrual cycle phase on the concentration of serum amino acids and urinary 3-methylhistidine following prolonged exercise. Experimental Physiology 2005, 90, 351–356. [Google Scholar]
- Knuttgen, H.G.; Kraemer, W.J. Terminology and measurement in exercise performance. Journal of Applied Sport Science Research 1987, 1, 1–10. [Google Scholar]
- Dohoney, P.; Chromiak, J.A.; Lemire, D.; Abadie, B.R.; Kovacs, C. Validation of an air displacement plethysmography system for measuring human body composition. Medicine and Science in Sports and Exercise 2002, 34, 869–873. [Google Scholar]
- Jovanović, M.; Flanagan, E.P. Researched applications of velocity based strength training. Journal of Australian Strength and Conditioning 2014, 22, 58–69. [Google Scholar]
- Haff, G.G.; Nimphius, S. Training principles for power. Strength and Conditioning Journal 2012, 34, 2–12. [Google Scholar] [CrossRef]
- Miller, A.E.; MacDougall, J.D.; Tarnopolsky, M.A.; Sale, D.G. Gender differences in strength and muscle fiber characteristics. European Journal of Applied Physiology and Occupational Physiology 1993, 66, 254–262. [Google Scholar] [CrossRef]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: part 1–biological basis of maximal power production. Sports Medicine 2011, 41, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Hackett, D.A.; Johnson, N.A.; Chow, C.M. The effect of movement velocity during resistance training on muscle-specific hypertrophy: a systematic review. European Journal of Applied Physiology 2013, 113, 2101–2118. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Jara, C.; Cerda-Kohler, H.; Aedo-Muñoz, E.; Miarka, B. Eccentric Resistance Training: A Methodological Proposal of Eccentric Muscle Exercise Classification Based on Exercise Complexity, Training Objectives, Methods, and Intensity. Appl. Sci. 2023, 13, 7969. [Google Scholar] [CrossRef]
- Franchi, M.V.; Reeves, N.D.; Narici, M.V. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations. Front. Physiol. 2017, 8, 447. [Google Scholar] [CrossRef]
- Siff, M.C. Biomechanical foundations of strength and power training. In Biomechanics in Sport: Performance Enhancement and Injury Prevention (pp. 103–139).; Zatsiorsky, V.M., Ed.; Wiley-Blackwell, 2003. [Google Scholar]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement Velocity as a Measure of Loading Intensity in Resistance Training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Loturco, I.; Ugrinowitsch, C.; Roschel, H.; Tricoli, V.; Silva-Bello, R.; Pereira, L.A. Transference effect of short-term optimum power training vs. traditional strength training on the sprinting and jumping capacity of elite young soccer players. Journal of Strength and Conditioning Research 2015, 29, 2008–2016. [Google Scholar]
- Greenhall, M.; Taipale, R.; Ihalainen, J.; Hackney, A. Influence of the Menstrual Cycle Phase on Marathon Performance in Recreational Runners. Int. J. Sports Physiol. Perform. 2021, 16, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Joo, M.H.; Maehata, E.; Adachi, T.; Ishida, A.; Murai, F.; Mesaki, N. The relationship between exercise-induced oxidative stress and the menstrual cycle. Eur. J. Appl. Physiol. 2004, 93, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Solli, G.S.; Sandbakk, S.B.; Noordhof, D.A.; Ihalainen, J.K.; Sandbakk, Ø. Changes in Self-Reported Physical Fitness, Performance, and Side Effects Across the Phases of the Menstrual Cycle Among Competitive Endurance Athletes. Int. J. Sports Physiol. Perform. 2020, 15, 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Kalytka, S.; Roda, O.; Ierko, I.; Panasiuk, O.; Kasarda, O.; Hrebik, O.; Faidevych, V.; Liannoi, M. Comparative analysis of functional capabilities and special working ability of men and women, specializing in 800 m and 1500 m running. Journal of Physical Education and Sport 2018, 18. [Google Scholar] [CrossRef]
- Middleton, L.E.; Wenger, H.A. Effects of menstrual phase on performance and recovery in intense intermittent activity. Eur. J. Appl. Physiol. 2005, 96, 53–58. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Sánchez-Medina, L.; Pérez, C.E.; De La Cruz-Sánchez, E.; Mora-Rodriguez, R. Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. J. Sports Sci. 2014, 32, 1165–1175. [Google Scholar] [CrossRef]
- Alcazar, J.; Rodriguez-Lopez, C.R.; Ara, I.; Alfaro-Acha, A.; Manas-Bote, A.M.; Guadalupe-Grau, A.; Garcia-Garcia, F.J.; Alegre, L.M. The Force-Velocity Relationship in Older People: Reliability and Validity of a Systematic Procedure. Int. J. Sports Med. 2017, 38, 1097–1104. [Google Scholar] [CrossRef]
- Serresse, O.; Ama, P.F.; A Simoneau, J.; Lortie, G.; Bouchard, C.; Boulay, M.R. Anaerobic performances of sedentary and trained subjects. Can. J. Sport Sci. 1989, 14, 46–52. [Google Scholar]
- Nindl, B.C.; Mahar, M.T.; Harman, E.A.; Patton, J.F. Lower and upper body anaerobic performance in male and female adolescent athletes. Med. Sci. Sports Exerc. 1995, 27, 235–241. [Google Scholar] [CrossRef]
- Bartolomei, S.; Grillone, G.; Di Michele, R.; Cortesi, M. A Comparison between Male and Female Athletes in Relative Strength and Power Performances. J. Funct. Morphol. Kinesiol. 2021, 6, 17. [Google Scholar] [CrossRef]
- Brechue, W.F.; Abe, T. The role of FFM accumulation and skeletal muscle architecture in powerlifting performance. Eur. J. Appl. Physiol. 2002, 86, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, J.L. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. J. Strength Cond. Res. 2022, 37, 494–536. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Walker, S.; Häkkinen, K. Validity of Using Velocity to Estimate Intensity in Resistance Exercises in Men and Women. Int. J. Sports Med. 2020, 41, 1047–1055. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; García-Ramos, A.; Jiménez-Reyes, P. Load–velocity profiling in the military press exercise: Effects of gender and training. Int. J. Sports Sci. Coach. 2018, 13, 743–750. [Google Scholar] [CrossRef]
- García-Ramos, A.; Suzovic, D.; Pérez-Castilla, A. The load-velocity profiles of three upper-body pushing exercises in men and women. Sports Biomech. 2019, 20, 693–705. [Google Scholar] [CrossRef]
- Nieto-Acevedo, R.; Romero-Moraleda, B.; Montalvo-Pérez, A.; García-Sánchez, C.; Marquina-Nieto, M.; Mon-López, D. Sex Differences in the Load–Velocity Profiles of Three Different Row Exercises. Sports 2023, 11, 220. [Google Scholar] [CrossRef]
- Nieto-Acevedo, R.; Romero-Moraleda, B.; Díaz-Lara, F.J.; de la Rubia, A.; González-García, J.; Mon-López, D. A Systematic Review and Meta-Analysis of the Differences in Mean Propulsive Velocity between Men and Women in Different Exercises. Sports 2023, 11, 118. [Google Scholar] [CrossRef]
- Izadi, M.; Pillitteri, G.; Thomas, E.; Battaglia, G.; Bianco, A.; Bellafiore, M. Sex differences in the determination of prescribed load in ballistic bench press. Front. Physiol. 2024, 15, 1293044. [Google Scholar] [CrossRef]
- Hunter, S.K. Sex differences in human fatigability: mechanisms and insight to physiological responses. Acta Physiol. 2014, 210, 768–789. [Google Scholar] [CrossRef]
- Thomas, K.; Brown, L.E.; Coburn, J.W.; Lynn, S.K. Influence of gender on maximal power output and fatigue during dynamic resistance exercise. Journal of Strength and Conditioning Research 2007, 21, 747–753. [Google Scholar]
- Alonso-Aubin, D.A.; Chulvi-Medrano, I.; Cortell-Tormo, J.M.; Picón-Martínez, M.; Rebullido, T.R.; Faigenbaum, A.D. Squat and Bench Press Force-Velocity Profiling in Male and Female Adolescent Rugby Players. J. Strength Cond. Res. 2021, 35, S44–S50. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, J.L.; Hancock, K.; Rollison, L.; E Ball, T.; Bowen, J.C. Contributions of strength and body composition to the gender difference in anaerobic power. J. Sports Med. Phys. Fit. 2001, 41, 33–38. [Google Scholar]
- Perez-Gomez, J.; Rodriguez, G.V.; Ara, I.; Olmedillas, H.; Chavarren, J.; González-Henriquez, J.J.; Dorado, C.; Calbet, J.A.L. Role of Muscle Mass on Sprint Performance: Gender Differences? Eur. J Sport Sci. 2007, 102, 685–694. [Google Scholar] [CrossRef]
- Torrejón, A.; Balsalobre-Fernández, C.; Haff, G.G.; García-Ramos, A. The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports Biomech. 2017, 18, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P. Age- and Sex-Related Differences in Force-Velocity Characteristics of Upper and Lower Limbs of Competitive Adolescent Swimmers. J. Hum. Kinet. 2012, 32, 87–95. [Google Scholar] [CrossRef]
| T-force | |
|---|---|
| Technology | Linear velocity transducer |
| Support APP on mobile | No |
| Software version | 3.6 |
| Indirect outcome calculation | Velocity; Time |
| Maximal Sampling frequency | 1000Hz |
| Mechanic parameters | Peak force, mean velocity. Mean power, time to peak power, propulsive phase's duration. estimated load (%1RM), 1RM prediction, number of repetitions, velocity loss (%), velocity alerts. Automatically computed and presented numerically and graphically. |
| Screen | OLED Screen |
| Export to Excel | Yes |
| Bluetooth/WIFI connection | No |
| External power supply required | Yes |
| Installation and calibration time before the first execution | 2.4 min |
| Time to obtain the measure after execution | Real time |
| Number of lost repetitions per each 100 cases | 0,8 |
| Price | 2600€ |
| Mean±SD n Total |
Mean±SD Males |
Mean±SD Females |
|
|---|---|---|---|
| Age (n= 29) | 21.9±4.5 | 21.3±4.1 | 22.6±5.0 |
| Height (cm) | 171.9±8.9 | 176.67.2 | 165.8±7.1 |
| Weight (Kg) | 67.8±12.8 | 75.9±10.1 | 57.9±7.9 |
| BMI | 22.8±2.7 | 24.3±2.7 | 21.0±1.3 |
| %Fat_Mass | 16.1±4.8 | 13.3±2.7 | 19.5±4.6 |
| FFM (Kg) | 57.3±11.8 | 66.1±7.8 | 46.4±4.4 |
| 1RM (Kg) | 73.1±26.3 | 92.0±19.7 | 49.7±8.1 |
| Variable | Males | Females |
|---|---|---|
| 45%1RM | 0,79 ± 0,06 | 0,73 ± 0,15 |
| 55%1RM | 0,66 ± 0,05 | 0,61 ± 0,12 |
| 65%1RM | 0,54 ± 0,04 | 0,47 ± 0,05 |
| 75%1RM | 0,46 ± 0,05 | 0,41 ± 0,04 |
| 85%1RM | 0,34 ± 0,04 | 0,32 ± 0,05 |
| V0 | 1,36 ± 0,11 | 1,20 ± 0,27 |
| F0 | 1.036,47 ± 185,38 | 568,18 ± 107,15 |
| Vopt | 0,68 ± 0,06 | 0,60 ± 0,13 |
| Pmax | 349,73 ± 64,29 | 166,66 ± 26,76 |
| %RM | 57,18 ± 1,56 | 58,61 ± 3,42 |
| Opt. Load | 52,83 ± 9,44 | 28,96 ± 5,41 |
| Variable | Adjusted by Kg of weight | Adjusted by FFM | ||||
|---|---|---|---|---|---|---|
| F | p | η2 | F | p | η2 | |
| 45%1RM | 3.309 | 0.080 | 0.113 | 5.906 | 0.022 | 0.185 |
| 55%1RM | 3.529 | 0.072 | 0.120 | 5.190 | 0.031 | 0.166 |
| 65%1RM | 5.971 | 0.022 | 0.187 | 16.118 | 0.000 | 0.383 |
| 75%1RM | 4.394 | 0.046 | 0.145 | 7.449 | 0.011 | 0.223 |
| 85%1RM | 1.390 | 0.249 | 0.051 | 1.664 | 0.208 | 0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
