Submitted:
11 March 2025
Posted:
11 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Literature Review
3. Methodology
3.1. Overall Research Landscape

3.2. Network Topology Analysis Methodology
- (1)
- Connectivity of Nodes
- (2)
- Connectivity of Edges
3.3. Node Centrality and Vulnerability Assessment Methodology Based on Network Topology
4. Results
4.1. Base Network
| Category | Node | Link |
|---|---|---|
| Road Network | 153120 | 196850 |
| Road and Railway Network | 156354 | 338289 |
| Railway Network | 1924 | 2058 |
| Urban railway Network | 834 | 1018 |
4.2. Scenario Evaluation Outcomes
4.3. Comprehensive Analysis Findings
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, S.; Zhuang, D. Evolution and evaluation of the Guangzhou Urban railway network topology based on an integration of complex network analysis and GIS. Sustainability 2020, 12, 538. [CrossRef]
- Liao, Y.; Bao, F. Research on airport site selection based on triangular fuzzy number. Applied Mechanics and Materials 2014, 505, 507-511. [CrossRef]
- Park, C.; Sohn, S.Y. An optimization approach for the placement of bicycle-sharing stations to reduce short car trips: An application to the city of Seoul. Transportation Research Part A: Policy and Practice 2017, 105, 154-166. [CrossRef]
- Zhao, S.; Sun, P. Scheme Comparison of New Airport Site Selection Based on Lattice Order Decision Making Method in the Integrated Transportation System. International Journal of online Engineering 2013, 9. [CrossRef]
- Mohring, H. Optimization and scale economies in urban bus transportation. The American Economic Review 1972, 62, 591-604.
- Mandl, C.E. Evaluation and optimization of urban public transportation networks. European Journal of Operational Research 1980, 5, 396-404. [CrossRef]
- Archetti, C.; Peirano, L.; Speranza, M.G. Optimization in multimodal freight transportation problems: A Survey. European Journal of Operational Research 2022, 299, 1-20. [CrossRef]
- Ríos-Mercado, R.Z.; Borraz-Sánchez, C. Optimization problems in natural gas transportation systems: A state-of-the-art review. Applied Energy 2015, 147, 536-555. [CrossRef]
- Zitrický, V.; Gašparík, J.; Pečený, L. The methodology of rating quality standards in the regional passenger transport. Transport problems 2015, 10. [CrossRef]
- Abramović, B.; Zitricky, V.; Biškup, V. Organisation of railway freight transport: case study CIM/SMGS between Slovakia and Ukraine. European transport research review 2016, 8, 1-13. [CrossRef]
- Bukvić, L.; Pašagić Škrinjar, J.; Abramović, B.; Zitrický, V. Route selection decision-making in an intermodal transport network using game theory. Sustainability 2021, 13, 4443. [CrossRef]
- Stopka, O.; Zitricky, V.; Abramović, B.; Marinov, M.V.; Ricci, S. Innovative technologies for sustainable passenger transport. Journal of advanced transportation 2019, 2019. [CrossRef]
- Alves, C.J.P.; da Silva, E.J.; Müller, C.; Borille, G.M.R.; Guterres, M.X.; Arraut, E.M.; Peres, M.S.; dos Santos, R.J. Towards an objective decision-making framework for regional airport site selection. Journal of Air Transport Management 2020, 89, 101888. [CrossRef]
- Chen, M.; Lu, H. Analysis of transportation network vulnerability and resilience within an urban agglomeration: Case study of the greater Bay Area, China. Sustainability 2020, 12, 7410. [CrossRef]
- Jiang, X.; Cao, S.; Mo, B.; Cao, J.; Yang, H.; Tang, Y.; Hansen, M.; Zhao, J.; Sengupta, R. Simulation-Based Optimization for Vertiport Location Selection: A Surrogate Model With Machine Learning Method. Transportation Research Record 2024, 03611981241277755. [CrossRef]
- Kotwicz Herniczek, M.T.; German, B.J. Scalable Combinatorial Vertiport Placement Method for an Urban Air Mobility Commuting Service. Transportation Research Record 2024, 2678, 1624-1641. [CrossRef]
- Liu, Y.; Wang, M.; Wang, Y. Location decision of emergency medical supply distribution centers under uncertain environment. International Journal of Fuzzy Systems 2024, 26, 1567-1603. [CrossRef]
- Bulková, Z.; Čamaj, J.; Šperka, A.; Jursová, S. Simulation of travel document purchase measures aimed at preventing the spread of COVID-19–Case study from Slovakia. Transportation Research Interdisciplinary Perspectives 2023, 20, 100853. [CrossRef]
- Čamaj, J.; Nedeliaková, E.; Šperka, A.; Ližbetinová, L. The planning of investment activities in field of railway transport with support of simulation tools. Transportation research procedia 2021, 53, 39-49. [CrossRef]
- Mašek, J.; Kolarovszki, P.; Čamaj, J. Application of RFID technology in railway transport services and logistics chains. Procedia Engineering 2016, 134, 231-236. [CrossRef]
- Gerhátová, Z.; Zitrický, V.; Klapita, V. Industry 4.0 implementation options in railway transport. Transportation Research Procedia 2021, 53, 23-30. [CrossRef]
- Wu, Q.; Li, Y.; Dan, P. Optimization of urban rail transit station spacing for minimizing passenger travel time. Journal of Rail Transport Planning & Management 2022, 22, 100317. [CrossRef]
- Yoon, D.; Jeong, M.; Lee, J.; Kim, S.; Yoon, Y. Integrating Urban Air Mobility with Highway Infrastructure: A Strategic Approach for Vertiport Location Selection in the Seoul Urban railwaypolitan Area. arXiv preprint arXiv:2502.00399 2025.
- Brunelli, M.; Ditta, C.C.; Postorino, M.N. New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity. Journal of Air Transport Management 2023, 112, 102460. [CrossRef]
- Macias, J.E.; Khalife, C.; Slim, J.; Angeloudis, P. An integrated vertiport placement model considering vehicle sizing and queuing: A case study in London. Journal of Air Transport Management 2023, 113, 102486. [CrossRef]
- Tuncal, A. Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. Türkiye İnsansız Hava Araçları Dergisi 2024, 6, 42-55. [CrossRef]
- Liu, J.; Lu, H.; Chen, M.; Wang, J.; Zhang, Y. Macro perspective research on transportation safety: An empirical analysis of network characteristics and vulnerability. Sustainability 2020, 12, 6267. [CrossRef]
- Rahman, B.; Bridgelall, R.; Habib, M.F.; Motuba, D. Integrating urban air mobility into a public transit system: a GIS-based approach to identify candidate locations for vertiports. Vehicles 2023, 5, 1803-1817. [CrossRef]
- Chae, M.; Kim, S.H.; Kim, S.H.; Kim, M.; Park, H.-T. Vertiport Locations Optimization in Discrete Search Space. In Proceedings of the 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), 2023; pp. 1-6.
- Koumoutsidi, A.; Pagoni, I.; Polydoropoulou, A. A new mobility era: Stakeholders’ insights regarding urban air mobility. Sustainability 2022, 14, 3128. [CrossRef]
- Kim, W.-J.; Park, J.-H. A study on the factors affecting UAM vertiport location selection. Journal of Urban Studies and Real Estate 2022, 13, 119-137. [CrossRef]
- Aydin, N.; Seker, S.; Özkan, B. Planning location of mobility hub for sustainable urban mobility. Sustainable Cities and Society 2022, 81, 103843. [CrossRef]
- Lazari, V.; Chassiakos, A. Multi-objective optimization of electric vehicle charging station deployment using genetic algorithms. Applied Sciences 2023, 13, 4867. [CrossRef]
- Rouhana, F.; Jawad, D. Transportation network resilience against failures: GIS-based assessment of network topology role. International journal of disaster resilience in the built environment 2021, 12, 357-370. [CrossRef]
- Hammad, M.A.; Elgazzar, S.; Sternad, M. A Conceptual Framework to Establish and Operate a Global Logistics Energy Hub. Sustainability 2021, 13, 10976. [CrossRef]
- Perera, P.; Hewage, K.; Sadiq, R. Electric vehicle recharging infrastructure planning and management in urban communities. Journal of Cleaner Production 2020, 250, 119559. [CrossRef]
- Jia, G.-L.; Ma, R.-G.; Hu, Z.-H. Urban transit network properties evaluation and optimization based on complex network theory. Sustainability 2019, 11, 2007. [CrossRef]
- Hong, J.; Tamakloe, R.; Lee, S.; Park, D. Exploring the topological characteristics of complex public transportation networks: Focus on variations in both single and integrated systems in the Seoul Urban railwaypolitan Area. Sustainability 2019, 11, 5404. [CrossRef]
- Zhang, H.; Sun, F.; Qian, J. An optimization based on general airport of complex condition. In Proceedings of the 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), 2019; pp. 1-5.
- Lim, E.; Hwang, H. The selection of vertiport location for on-demand mobility and its application to Seoul Urban railway area. International Journal of Aeronautical and Space Sciences 2019, 20, 260-272.
- Akbarzadeh, M.; Memarmontazerin, S.; Derrible, S.; Salehi Reihani, S.F. The role of travel demand and network centrality on the connectivity and resilience of an urban street system. Transportation 2019, 46, 1127-1141. [CrossRef]
- Sennaroglu, B.; Celebi, G.V. A military airport location selection by AHP integrated PROMETHEE and VIKOR methods. Transportation Research Part D: Transport and Environment 2018, 59, 160-173. [CrossRef]
- Wang, M.; Li, H.; Cui, J.; Deng, K.; Bhowmick, S.S.; Dong, Z. Pinocchio: Probabilistic influence-based location selection over moving objects. IEEE Transactions on Knowledge and Data Engineering 2016, 28, 3068-3082. [CrossRef]
- Gao, Y.; Zheng, B.; Chen, G.; Li, Q. Optimal-location-selection query processing in spatial databases. IEEE transactions on knowledge and data engineering 2009, 21, 1162-1177. [CrossRef]
- Cohen, M.M. The vertiport as an urban design problem; 0148-7191; SAE Technical Paper: 1996.
- Latora, V.; Marchiori, M. Efficient behavior of small-world networks. Physical review letters 2001, 87, 198701. [CrossRef]
- Van Steen, M. Graph theory and complex networks. An introduction 2010, 144.
- Menger, K. Zur allgemeinen kurventheorie. Fundamenta Mathematicae 1927, 10, 96-115. [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. nature 1998, 393, 440-442. [CrossRef]
- Fiedler, M. Algebraic connectivity of graphs. Czechoslovak mathematical journal 1973, 23, 298-305.
- Newman, M.E. Assortative mixing in networks. Physical review letters 2002, 89, 208701. [CrossRef]
- Newman, M.E. The structure and function of complex networks. SIAM review 2003, 45, 167-256.
- Newman, M.E. Modularity and community structure in networks. Proceedings of the national academy of sciences 2006, 103, 8577-8582.
- Freeman, L.C. Centrality in social networks: Conceptual clarification. Social network: critical concepts in sociology. Londres: Routledge 2002, 1, 238-263.
- Bozzo, E.; Franceschet, M.; Rinaldi, F. Vulnerability and power on networks. Network Science 2015, 3, 196-226.



| Group | Global Efficiency |
Average Shortest Path Length | Algebric Connectivity | Clustering Coefficient |
Degree Assortativity |
Transitivity | Modularity |
|---|---|---|---|---|---|---|---|
| Urban railway Network |
0.06080 | 24.20161 | 0.00212 | 0.05422 | 0.52806 | 0.18000 | 0.87862 |
| Ratio | Betweenness UAM Network |
Degree UAM Network |
Vulnerable UAM Network |
|---|---|---|---|
| 5% | 0.08706 | 0.08948 | 0.09556 |
| 10% | 0.12753 | 0.12932 | 0.14703 |
| 15% | 0.16842 | 0.16566 | 0.19674 |
| 20% | 0.19971 | 0.21665 | 0.23825 |
| Ratio | Betweenness UAM Network |
Degree UAM Network |
Vulnerable UAM Network |
|---|---|---|---|
| 5% | 17.3005 | 16.0882 | 15.8778 |
| 10% | 12.2384 | 11.9723 | 10.6847 |
| 15% | 9.7350 | 9.8296 | 8.2023 |
| 20% | 8.7287 | 7.3651 | 7.0458 |
| Ratio | Betweenness UAM Network |
Degree UAM Network |
Vulnerable UAM Network |
|---|---|---|---|
| 5% | 0.00293 | 0.00356 | 0.00326 |
| 10% | 0.00440 | 0.00568 | 0.00362 |
| 15% | 0.00510 | 0.00645 | 0.00449 |
| 20% | 0.00550 | 0.00920 | 0.00646 |
| Ratio | Betweenness UAM Network |
Degree UAM Network |
Vulnerable UAM Network |
|---|---|---|---|
| 5% | 0.05072 | 0.05081 | 0.04053 |
| 10% | 0.07646 | 0.07530 | 0.06419 |
| 15% | 0.10154 | 0.09937 | 0.09321 |
| 20% | 0.12815 | 0.12606 | 0.12512 |
| Ratio | Betweenness UAM Network |
Degree UAM Network |
Vulnerable UAM Network |
|---|---|---|---|
| 5% | 0.91335 | 0.89679 | 0.87188 |
| 10% | 0.97169 | 0.96848 | 0.95549 |
| 15% | 0.98427 | 0.98409 | 0.97476 |
| 20% | 0.98920 | 0.98782 | 0.98188 |
| Ratio | Betweenness UAM Network |
Degree UAM Network |
Vulnerable UAM Network |
|---|---|---|---|
| 5% | 0.65703 | 0.68810 | 0.66245 |
| 10% | 0.31077 | 0.30245 | 0.28555 |
| 15% | 0.12937 | 0.14362 | 0.12440 |
| 20% | 0.07310 | 0.07711 | 0.06092 |
| Ratio | Betweenness UAM Network |
Degree UAM Network |
Vulnerable UAM Network |
|---|---|---|---|
| 5% | 0.94994 | 0.92884 | 0.89724 |
| 10% | 0.94004 | 0.93193 | 0.88948 |
| 15% | 0.92365 | 0.92317 | 0.85936 |
| 20% | 0.90299 | 0.89032 | 0.81274 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
