Submitted:
22 August 2025
Posted:
25 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Discussions Based on Transmission Line Theory
2.1. The Transmission Line Theory-Based Wave Mechanics Theory of Microwave Absorption
2.2. The Misunderstanding of Transmission Line Theory
2.3. The Flaws in Impedance Matching Theory Revealed from the Mechanics Theory
2.4. Experimental Evidence that Was Intended to Support Impedance Matching Theory Actually Refutes It
2.4.1. The Misconception of Impedance Matching Theory in Microwave Absorption
2.4.2. Critical Experimental Evidence: The Contradiction
2.4.3. Wave Mechanics: The Correct Mechanism
2.4.4. Addressing the Quarter-Wavelength Discrepancy
2.4.5. Misguided Research Directions: The Absence of Correct Theory
2.4.6. Energy Conservation Violations and Logical Contradictions
2.5. The Roles Played by Theoretical Research
2.6. The Issues Addressed Are of Historical Importance
- −
- The manuscript makes definitive claims about the correctness of a new theory and the complete invalidity of existing models without providing sufficient empirical validation recognized by the broader scientific community.
- −
- A large portion of the citations reference works authored or co-authored by the submitting authors. While self-citation is, of course, acceptable, its heavy use here may be seen as limiting the theoretical foundation to one research group’s perspective.
- −
- The writing frequently adopts an extremely polemical tone, at times characterizing mainstream research as “junk” or “wrong” without engaging constructively with the existing literature or acknowledging the possibility of co-existing or complementary approaches.
- −
- Certain sections are difficult to follow due to complex sentence structures and heavy use of jargon, which could hinder clarity for a wider audience.
3. Conclusions
Supplementary Materials
Data Availability Statement
References
- Nayani, P.S.; Moradi, M.; Salami, P.; Ra'di, Y. Passive highly dispersive matching network enabling broadband electromagnetic absorption. Nat Commun 2025, 16, 905. [Google Scholar] [CrossRef]
- Qu, N.; Sun, H.; Sun, Y.; He, M.; Xing, R.; Gu, J.; Kong, J. 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat Commun 2024, 15, 5642. [Google Scholar] [CrossRef]
- Jin, H.; Liu, M.; Wang, L.; You, W.; Pei, K.; Cheng, H.W.; Che, R. Design and fabrication of 1D nanomaterials for electromagnetic wave absorption. Natl Sci Rev 2025, 12, nwae420. [Google Scholar] [CrossRef]
- Zuo, D.; Jia, Y.; Xu, J.; Fu, J. High-Performance Microwave Absorption Materials: Theory, Fabrication, and Functionalization. Industrial & Engineering Chemistry Research 2023, 62, 14791–14817. [Google Scholar] [CrossRef]
- Wang, B.; Huang, J.; Liu, G.; Ge, C.; Wang, L.; Xu, K.; Liu, T.; Wang, W.; Wang, L. Design and optimization oriented composition and morphology engineering for MOF derived microwave absorbents. Nano Materials Science 2025. [Google Scholar] [CrossRef]
- Chen, Y.; Quan, B.; Liu, J.; Lu, X.; Lin, L.; Shao, G.; Wen, Y.; Jin, R.; Shen, X.; Huang, X. High-Performance Flexible Microwave Absorption Films with Dynamic Adjustable Macrostructures and Alterable Electromagnetic Field Polarizations. ACS Appl Mater Interfaces 2025, 17, 9748–9759. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Cheng, H.; Li, Y.; Chen, Q.; Liu, C.; Shen, C.; Liu, X. MoS(2) Decorated on 1D MoS(2)@Co/NC@CF Hierarchical Fibrous Membranes for Enhanced Microwave Absorption. Small 2025, 21, e2407337. [Google Scholar] [CrossRef]
- Song, Q.; Ye, F.; Kong, L.; Shen, Q.; Han, L.; Feng, L.; Yu, G.; Pan, Y.; Li, H. Graphene and MXene Nanomaterials: Toward High-Performance Electromagnetic Wave Absorption in Gigahertz Band Range. Advanced Functional Materials 2020, 30, 2000475. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. Recognizing Problems in Publications Concerned with Microwave Absorption Film and Providing Corrections: A Focused Review. Industrial & Engineering Chemistry Research 2025, 64, 3635–3650. [Google Scholar] [CrossRef]
- Liu, Y.; Drew, M.G.B.; Li, H.; Liu, Y. An experimental and theoretical investigation into methods concerned with “reflection loss” for microwave absorbing materials. Materials Chemistry and Physics 2020, 243, 122624. [Google Scholar] [CrossRef]
- Liu, Y.; Drew, M.G.B.; Liu, Y. A physics investigation of impedance matching theory in microwave absorption film— Part 2: Problem analyses. Journal of Applied Physics 2023, 134, 045304. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, K.; Drew, M.G.B.; Liu, Y. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials. AIP Advances 2018, 8, e015223. [Google Scholar] [CrossRef]
- Elmahaishi, M.F.; Azis, R. a. S.; Ismail, I.; Muhammad, F.D. A review on electromagnetic microwave absorption properties: their materials and performance. Journal of Materials Research and Technology 2022, 20, 2188–2220. [Google Scholar] [CrossRef]
- Andriyanti, W.; Choir Hidayati Nur, M.A.; Puspitarum, D.L.; Sujitno, T.; Suprihatin, H.; Purwanto, S.; Suharyadi, E. Microstructures, magnetic properties and microwave absorption of ion-implanted bismuth ferrite thin films. Physica B: Condensed Matter 2024, 676, 415690. [Google Scholar] [CrossRef]
- Abu Sanad, A.A.; Mahmud, M.N.; Ain, M.F.; Ahmad, M.A.B.; Yahaya, N.Z.B.; Mohamad Ariff, Z. Theory, Modeling, Measurement, and Testing of Electromagnetic Absorbers: A Review. physica status solidi (a) 2024, 221, 2300828. [Google Scholar] [CrossRef]
- Cao, M.; Han, C.; Wang, X.; Zhang, M.; Zhang, Y.; Shu, J.; Yang, H.; Fang, X.; Yuan, J. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves. Journal of Materials Chemistry C 2018, 6, 4586–4602. [Google Scholar] [CrossRef]
- Liu, Y.; Drew, M.G.B.; Liu, Y. A physics investigation of impedance matching theory in microwave absorption film—Part 1: Theory. Journal of Applied Physics 2023, 134, 045303. [Google Scholar] [CrossRef]
- Liu, Y.; Drew, M.G.B.; Liu, Y. A theoretical exploration of impedance matching coefficients for interfaces and films. Applied Physics A 2024, 130, 212. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y.; Liu, Y.; Drew, M.G.B. Unexpected Results in Microwave Absorption -- Part 1: Different absorption mechanisms for metal-backed film and for material. Surfaces and Interfaces 2023, 40, 103022. [Google Scholar] [CrossRef]
- Qu, S.; Hou, Y.; Sheng, P. Conceptual-based design of an ultrabroadband microwave metamaterial absorber. Proc Natl Acad Sci U S A 2021, 118, e2110490118. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. A theoretical investigation on the quarter-wavelength model — Part 1:Analysis. Physica Scripta 2021, 96, 125003. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. A theoretical investigation of the quarter-wavelength model-part 2: verification and extension. Physica Scripta 2022, 97, 015806. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. A re-evaluation of the mechanism of microwave absorption in film – Part 3: Inverse relationship. Materials Chemistry and Physics 2022, 290, 126521. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. Wave Mechanics of Microwave Absorption in Films: Multilayered Films. Journal of Electronic Materials 2024, 53, 8154–8170. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. A Re-evaluation of the mechanism of microwave absorption in film – Part 2: The real mechanism. Materials Chemistry and Physics 2022, 291, 126601. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. Wave mechanics of microwave absorption in films: A short review. Optics and Laser Technology 2024, 178, 111211. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. Review of Wave Mechanics Theory for Microwave Absorption by Film. Journal of Molecular Science 2024, 40, 300–305. [Google Scholar] [CrossRef]
- Lim, D.D.; Ibarra, A.; Lee, J.; Jung, J.; Choi, W.; Gu, G.X. A tunable metamaterial microwave absorber inspired by chameleon's color-changing mechanism. Sci Adv 2025, 11, eads3499. [Google Scholar] [CrossRef]
- Sharma, S.; Parne, S.R.; Panda, S.S.S.; Gandi, S. Progress in microwave absorbing materials: A critical review. Adv Colloid Interface Sci 2024, 327, 103143. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Wang, Y.; Sun, F.; Wang, Q.; Tan, D.; Zhang, R.; Wang, H.; Shao, G.; Liu, Y.; et al. Entropy-driven microwave absorption enhancement in hexagonal (Ba1/3Sr1/3Ca1/3)FeO3 perovskite. Journal of Advanced Ceramics 2025, 14, 9221059. [Google Scholar] [CrossRef]
- Zhuang, X.; Ning, M.; Pan, L.; Gao, Y.; Zhang, Q.; Mu, C.; Ma, H.; Li, J.; Tan, G.; Man, Q.; et al. Optimized Microwave Absorption and Structural Compression Sensing via Magnetic Fiber-Infused Aerogels with Reduced Graphene Oxide and Carbon Frameworks. ACS Applied Electronic Materials 2025, 7, 601–611. [Google Scholar] [CrossRef]
- Xu, J.; Gao, T.; Liu, S.; Jiao, Y. Enhanced microwave absorption and thermal conductivity of biomass-derived BCNO materials. Journal of Materials Science: Materials in Electronics 2025, 36, 417. [Google Scholar] [CrossRef]
- Wu, D.; Fan, C.; Luo, W.; Jin, Y.; He, Q.; Wang, Y. Enhanced interfacial polarization loss induced by hollow engineering of hollow alloyed CoFe-ZIF nanocages/carbon nanofibers for efficient microwave absorption. Inorganic Chemistry Frontiers 2025, 12, 3083–3097. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. Wave mechanics of microwave absorption in films - Distinguishing film from material. Journal of Magnetism and Magnetic Materials 2024, 593, 171850. [Google Scholar] [CrossRef]
- Choi, J.R.; Cheon, S.J.; Lee, H.J.; Lee, S.-b.; Park, B.; Lee, H. Ultra-wideband electromagnetic wave absorption in mmWave using dual-loss engineered M-type hexaferrite: A wave cancellation approach. Materials & Design 2025, 255, 114220. [Google Scholar] [CrossRef]
- Li, S.; Guo, S.; Chen, G.; Cui, Y.; Yang, H.; Qiu, J.; Wang, Z.; Dai, M.; Liu, S. Evolution of electron localization with Co2+ variations in Co Fe3−O4 hollow spheres for enhanced wave absorption. Journal of Alloys and Compounds 2025, 1026, 180381. [Google Scholar] [CrossRef]
- Zhou, Y.; He, P.; Ma, W.; Zuo, P.; Xu, J.; Tang, C.; Zhuang, Q. The Developed Wave Cancellation Theory Contributing to Understand Wave Absorption Mechanism of ZIF Derivatives with Controllable Electromagnetic Parameters. Small 2023, 2305277. [Google Scholar] [CrossRef]
- Ray, S.; Panwar, R. Advances in Polymer-Based Microwave Absorbers—From Design Principles to Technological Breakthroughs: A Review. IEEE Journal on Flexible Electronics 2024, 3, 401–417. [Google Scholar] [CrossRef]
- Green, M.; Chen, X. Recent progress of nanomaterials for microwave absorption. Journal of Materiomics 2019, 5, 503–541. [Google Scholar] [CrossRef]
- Xia, L.; Feng, Y.; Zhao, B. Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough. Journal of Materials Science & Technology 2022, 130, 136–156. [Google Scholar] [CrossRef]
- Busti, N.D.; Parra, R.; Sousa Góes, M. Synthesis, Properties, and Applications of Iron Oxides: Versatility and Challenges. In Functional Properties of Advanced Engineering Materials and Biomolecules, Engineering Materials, 2021; pp 349-385.
- Lu, J.; Xu, L.; Xie, C.; Zhang, C.; Han, Z.; Ren, Y.; Che, R. Microwave-Driven Dielectric-Magnetic Regulation of Graphite@alpha-MnO(2) Toward Enhanced Electromagnetic Wave Absorption. Adv Sci (Weinh) 2025, e04489. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zeng, Y.; Zhang, M.; Jiang, Z.; Xie, Z. The new insight into the microscopic enhancement mechanism of microwave absorption based on the electromagnetic heterogeneous interface of carbon nanocavity. Journal of Colloid and Interface Science 2025, 699, 138210. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y. Microwave absorption mechanism for film. Journal of Molecular Science 2023, 39, 521–527. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. A Re-evaluation of the mechanism of microwave absorption in film – Part 1: Energy conservation. Materials Chemistry and Physics 2022, 290, 126576. [Google Scholar] [CrossRef]
- Liu, Y.; Drew, M.G.B.; Liu, Y. Chapter 4: Fundamental Theory of Microwave Absorption for Films of Porous Nanocomposites: Role of Interfaces in Composite-Fillers. In Porous Nanocomposites for Electromagnetic Interference Shielding, Thomas, S., Paoloni, C., Pai, A.R. Eds.; Elsevier, 2024; pp 59 - 90.
- Liu, Y.; Ding, Y.; Liu, Y.; Drew, M.G.B. Unexpected results in Microwave absorption -- Part 2:Angular effects and the wave cancellation theory. Surfaces and Interfaces 2023, 40, 103024. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, Y.; Chen, Q.; Liu, Y. Preparation of NiFe2-xMxO4(M=Ce,Sm,Gd) and microwave absorption properties of its films. Journal of Shenyang Normal University (Natural Science Edition) 2023, 41, 98–103. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, X.; Drew, M.G.B.; Liu, Y. Microwave absorption of film explained accurately by wave cancellation theory. Physica B: Condensed Matter 2023, 666, 415108. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, X.; Drew, M.G.B.; Liu, Y. Reflection Loss is a Parameter for Film, not Material. Non-Metallic Material Science 2023, 5, 38–48. [Google Scholar] [CrossRef]
- Planck, M. Scientific Autobiography and Other Paper; William & Norgate, 1950.
- Ioannidis, J.P. Why most published research findings are false. PLoS Med 2005, 2, 124. [Google Scholar] [CrossRef] [PubMed]
- Honjo, T. https://dataverse.harvard.edu/file.xhtml?fileId=5112613&version=1.1, English translation of the views of Nobel laureate Tasuku Honjo from a Chinese website. https://www.sohu.com/a/423577113_788170 (accessed 2025 1, Apr).
- Ziliak, S.T.; McCloskey, D.N. The cult of statistical significance: how the standard error costs us jobs, justice, and lives; The University of Michigan Press, 2008.
- Akinay, Y.; Gunes, U.; Çolak, B.; Cetin, T. Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach. ChemPhysMater 2023, 2, 197–206. [Google Scholar] [CrossRef]
- Li, B. "Academic garbage is harmful and public hazard (95% of scientific research papers are garbage). It can be translated into English easily by machine translation. https://www.sohu.com/a/400765429_665896 (accessed 2025 1, Apr).
- Judo, P. The scientist who faked over 50 studies. YouTube, 2023. https://www.youtube.com/watch?v=z_lB9-4R40o (accessed 2025 Apr 1).
- Judo, P. Academia is BROKEN! - Harvard Fake Data Scandal Explained. YouTube, 2023. https://www.youtube.com/watch?v=d2Tm3Yx4HWI (accessed 2025 Apr 1).
- Vazire, S. A toast to the error detectors. Nature 2020, 577, 9. [Google Scholar] [CrossRef]
- Saha, M. Review of: Comments on: “A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing” by Hou et al. [Carbon 222 (2024) 118935]. Qeios, 2024. [Google Scholar] [CrossRef]
- Young, N.S.; Ioannidis, J.P.; Al-Ubaydli, O. Why current publication practices may distort science. PLoS Med 2008, 5, e201. [Google Scholar] [CrossRef]
- Wang, J.; Veugelers, R.; Stephan, P.E. Bias Against Novelty in Science: A Cautionary Tale for Users of Bibliometric Indicators. SSRN Electronic Journal 2015. [Google Scholar] [CrossRef]
- Ioannidis, J.P.; Boyack, K.W.; Small, H.; Sorensen, A.A.; Klavans, R. Bibliometrics: Is your most cited work your best? Nature 2014, 514, 561–562. [Google Scholar] [CrossRef] [PubMed]
- Harvard calls for retraction of dozens of studies by noted cardiologist, “some scientists wondered how a questionable line of research persisted for so long … experts were just too timid to take a stand”. https://www.staradvertiser.com/2018/10/16/news/harvard-calls-for-retraction-of-dozens-of-studies-by-noted-cardiologist/. New York Times, 2018, 16 Oct 2018. http://www.staradvertiser.com/2018/10/16/news/harvard-calls-for-retraction-of-dozens-of-studies-by-noted-cardiologist/.
- Weinstein, E. The Problem With Peer Review. YouTube, 2020. https://www.youtube.com/watch?v=U5sRYsMjiAQ (accessed 2025 1, Apr).
- Murphy, B.D. Is Science Broken? The Failure of Peer Review. YouTube, 2021. https://www.youtube.com/watch?v=M2ZvEEvTuP8 (accessed 2025 Apr 1).
- Deciderata. Is peer review broken? YouYube, 2016. https://www.youtube.com/watch?v=EZa0Xihih9w (accessed 2025 Apr 1).
- Judo, P. The BROKEN system at the heart of Academia. YouTube, 2023. https://www.youtube.com/watch?v=JxB3yy2H7j4 (accessed 2025 Apr 1).
- Liu, Y.; Drew, M.G.B.; Liu, Y. Theoretical insights manifested by wave mechanics theory of microwave absorption — Part 2: A perspective based on the responses from DeepSeek. Preprints.org 2025. [Google Scholar] [CrossRef]
- Liu, Y.; Drew, M.G.B.; Li, H.; Liu, Y. A theoretical analysis of the relationships shown from the general experimental results of scattering parameters s11 and s21 -- Exemplified by the film of BaFe12-iCeiO19/polypyrene with i = 0.2, 0.4, 0.6. Journal of Microwave Power and Electromagnetic Energy 2021, 55, 197–218. [Google Scholar] [CrossRef]
- Wang, T.; Chen, G.; Zhu, J.; Gong, H.; Zhang, L.; Wu, H. Deep understanding of impedance matching and quarter wavelength theory in electromagnetic wave absorption. J Colloid Interface Sci 2021, 595, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, H.; Drew, M.G.B.; Liu, Y. A systemized parameter set applicable to microwave absorption for ferrite based materials. Journal of Materials Science: Materials in Electronics 2018, 29, 1562–1575. [Google Scholar] [CrossRef]
- Hou, Z.-L.; Gao, X.; Zhang, J.; Wang, G. A perspective on impedance matching and resonance absorption mechanism for electromagnetic wave absorbing. Carbon 2024, 222, 118935. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, H.; Ning, M.; Raza, H.; Zhang, D.; Zheng, G.; Zheng, Q.; Che, R. Emerging Materials and Designs for Low- and Multi-Band Electromagnetic Wave Absorbers: The Search for Dielectric and Magnetic Synergy? Advanced Functional Materials 2022, 32, 2200123. [Google Scholar] [CrossRef]
- Wang, T.; Han, R.; Tan, G.; Wei, J.; Qiao, L.; Li, F. Reflection loss mechanism of single layer absorber for flake-shaped carbonyl-iron particle composite. Journal of Applied Physics 2012, 112, 104903. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, M.; Zhao, Y.; Gu, W.; Wu, Y.; Tang, S.; Ji, G. Morphology control of eco-friendly chitosan-derived carbon aerogels for efficient microwave absorption at thin thickness and thermal stealth. Green Chemistry 2022, 24, 5280–5290. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, C.; Wang, F.; Hu, B.; Xu, P.; Han, X.; Du, Y. Dual-pathway optimization on microwave absorption characteristics of core–shell Fe3O4@C microcapsules: Composition regulation on magnetic core and MoS2 nanosheets growth on carbon shell. Chemical Engineering Journal 2023, 461, 141867. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Y.; Zhao, K.; Drew, M.G.B.; Liu, Y. Microwave absorption properties of Ag/NiFe2-xCexO4 characterized by an alternative procedure rather than the main stream method using “reflection loss”. Materials Chemistry and Physics 2020, 243, e122615. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Drew, M.G.B. Citation Issues in Wave Mechanics Theory of Microwave Absorption: A Comprehensive Analysis with Theoretical Foundations and Peer Review Challenges. arXiv:2508.06522v2 2025, arXiv:2508.06522v2 2025. [Google Scholar] [CrossRef]
- Wang, X.; Du, Z.; Hou, M.; Ding, Z.; Jiang, C.; Huang, X.; Yue, J. Approximate solution of impedance matching for nonmagnetic homogeneous absorbing materials. The European Physical Journal Special Topics 2022, 231, 4213–4220. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, T.; Gao, M.; Wang, P.; Pang, H.; Qiao, L.; Li, F. Strict proof and applicable range of the quarter-wavelength model for microwave absorbers. Journal of Physics D: Applied Physics 2020, 53, 265004. [Google Scholar] [CrossRef]
- Editorial Policies. https://www.researchsquare.com/legal/editorial (accessed 2025.
- Pigliucci, M. Must science be testable? 2016. https://aeon.co/essays/the-string-theory-wars-show-us-how-science-needs-philosophy (accessed 2025.
- Cao, Z. Is physics an experimental science? This is a big misunderstanding. 2016. https://www.sohu.com/a/114689319_373567 (accessed 2025.
- Singh, P.P.; Dash, A.K.; Nath, G. Dielectric characterization analysis of natural fiber based hybrid composite for microwave absorption in X-band frequency. Applied Physics A 2024, 130, 171. [Google Scholar] [CrossRef]
- Saikia, S.; Saikia, H.; Bhattacharyya, N.S. Revertible wideband hydrogel-based meta-structure absorber. Applied Physics A 2024, 130, 189. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, K.; Li, D.; Liu, H.; Hui, S.; Jiang, Y.; Li, S.; Li, Y.; Yang, W.; Wu, H.; et al. The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC. Advanced Materials 2024, 36, 2314233. [Google Scholar] [CrossRef]
- Hanlon, M. Cargo Cult Science. European Review 2013, 21, S51–S55. [Google Scholar] [CrossRef]
- Cabbolet, M.J.T.F. To All Who Believe in Science as an Open Discussion of New Ideas: A Call for Reforms to Reverse the Politicization of Science. Journal of Academic Ethics 2025. [Google Scholar] [CrossRef]
- Massari, P. When It’s Right to Be Wrong. 2025. https://gsas.harvard.edu/news/when-its-right-be-wrong (accessed.
- Thompson, L. When being wrong is a good thing for science. 2022. https://confidenceinresearch.elsevier.com/item/when-being-wrong-is-a-good-thing-for-science (accessed.
- Thompson, C. Real Heroes Have the Guts to Admit They're Wrong. Science Newsletter, 2018. https://www.wired.com/story/real-heroes-have-the-guts-to-admit-theyre-wrong/ (accessed.
- Oreskes, N. Science Improves When People Realize They Were Wrong. Scientific American, 2024. https://www.scientificamerican.com/article/science-improves-when-people-realize-they-were-wrong/ (accessed.
- Harris, K. Admitting a Wrong: The Challenge and the Reward. 2025. https://owlcation.com/social-sciences/Admitting-a-Wrong-the-Challenge-and-the-Reward (accessed.
- What it means to be a good scientist: Admitting when you're wrong. https://www.reddit.com/r/science/comments/e0s60/what_it_means_to_be_a_good_scientist_admitting (accessed.
- Pennock, R.T. Scientific Integrity and the Ethics of 'Utter Honesty'. MIT Press, 2022. https://thereader.mitpress.mit.edu/scientific-integrity-and-the-ethics-of-utter-honesty/ (accessed.
- Bright, L.K. Why Do Scientists Lie? Royal Institute of Philosophy Supplement 2021, 89, 117–129. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R. “Surely You’re Joking, Mr. Feynman”, Adventures of a Curious Character; W. W. Norton & Company, 2010.
- Feynman, R. Cargo Cult Science, From a Caltech commencement address given in 1974. 1974. https://sites.cs.ucsb.edu/~ravenben/cargocult.html (accessed.
- Liu, Y. The Accepted Theories Have Been Overturned. 2024. https://www.peeref.com/hubs/219 (accessed.




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).