Submitted:
28 February 2025
Posted:
28 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Methods
2.4. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Biomarkers Associated with Preeclampsia
3.3. Independent Predictors of Preeclampsia
3.4. The AUC, Optimal Thresholds, Sensitivity and Specificity of the Independent Predictors of Preeclampsia
4. Discussion
Study Limitations
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Alb | Albumin |
| BMI | Body Mass index |
| BMI | Body Mass index |
| Ca2+ | Calcium ions |
| CRP | C-reactive protein |
| GGT | Gamma Glutamate transferase |
| HDL | High density lipoprotein |
| HDL-c | High density lipoprotein cholesterol |
| LDL | Low density Lipoprotein |
| LDL-c | Low density lipoprotein cholesterol |
| L/WBC% | Lymphocyte percentage |
| Mg2+ | Magnesium ions |
| NO | Nitric oxide |
| OxLDL | Oxidized low density lipoprotein |
| K+ | Potassium ions |
| TSH | Thyroid stimulating Hormone |
| T3 | Triiodothyronine |
| UIC | Urinary iodine concentration |
References
- Ives, C.W., et al., Preeclampsia—Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 2020. 76(14): p. 1690-1702.
- Anderson, U.D., et al., Review: Biochemical markers to predict preeclampsia. Placenta, 2012. 33 Suppl: p. S42-7. [CrossRef]
- Kornacki, J. and E. Wender-Ożegowska, Utility of biochemical tests in prediction, diagnostics and clinical management of preeclampsia: a review. Archives of Medical Science, 2020. 16(6): p. 1370-1375. [CrossRef]
- Chaemsaithong, P., D.S. Sahota, and L.C. Poon, First trimester preeclampsia screening and prediction. American Journal of Obstetrics & Gynecology, 2022. 226(2): p. S1071-S1097.e2. [CrossRef]
- Velegrakis, A., et al., Predictive value of the sFlt-1/PlGF ratio in women with suspected preeclampsia: An update (Review). Int J Mol Med, 2023. 52(4).
- Akolekar, R., et al., Maternal plasma soluble fms-like tyrosine kinase-1 and free vascular endothelial growth factor at 11 to 13 weeks of gestation in preeclampsia. Prenat Diagn, 2010. 30(3): p. 191-7. [CrossRef]
- Crovetto, F., et al., First trimester screening for early and late preeclampsia based on maternal characteristics, biophysical parameters, and angiogenic factors. Prenat Diagn, 2015. 35(2): p. 183-91. [CrossRef]
- Fillion, A., et al., First-Trimester Soluble fms-like Tyrosine Kinase 1 (sFlt-1) for the Prediction of Preterm Preeclampsia. Journal of Obstetrics and Gynaecology Canada, 2024. 47(2): p. 102753. [CrossRef]
- Serra, B., et al., A new model for screening for early-onset preeclampsia. American Journal of Obstetrics and Gynecology, 2020. 222(6): p. 608.e1-608.e18. [CrossRef]
- Schneuer, F.J., et al., First trimester screening of serum soluble fms-like tyrosine kinase-1 and placental growth factor predicting hypertensive disorders of pregnancy. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health, 2013. 3(4): p. 215-221. [CrossRef]
- Verlohren, S., et al., An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am J Obstet Gynecol, 2010. 202(2): p. 161.e1-161.e11.
- Nikuei, P., et al., Diagnostic accuracy of sFlt1/PlGF ratio as a marker for preeclampsia. BMC Pregnancy and Childbirth, 2020. 20(1): p. 80.
- Flint, E.J., et al., The role of angiogenic factors in the management of preeclampsia. Acta Obstet Gynecol Scand, 2019. 98(6): p. 700-707. [CrossRef]
- Businge, C., et al., Iodine deficiency in pregnancy as a predictor of Sub-clinical hypothyroidism, preeclampsia and future cardiovascular disease. Asian J Clin Nutr, 2017. 9(3): p. 118-23. [CrossRef]
- Longo-Mbenza, B., et al., Diets rich in vegetables and physical activity are associated with a decreased risk of pregnancy induced hypertension among rural women from Kimpese, DR Congo. Niger J Med, 2008. 17(1): p. 45-9.
- Businge CB, Longo-Mbenza B, Kengne AP. Serum potassium/magnesium ratio, urinary iodine concentration, thyroid stimulating hormone, fasting plasma glucose, and the oxidized LDL/albumin ratio: potential biomarkers of preeclampsia. Proceedings of the Clinical Research & Biomarkers conference, Prague, Czech Republic, July 19-20, 2018.
- Magee, L.A., et al., The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens, 2022. 27: p. 148-169. [CrossRef]
- Muntner, P., et al., Measurement of Blood Pressure in Humans: A Scientific Statement From the American Heart Association. Hypertension, 2019. 73(5): p. e35-e66. [CrossRef]
- Ukah, U.V., et al., Prediction of adverse maternal outcomes from pre-eclampsia and other hypertensive disorders of pregnancy: A systematic review. Pregnancy Hypertension, 2018. 11: p. 115-123. [CrossRef]
- Stepan, H., et al., Clinical utility of sFlt-1 and PlGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound in Obstetrics & Gynecology, 2023. 61(2): p. 168-180. [CrossRef]
- ACOG, Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol, 2020. 135(6): p. e237-e260.
- Andermann, A., et al., Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull World Health Organ, 2008. 86(4): p. 317-9. [CrossRef]
- Ayuk, J. and N.J. Gittoes, Contemporary view of the clinical relevance of magnesium homeostasis. Ann Clin Biochem, 2014. 51(Pt 2): p. 179-88. [CrossRef]
- Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference, I., The National Academies Collection: Reports funded by National Institutes of Health, in Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. 1997, National Academies Press (US)Copyright © 1997, National Academy of Sciences.: Washington (DC).
- Van Laecke, S., Hypomagnesemia and hypermagnesemia. Acta Clin Belg, 2019. 74(1): p. 41-47.
- Whang, R. and K.W. Ryder, Frequency of hypomagnesemia and hypermagnesemia. Requested vs routine. Jama, 1990. 263(22): p. 3063-4. [CrossRef]
- Maier, J.A., Endothelial cells and magnesium: implications in atherosclerosis. Clin Sci (Lond), 2012. 122(9): p. 397-407. [CrossRef]
- Manjareeka, M. and S. Nanda, Serum electrolyte levels in preeclamptic women: A comparative study. International Journal of Pharma and Bio Sciences, 2012. 3: p. 572-578.
- Eslamzadeh, A., et al., Serum Calcium and Magnesium Levels in Women Presenting with Pre-eclampsia: A Systematic Review and Meta-analysis Based on Observational Studies. Galen Med J, 2023. 12: p. 1-19. [CrossRef]
- Atiba, A., et al., Serum Magnesium Levels in Second and Third Trimesters of Pregnancy in Patients That Developed Pre-Eclampsia and Feto-Maternal Outcome. Open Journal of Obstetrics and Gynecology, 2020. 10: p. 108-117. [CrossRef]
- Adekanle, D., et al., Serum magnesium levels in healthy pregnant and pre-eclamptic patients—A cross-section study. Open Journal of Obstetrics and Gynecology, 2014. 2014. [CrossRef]
- Ephraim, R.K., et al., Serum calcium and magnesium levels in women presenting with pre-eclampsia and pregnancy-induced hypertension: a case-control study in the Cape Coast metropolis, Ghana. BMC Pregnancy Childbirth, 2014. 14: p. 390. [CrossRef]
- Tesfa, E., et al., Association of maternal serum magnesium with pre-eclampsia in African pregnant women: a systematic review and meta-analysis. International Health, 2023. 16(1): p. 14-22. [CrossRef]
- Kostov, K. and L. Halacheva, Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension. Int J Mol Sci, 2018. 19(6). [CrossRef]
- AlShanableh, Z. and E.C. Ray, Magnesium in hypertension: mechanisms and clinical implications. Frontiers in Physiology, 2024. 15. [CrossRef]
- Sontia, B. and R.M. Touyz, Role of magnesium in hypertension. Archives of Biochemistry and Biophysics, 2007. 458(1): p. 33-39.
- Ferrè, S., et al., Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2010. 1802(11): p. 952-958. [CrossRef]
- Rodríguez-Ortiz, M.E., et al., Serum Magnesium is associated with Carotid Atherosclerosis in patients with high cardiovascular risk (CORDIOPREV Study). Scientific Reports, 2019. 9(1): p. 8013. [CrossRef]
- Maier, J.A., Low magnesium and atherosclerosis: an evidence-based link. Mol Aspects Med, 2003. 24(1-3): p. 137-46. [CrossRef]
- Abel, M.H., et al., Insufficient maternal iodine intake is associated with subfecundity, reduced foetal growth, and adverse pregnancy outcomes in the Norwegian Mother, Father and Child Cohort Study. BMC Medicine, 2020. 18(1): p. 211. [CrossRef]
- Cuellar-Rufino, S., et al., Iodine levels are associated with oxidative stress and antioxidant status in pregnant women with hypertensive disease. Nutr Hosp, 2017. 34(3): p. 661-666. [CrossRef]
- Gajewska, K., M. Laskowska, and A. Blazewicz, Urinary iodine as an important indicator for preeclampsia: a Polish perspective. Current Issues in Pharmacy and Medical Sciences, 2021. 34(3): p. 154-159. [CrossRef]
- Andersson, M., V. Karumbunathan, and M.B. Zimmermann, Global iodine status in 2011 and trends over the past decade. J Nutr, 2012. 142(4): p. 744-50. [CrossRef]
- Pearce, E.N., M. Andersson, and M.B. Zimmermann, Global iodine nutrition: Where do we stand in 2013? Thyroid, 2013. 23(5): p. 523-8. [CrossRef]
- König, F., et al., Ten repeat collections for urinary iodine from spot samples or 24-hour samples are needed to reliably estimate individual iodine status in women. The Journal of nutrition, 2011. 141(11): p. 2049-2054. [CrossRef]
- An, D., et al., Variations in the Urinary Iodine Concentration and Urinary Iodine/Creatinine Ratio among Preschool Children. International Journal of Endocrinology, 2023. 2023(1): p. 6779094. [CrossRef]
- Andersson, M., et al., Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: conclusions and recommendations of the Technical Consultation. Public Health Nutr, 2007. 10(12a): p. 1606-11. [CrossRef]
- Rasmussen, L.B., L. Ovesen, and E. Christiansen, Day-to-day and within-day variation in urinary iodine excretion. Eur J Clin Nutr, 1999. 53(5): p. 401-7. [CrossRef]
- Lazarus, J.H. Thyroid Regulation and Dysfunction in the Pregnant Patient. 2016.
- Vidal, Z.E., et al., Oxidative stress increased in pregnant women with iodine deficiency. Biol Trace Elem Res, 2014. 157(3): p. 211-7. [CrossRef]
- Redman, C.W. and I.L. Sargent, Placental debris, oxidative stress and pre-eclampsia. Placenta, 2000. 21(7): p. 597-602. [CrossRef]
- Winkler, R., Iodine—A Potential Antioxidant and the Role of Iodine/Iodide in Health and Disease. Natural Science, 2015. 07: p. 548-557. [CrossRef]
- Winkler, R., S. Griebenow, and W. Wonisch, Effect of iodide on total antioxidant status of human serum. Cell Biochemistry and Function, 2000. 18(2): p. 143-146.
- ADA, A.D.A., Management of Diabetes in Pregnancy: Standards of Care in Diabetes-2024. Diabetes Care, 2024. 47(Suppl 1): p. S282-s294.
- Wilson, K.L., et al., Subclinical thyroid disease and the incidence of hypertension in pregnancy. Obstet Gynecol, 2012. 119(2 Pt 1): p. 315-20. [CrossRef]
- Lundgaard, M.H., et al., Maternal hypothyroidism and the risk of preeclampsia: a Danish national and regional study. Maternal Health, Neonatology and Perinatology, 2024. 10(1): p. 16. [CrossRef]
- Hajifoghaha, M., et al., Association of thyroid function test abnormalities with preeclampsia: a systematic review and meta-analysis. BMC Endocrine Disorders, 2022. 22(1): p. 240. [CrossRef]
- Canzoneri, B.J., et al., Increased neutrophil numbers account for leukocytosis in women with preeclampsia. Am J Perinatol, 2009. 26(10): p. 729-32. [CrossRef]
- Kang, Q., et al., Predictive role of neutrophil-to-lymphocyte ratio in preeclampsia: A meta-analysis including 3982 patients. Pregnancy Hypertension, 2020. 20: p. 111-118.
- Tsukimori, K., H. Nakano, and N. Wake, Difference in neutrophil superoxide generation during pregnancy between preeclampsia and essential hypertension. Hypertension, 2007. 49(6): p. 1436-41.
- Qiu, C., et al., Oxidized low-density lipoprotein (Oxidized LDL) and the risk of preeclampsia. Physiol Res, 2006. 55(5): p. 491-500. [CrossRef]
- León-Reyes, G., et al., Oxidative profiles of LDL and HDL isolated from women with preeclampsia. Lipids in Health and Disease, 2017. 16(1): p. 90. [CrossRef]
- Scazzocchio, E., et al., Performance of a first-trimester screening of preeclampsia in a routine care low-risk setting. Am J Obstet Gynecol, 2013. 208(3): p. 203.e1-203.e10. [CrossRef]
- Poon, L.C., et al., Combined screening for preeclampsia and small for gestational age at 11-13 weeks. Fetal Diagn Ther, 2013. 33(1): p. 16-27. [CrossRef]
| Cases | Controls | ||
|---|---|---|---|
| Biomarker | Median (25p, 75p) | Median (25p, 75p) | P |
| HDL –C mg/dL | 16.0 (12.0, 29.6) | 21.5 (12.0, 45.8) | 0.080 |
| LDL –C mg/dL | 125.0 (87.0, 154.0) | 121.0 (67.0, 134.0) | 0.003 |
| Oxidised LDL IU/L | 167.0 (89.0, 221.0) | 82.0 (19.7, 212) | <0.0001 |
| Triglycerides mg/dL | 144.5 (84.0, 189.0) | 84.0 [67.8, 139.5) | <0.0001 |
| Total Cholesterol mg/dL | 145.0 (125.0, 199.0) | 126.0 (95.3, 145.2) | <0.0001 |
| Waist Circumference cm | 79.0 (72.0, 90.0) | 75.0 (70.0, 79.0) | <0.0001 |
| Hip circumference cm | 98.0 (87.0, 104.0) | 92.0 (85, 97.3) | 0.001 |
| BMI Kg/M2 | 24.6 (20.8, 28.0) | 21.8 (19.0, 25.8) | <0.0001 |
| FPG mg/dL | 116.0 (99.0, 180.0) | 103.0 (89.0, 125.7) | <0.0001 |
| Cortisol nmol/L | 32.9 (18.0, 54.0) | 18.0 (18.0, 32.0) | <0.0001 |
| Vitamin C mg/dL | 0.45 (0.21, 2.0) | 0.60 (0.22, 5.0) | 0.002 |
| Selenium µg/L | 9.0 (9.0, 17.3) | 44.0 (21.0, 102.7) | <0.0001 |
| UIC µg/L | 90.0 (78.0, 157.2) | 351.0 (299.0, 555.0) | <0.0001 |
| TSH mIU/L | 6.3 (4.1, 8.0) | 2.5 (0.13, 4.4) | <0.0001 |
| T3 ng/mL | 1.32 (1.16, 1.68) | 1.16 (1.0, 1.36) | <0.0001 |
| T4 µg/dL | 10.9 (9.3, 12.4) | 9.8 (8.4, 11.5) | <0.0001 |
| NO µmo/L | 2.0 (1.0, 6.0) | 20.9 (4.0, 43.3) | <0.0001 |
| Oxid LDL/ Alb ratio | 13.0 (9.0, 16.0) | 3.6 (2.0, 12) | <0.0001 |
| Serum Ferritin ng/mL | 213.0 (180.0, 345.0) | 199.0 (167.0, 340.0) | 0.114 |
| GGT U/L | 99.0 (88.0, 113.0) | 33.0 (11.0. 99.0) | <0.0001 |
| CRP mg/dL | 58.5 (39.0, 66.0) | 57.0 (12.0, 88.0) | 0.024 |
| Lymphocyte % | 22.0 (16.0, 25.6) | 26.5 (23.5, 38.5) | <0.0001 |
| Serum K+ mmol/L | 3.6 (2.8, 6.0) | 4.0 (3.8, 4.0) | 0.149 |
| Serum Mg2+ mmol/L | 0.12 (0.09, 0.19) | 0.97 (0.76, 1.0) | <0.0001 |
| K+/Mg2+ ratio | 28.5 (17.3, 44.3) | 4.1 (3.7, 5.3) | <0.0001 |
| Variable | B | S.E. | Wald | Sig. | Exp(B) | 95% C.I. Exp(B) |
|---|---|---|---|---|---|---|
| Oxidised LDL/albumin | 0.160 | 0.061 | 6.99 | 0.008 | 1.174 | 1.042 – 1.32 |
| Lymphocytes | -0.282 | 0.065 | 19.05 | 0.000 | 0.755 | 0.665 – 0.856 |
| UIC | -0.013 | 0.003 | 16.96 | 0.000 | 0.987 | 0.981 – 0.993 |
| K+/Mg2+ ratio | 0.160 | 0.027 | 35.83 | 0.000 | 1.173 | 1.113 –1.236 |
| TSH | 0.336 | 0.132 | 6.51 | 0.011 | 1.400 | 1.081 –1.812 |
| FPG | 0.441 | 0.003 | 5.12 | 0.024 | 0.993 | 0.986 – 0.999 |
| Constant | 5.61 | 2.46 | 5.22 | 0.022 | 272.892 |
| Analyte | Cut off Limit |
Sensitivity | Specificity | AUC | 95% CI | P |
|---|---|---|---|---|---|---|
| K+/Mg2+ | >22 | 93.0 % | 95.0% | 0.973 | 0.953 – 0.993 | <0.0001 |
| UIC | <239 µg/L | 98.0 % | 80.0% | 0.920 | 0.893 – 0.946 | <0.0001 |
| FPG | >95mg/dL | 81.2% | 91.3% | 0.860 | 0.822 – 0.897 | <0.0001 |
| TSH | >3.9 mIU/L | 78.0% | 73.0% | 0.812 | 0.771 – 0.854 | <0.0001 |
| Lymphocyte % | <23.5 | 72.7 % | 63.2 % | 0.773 | 0.729 – 0.818 | <0.0001 |
| OxLDL/Alb Ratio | >7.0 | 80.0 % | 65.0% | 0.746 | 0.695 – 0.797 | <0.0001 |
| Selenium | <20 µg/L | 79.3% | 96.0% | 0.885 | 0.843 – 0.926 | <0.0001 |
| Nitric oxide | <10 µg/L | 60% | 94% | 0.784 | 0.730 – 0.837 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).