Submitted:
20 February 2025
Posted:
21 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Randomisation and Blinding
2.4. Procedure
2.5. Outcome Measures
2.5.1. Hamstring Flexibility
2.5.2. Quadriceps Flexibility
2.5.3. Muscle Stiffness
2.6. Interventions
2.6.1. Proprioceptive Neuromuscular Facilitation Technique
2.6.2. Electrical Muscle Elongation Technique
2.6.3. No Intervention
2.7. Statistical Analysis
3. Results
3.1. Hamstring Flexibility
3.2. Quadriceps Flexibility
3.3. Hamstring Muscle Stiffness
3.4. Quadriceps Muscle Stiffness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maniar, N.; Carmichael, D.S.; Hickey, J.T.; Timmins, R.G.; San Jose, A.J.; Dickson, J.; Opar, D. , Incidence and prevalence of hamstring injuries in field-based team sports: a systematic review and meta-analysis of 5952 injuries from over 7 million exposure hours. British journal of sports medicine 2023, 57, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Danielsson, A.; Horvath, A.; Senorski, C.; Alentorn-Geli, E.; Garrett, W.E.; Cugat, R.; Samuelsson, K.; Hamrin Senorski, E. , The mechanism of hamstring injuries - a systematic review. BMC musculoskeletal disorders 2020, 21, 641–10.1186. [Google Scholar] [CrossRef] [PubMed]
- Chavarro-Nieto, C.; Beaven, M.; Gill, N.; Hébert-Losier, K. , Hamstrings injury incidence, risk factors, and prevention in Rugby Union players: a systematic review. The Physician and sportsmedicine 2023, 51, 1–19. [Google Scholar] [CrossRef]
- Ekstrand, J.; Bengtsson, H.; Waldén, M.; Davison, M.; Khan, K.M.; Hägglund, M. , Hamstring injury rates have increased during recent seasons and now constitute 24% of all injuries in men's professional football: the UEFA Elite Club Injury Study from 2001/02 to 2021/22. British journal of sports medicine 2022, 57, 292–298. [Google Scholar] [CrossRef]
- Al Attar, W.S.A.; Soomro, N.; Sinclair, P.J.; Pappas, E.; Sanders, R.H. , Effect of Injury Prevention Programs that Include the Nordic Hamstring Exercise on Hamstring Injury Rates in Soccer Players: A Systematic Review and Meta-Analysis. Sports medicine (Auckland, N.Z.) 2017, 47, 907–916. [Google Scholar] [CrossRef]
- Opar, D.A.; Williams, M.D.; Shield, A.J. , Hamstring strain injuries: factors that lead to injury and re-injury. Sports medicine (Auckland, N.Z.) 2012, 42, 209–226. [Google Scholar] [CrossRef]
- Wolski, L.; Pappas, E.; Hiller, C.; Halaki, M.; Fong Yan, A. , Is there an association between high-speed running biomechanics and hamstring strain injury? A systematic review. Sports biomechanics 2024, 23, 1313–1339. [Google Scholar] [CrossRef]
- Mueller-Wohlfahrt, H.W.; Haensel, L.; Mithoefer, K.; Ekstrand, J.; English, B.; McNally, S.; Orchard, J.; van Dijk, C.N.; Kerkhoffs, G.M.; Schamasch, P.; Blottner, D.; Swaerd, L.; Goedhart, E.; Ueblacker, P. , Terminology and classification of muscle injuries in sport: the Munich consensus statement. British journal of sports medicine 2013, 47, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Witvrouw, E.; Danneels, L.; Asselman, P.; D'Have, T.; Cambier, D. , Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. A prospective study. The American journal of sports medicine 2003, 31, 41–46. [Google Scholar] [CrossRef]
- Erol, E.; Bulut, B.N. , Acute effect of instrument-assisted soft tissue mobilization on hamstring flexibility via fascial chain. BMC musculoskeletal disorders 2024, 25, 1046–10.1186. [Google Scholar] [CrossRef]
- O'Sullivan, K.; Murray, E.; Sainsbury, D. , The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects. BMC musculoskeletal disorders 2009, 10, 37–10.1186. [Google Scholar] [CrossRef] [PubMed]
- Sadler, S.G.; Spink, M.J.; Ho, A.; De Jonge, X.J.; Chuter, V.H. , Restriction in lateral bending range of motion, lumbar lordosis, and hamstring flexibility predicts the development of low back pain: a systematic review of prospective cohort studies. BMC musculoskeletal disorders 2017, 18, 179–10.1186. [Google Scholar] [CrossRef]
- Hori, M.; Hasegawa, H.; Takasaki, H. , Comparisons of hamstring flexibility between individuals with and without low back pain: systematic review with meta-analysis. Physiotherapy theory and practice 2021, 37, 559–582. [Google Scholar] [CrossRef] [PubMed]
- Jankaew, A.; Chen, J.C.; Chamnongkich, S.; Lin, C.F. , Therapeutic Exercises and Modalities in Athletes With Acute Hamstring Injuries: A Systematic Review and Meta-analysis. Sports health 2023, 15, 497–511. [Google Scholar] [CrossRef]
- Rudisill, S.S.; Varady, N.H.; Kucharik, M.P.; Eberlin, C.T.; Martin, S.D. , Evidence-Based Hamstring Injury Prevention and Risk Factor Management: A Systematic Review and Meta-analysis of Randomized Controlled Trials. The American journal of sports medicine 2023, 51, 1927–1942. [Google Scholar] [CrossRef]
- Poursalehian, M.; Lotfi, M.; Zafarmandi, S.; Arabzadeh Bahri, R.; Halabchi, F. , Hamstring Injury Treatments and Management in Athletes: A Systematic Review of the Current Literature. JBJS reviews, 0016. [Google Scholar]
- Medeiros, D.M.; Cini, A.; Sbruzzi, G.; Lima, C.S. , Influence of static stretching on hamstring flexibility in healthy young adults: Systematic review and meta-analysis. Physiotherapy theory and practice 2016, 32, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Liu, L.; Li, H. , Dynamic and static stretching on hamstring flexibility and stiffness: A systematic review and meta-analysis. Heliyon 2023, 9, e18795–10.1016. [Google Scholar] [CrossRef]
- Castellote-Caballero, Y.; Valenza, M.C.; Martín-Martín, L.; Cabrera-Martos, I.; Puentedura, E.J.; Fernández-de-Las-Peñas, C. , Effects of a neurodynamic sliding technique on hamstring flexibility in healthy male soccer players. A pilot study. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine 2013, 14, 156–162. [Google Scholar] [CrossRef]
- Espejo-Antúnez, L.; López-Miñarro, P.A.; Garrido-Ardila, E.M.; Castillo-Lozano, R.; Domínguez-Vera, P.; Maya-Martín, J. , Acute Effect of Electrical Muscle Elongation and Static Stretching in Hamstring Muscle Extensibility. Science & Sports 2015, 31, e1–e7. [Google Scholar]
- Puentedura, E.J.; Huijbregts, P.A.; Celeste, S.; Edwards, D.; In, A.; Landers, M.R.; Fernandez-de-Las-Penas, C. , Immediate effects of quantified hamstring stretching: hold-relax proprioceptive neuromuscular facilitation versus static stretching. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine 2011, 12, 122–126. [Google Scholar] [CrossRef]
- Freitas, S.R.; Mendes, B.; Firmino, T.; Correia, J.P.; Witvrouw, E.; Oliveira, R.; Vaz, J.R. , Semitendinosus and biceps femoris long head active stiffness response until failure in professional footballers with vs. without previous hamstring injury. European journal of sport science 2022, 22, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Antúnez, L.; López-Miñarro, P.A.; Garrido-Ardila, E.M.; Castillo-Lozano, R.; Domínguez-Vera, P.; Maya-Martín, J.; Albornoz-Cabello, M. , A comparison of acute effects between Kinesio tape and electrical muscle elongation in hamstring extensibility. Journal of back and musculoskeletal rehabilitation 2015, 28, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Antúnez, L.; Cardero-Durán, M.A.; Albornoz-Cabello, M. , ; Albornoz-Cabello, M., Maya-Martín, J., Ed. Elsevier: Madrid, 2021.Eléctrica. In Electroestimulación transcutánea y neuromuscular y neuromodulación, 2nd ed.; Albornoz-Cabello, M., Maya-Martín, J., Ed. Elsevier: Madrid, 2021. [Google Scholar]
- Espejo-Antúnez, L.; Cardero-Durán, M.A.; Albornoz-Cabello, M. , ; Elsevier: Madrid, 2022.Eléctrica. In Electroterapia Práctica. Avances en Investigación Clínica, 2nd ed.; Elsevier: Madrid, 2022. [Google Scholar]
- Schulz, K.F.; Altman, D.G.; Moher, D. , CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. Annals of internal medicine 2010, 152, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Bandy, W.D.; Irion, J.M.; Briggler, M. , The effect of time and frequency of static stretching on flexibility of the hamstring muscles. Physical therapy 1997, 77, 1090–1096. [Google Scholar] [CrossRef]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; Lamb, S.E.; Dixon-Woods, M.; McCulloch, P.; Wyatt, J.C.; Chan, A.W.; Michie, S. , Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ (Clinical research ed.) 2014, 348, g1687–10.1136. [Google Scholar] [CrossRef]
- Hamid, M.S.; Ali, M.R.; Yusof, A. , Interrater and Intrarater Reliability of the Active Knee Extension (AKE) Test among Healthy Adults. Journal of physical therapy science 2013, 25, 957–961. [Google Scholar] [CrossRef]
- Medeiros, D.M.; Miranda, L.L.P.; Marques, V.B.; de Araujo Ribeiro-Alvares, J.B.; Baroni, B.M. , Accuracy of the functional movement screen (FMS(TM)) active straight leg raise test to evaluate hamstring flexibility in soccer players. International journal of sports physical therapy 2019, 14, 877–884. [Google Scholar] [CrossRef]
- Neto, T.; Jacobsohn, L.; Carita, A.I.; Oliveira, R. , Reliability of the Active-Knee-Extension and Straight-Leg-Raise Tests in Subjects With Flexibility Deficits. Journal of sport rehabilitation, 1123. [Google Scholar]
- Iglesias-Caamaño, M.; Carballo-López, J.; Álvarez-Yates, T.; Cuba-Dorado, A.; García-García, O. , Intrasession Reliability of the Tests to Determine Lateral Asymmetry and Performance in Volleyball Players. Symmetry 2018, 10, 416–10.3390. [Google Scholar] [CrossRef]
- Mason, M.; Keays, S.L.; Newcombe, P.A. , The effect of taping, quadriceps strengthening and stretching prescribed separately or combined on patellofemoral pain. Physiotherapy research international : the journal for researchers and clinicians in physical therapy 2011, 16, 109–119. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Ortiz-Lucas, M.; Bravo-Esteban, E.; Mayoral-Del Moral, O.; Herrero-Gállego, P.; Gómez-Soriano, J. , Myotonometry as a measure to detect myofascial trigger points: an inter-rater reliability study. Physiological measurement 2018, 39, 115004–10.1088. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Stokes, M. , Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Archives of gerontology and geriatrics 2016, 62, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Lettner, J.; Królikowska, A.; Ramadanov, N.; Oleksy, Ł.; Hakam, H.T.; Becker, R.; Prill, R. , Evaluating the Reliability of MyotonPro in Assessing Muscle Properties: A Systematic Review of Diagnostic Test Accuracy. Medicina (Kaunas, Lithuania), 3390. [Google Scholar]
- Sharman, M.J.; Cresswell, A.G.; Riek, S. , Proprioceptive neuromuscular facilitation stretching : mechanisms and clinical implications. Sports medicine (Auckland, N.Z.) 2006, 36, 929–939. [Google Scholar] [CrossRef]
- Cohen, J. , Statistical Power Analysis for the Behavioral Science., 2nd ed.; Lawrence Erlbaum Associates: Hillsdale: NY, USA, 1988. [Google Scholar]
- Labata-Lezaun, N.; González-Rueda, V.; Llurda-Almuzara, L.; López-de-Celis, C.; Rodríguez-Sanz, J.; Cadellans-Arróniz, A.; Bosch, J.; Pérez-Bellmunt, A. , Correlation between Physical Performance and Tensiomyographic and Myotonometric Parameters in Older Adults. Healthcare (Basel, Switzerland), 3390. [Google Scholar]
- Gosselin, L.E.; Adams, C.; Cotter, T.A.; McCormick, R.J.; Thomas, D.P. , Effect of exercise training on passive stiffness in locomotor skeletal muscle: role of extracellular matrix. Journal of applied physiology (Bethesda, Md. : 1985) 1998, 85, 1011–1016. [Google Scholar] [CrossRef]
- Mullix, J.; Warner, M.; Stokes, M. , Testing Muscle Tone and Mechanical Properties of Rectus Femoris and Biceps Femoris Using a Novel Hand Held MyotonPRO Device: Relative Ratios and Reliability. J. Back Musculoskelet. Rehabil. 2015, 28, 93–100. [Google Scholar]
- Pérez-Bellmunt, A.; Casasayas, O.; Navarro, R.; Simon, M.; Martin, J.C.; Pérez-Corbella, C.; Blasi, M.; Ortiz, S.; Álvarez, P.; Pacheco, L. , Effectiveness of low-frequency electrical stimulation in proprioceptive neuromuscular facilitation techniques in healthy males: a randomized controlled trial. The Journal of sports medicine and physical fitness 2019, 59, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Espejo-Antúnez, L.; Carracedo-Rodríguez, M.; Ribeiro, F.; Venâncio, J.; De la Cruz-Torres, B.; Albornoz-Cabello, M. , Immediate effects and one-week follow-up after neuromuscular electric stimulation alone or combined with stretching on hamstrings extensibility in healthy football players with hamstring shortening. Journal of bodywork and movement therapies 2019, 23, 16–22. [Google Scholar] [CrossRef]
- Adhitya, I.; Yu, W.Y.; Bass, P.; Kinandana, G.P.; Lin, M.R. , Effects of Kinesio Taping and Transcutaneous Electrical Nerve Stimulation Combined With Active Stretching on Hamstring Flexibility. Journal of strength and conditioning research 2022, 36, 3087–3092. [Google Scholar] [CrossRef]
- Karasuno, H.; Ogihara, H.; Morishita, K.; Yokoi, Y.; Fujiwara, T.; Ogoma, Y.; Abe, K. , The combined effects of transcutaneous electrical nerve stimulation (TENS) and stretching on muscle hardness and pressure pain threshold. Journal of physical therapy science 2016, 28, 1124–1130. [Google Scholar] [CrossRef]
- Rocha, C.S.; Lanferdini, F.J.; Kolberg, C.; Silva, M.F.; Vaz, M.A.; Partata, W.A.; Zaro, M.A. , Interferential therapy effect on mechanical pain threshold and isometric torque after delayed onset muscle soreness induction in human hamstrings. Journal of sports sciences 2012, 30, 733–742. [Google Scholar] [CrossRef]
- Wanderley, D.; Lemos, A.; Moretti, E.; Barros, M.; Valença, M.M.; de Oliveira, D.A. , Efficacy of proprioceptive neuromuscular facilitation compared to other stretching modalities in range of motion gain in young healthy adults: A systematic review. Physiotherapy theory and practice 2019, 35, 109–129. [Google Scholar] [CrossRef]
- Behm, D.G.; Alizadeh, S.; Daneshjoo, A.; Anvar, S.H.; Graham, A.; Zahiri, A.; Goudini, R.; Edwards, C.; Culleton, R.; Scharf, C.; Konrad, A. , Acute Effects of Various Stretching Techniques on Range of Motion: A Systematic Review with Meta-Analysis. Sports medicine - open 2023, 9, 107–10.1186. [Google Scholar] [CrossRef]
- Zaidi, S.; Ahamad, A.; Fatima, A.; Ahmad, I.; Malhotra, D.; Al Muslem, W.H.; Abdulaziz, S.; Nuhmani, S. , Immediate and Long-Term Effectiveness of Proprioceptive Neuromuscular Facilitation and Static Stretching on Joint Range of Motion, Flexibility, and Electromyographic Activity of Knee Muscles in Older Adults. Journal of clinical medicine, 3390. [Google Scholar]
- Mani, E.; Kirmizigil, B.; Tüzün, E.H. , Effects of two different stretching techniques on proprioception and hamstring flexibility: a pilot study. Journal of comparative effectiveness research 2021, 10, 987–999. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, M.S.; Ozyurek, S.; Tosun, O.; Uzer, S.; Gelecek, N. , Comparison of effects of static, proprioceptive neuromuscular facilitation and Mulligan stretching on hip flexion range of motion: a randomized controlled trial. Biology of sport 2016, 33, 89–94. [Google Scholar] [CrossRef]
- Hindle, K.B.; Whitcomb, T.J.; Briggs, W.O.; Hong, J. , Proprioceptive Neuromuscular Facilitation (PNF): Its Mechanisms and Effects on Range of Motion and Muscular Function. Journal of human kinetics 2012, 31, 105–113. [Google Scholar] [CrossRef]
- Scrivener, K.; Dorsch, S.; McCluskey, A.; Schurr, K.; Graham, P.L.; Cao, Z.; Shepherd, R.; Tyson, S. , Bobath therapy is inferior to task-specific training and not superior to other interventions in improving lower limb activities after stroke: a systematic review. Journal of physiotherapy 2020, 66, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.M.; Kerrigan, D.C.; Fritz, J.M.; Saliba, E.N.; Gansneder, B.; Ingersoll, C.D. , Contribution of hamstring fatigue to quadriceps inhibition following lumbar extension exercise. Journal of sports science & medicine 2006, 5, 70–79. [Google Scholar]
- Madić, D.; Obradović, B.; Golik-Perić, D.; Marinković, D.; Trajković, N.; Gojković, Z. , The isokinetic strength profile of semi-professional soccer players according to low back pain. Journal of back and musculoskeletal rehabilitation 2020, 33, 501–506. [Google Scholar] [CrossRef]
- Afonso, J.; Clemente, F.M.; Nakamura, F.Y.; Morouço, P.; Sarmento, H.; Inman, R.A.; Ramirez-Campillo, R. , The Effectiveness of Post-exercise Stretching in Short-Term and Delayed Recovery of Strength, Range of Motion and Delayed Onset Muscle Soreness: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Frontiers in physiology 2021, 12, 677581–10.3389. [Google Scholar] [CrossRef]
- Freitas, S.R.; Mendes, B.; Le Sant, G.; Andrade, R.J.; Nordez, A.; Milanovic, Z. , Can chronic stretching change the muscle-tendon mechanical properties? A review. Scandinavian journal of medicine & science in sports 2018, 28, 794–806. [Google Scholar]
- Miyamoto, N.; Kimura, N.; Hirata, K. , Non-uniform distribution of passive muscle stiffness within hamstring. Scandinavian journal of medicine & science in sports 2020, 30, 1729–1738. [Google Scholar]
- Russell, A.; Choi, B.; Robinson, D.; Penailillo, L.; Earp, J.E. , Acute and Chronic Effects of Static Stretching on Intramuscular Hamstring Stiffness. Scandinavian journal of medicine & science in sports 2024, 34, e14670–10.1111. [Google Scholar]
- Hatano, G.; Suzuki, S.; Matsuo, S.; Kataura, S.; Yokoi, K.; Fukaya, T.; Fujiwara, M.; Asai, Y.; Iwata, M. , Hamstring Stiffness Returns More Rapidly After Static Stretching Than Range of Motion, Stretch Tolerance, and Isometric Peak Torque. Journal of sport rehabilitation 2019, 28, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.A.; McNair, P.J. , Passive force, angle, and stiffness changes after stretching of hamstring muscles. Medicine and science in sports and exercise 2004, 36, 1944–1948. [Google Scholar] [CrossRef] [PubMed]
- Miranda, H.; FH, D.E.F.; AA, D.E.O.; Dos Santos Ribeiro, J.S.; JBP, D.E.C.; Alvarenga, R.L.; Willardson, J.M. , Effect of Different Numbers of Interset Antagonist Proprioceptive Neuromuscular Facilitation Stretching on the Total Number of Repetitions for the Agonists. International journal of exercise science 2022, 15, 498–506. [Google Scholar]
- Vanderthommen, M.; Triffaux, M.; Demoulin, C.; Crielaard, J.M.; Croisier, J.L. , Alteration of muscle function after electrical stimulation bout of knee extensors and flexors. Journal of sports science & medicine 2012, 11, 592–599. [Google Scholar]

| EME Group (n=21) | PNF Group (n = 22) | CT Group (n = 22) | p-Value | |
| Age (years) | 23.45 ± 3.92 | 21.89 ± 3.58 | 23.71 ± 5.44 | 0.338 |
| Gender (male) | 16 (76.19%) | 16 (72.72%) | 13 (59.09%) | 0.435 |
| Height (m) | 1.77 ± 0.09 | 1.77 ± 0.10 | 1.74 ± 0.09 | 0.647 |
| Weight (kg) | 71.95 ± 14.59 | 72.33 ± 15.58 | 68.74 ± 8.10 | 0.614 |
| Body Mass Index (BMI) (kg/m2) | 22.77 ± 2.91 | 22.22 ± 3.07 | 23.64 ± 2.33 | 0.257 |
| Dominance (right) | 16 (76.19%) | 20 (90.90%) | 22 (100%) | 0.040 |
|
IPAQ Moderate High |
11 (52.38%) 10 (47.62%) |
5 (22.73%) 17 (77.27%) |
6 (27.27%) 16 (72.73%) |
0.013 |
| Descriptive Data | Within-Groups Effect | Between-Groups Effect | |||||||||||
| Variable |
Pre-test mean ± SD median [interquartile range] |
Post-test mean ± SD median [interquartile range] |
Follow-up mean ± SD median [interquartile range] |
Post-test vs pre-test | Follow-up vs pre-test | Post-test |
Follow-up |
||||||
| p Value | Effect size | p Value | Effect size | p Value | p Value (significant) -Effect size | p Value | p Value (significant) -Effect size | ||||||
| AKE test [°] | R | EME PNF CT |
46.85 ± 8.53 50 [30–60] 51.11 ± 8.14 50 [40–70] 53.10 ± 7.15 55 [40–65] |
62.89 ± 9.47 65 [50–80] 57.50 ± 8[40–80[40–80.45 60 [40–70] 57.62 ± 7.35 55 [50–80] |
59.74± 8.89 60 [50–80] 62.78 ± 10.74 62.5 [40–80] 56.66 ± 6.58 56 [50–80] |
<0.001§ 0.067§ 0.135§ |
1.527 0.817 0.552 |
0.002§ <0.001§ 0.244§ |
1.234 1.561 0.541 |
0.305‡ | EME-CT 0.622 |
0.429‡ | EME-CT 0.394 |
| PNF-CT 0.015 |
PNF-CT 0.687 |
||||||||||||
| EME-PNF 0.601 |
EME-PNF 0.308 |
||||||||||||
| L | EME PNF CT |
47.10 ± 8.71 50 [30-60] 50.56 ± 7.05 50 [40-70] 49.05 ± 7.68 50 [30-60] |
63.16 ± 10.03 65 [40-80] 59.44 ± 7.83 60 [40-70] 55.24 ± 9.55 50 [40-80] |
62.63 ± 6.32 60 [50-75] 63.89 ± 8.67 62.5 [50-80] 56.29 ± 9.52 55 [30-70] |
<0.001§ 0.003§ 0.651§ |
1.326 1.083 0.524 |
<0.001§ <0.001§ 0.124§ |
1.704 1.444 0.760 |
0.032‡ | EME-CT 0.016 ͛-0.809 |
0.456‡ | EME-CT 0.785 |
|
| PNF-CT 0.067 ͛-0.481 |
PNF-CT 0.835 |
||||||||||||
| EME-PNF 0.248 ͛-0.413 |
EME-PNF 0.166 |
||||||||||||
| SLR test [°] | R | EME PNF CT |
61.32 ± 7.23 60 [50-75] 61.94 ± 9.87 60 [40-80] 64.29 ± 6.57 65 [45-70] |
80.26 ± 6.97 80 [70-90] 75.83 ± 9.89 77.5 [50-90] 69.52 ± 9.20 70 [50-85] |
80.26 ± 7.35 80 [70-90] 76.67 ± 9.24 80 [50-90] 70.71 ± 6.94 70 [55-85] |
<0.001§ 0.008§ 0.180§ |
1.920 1.123 0.568 |
<0.001§ 0.001§ 0.102§ |
2.090 1.185 0.925 |
0.243‡ | EME-CT 1.316 |
0.151‡ | EME-CT 1.336 |
| PNF-CT 0.661 |
PNF-CT 0.729 |
||||||||||||
| EME-PNF 0.518 |
EME-PNF 0.430 |
||||||||||||
| L | EME PNF CT |
57.90 ± 9.33 60 [40-75] 61.94 ± 8.07 60 [50-85] 63.57 ± 5.04 65 [50-70] |
78.95 ± 7.37 80 [70-95] 78.61 ± 9.82 80 [60-90] 71.90 ± 11.45 70 [50-90] |
78.95 ± 7.37 80 [70-90] 77.22 ± 8.26 80 [60-90] 71.90 ± 10.30 70 [60-90] |
<0.001§ <0.001§ 0.092§ |
1.983 2.028 0.728 |
<0.001§ 0.001§ 0.080§ |
2.658 1.436 0.809 |
0.098‡ | EME-CT 0.732 |
0.821‡ | EME-CT 0.787 |
|
| PNF-CT 0.629 |
PNF-CT 0.568 |
||||||||||||
| EME-PNF 0.039 |
EME-PNF 0.221 |
||||||||||||
| Descriptive Data | Within-Groups Effect | Between-Groups Effect | |||||||||||
| Variable |
Pre-test mean ± SD median [interquartile range] |
Post-test mean ± SD median [interquartile range] |
Follow-up mean ± SD median [interquartile range] |
Post-test vs pre-test | Follow-up vs pre-test | Post-test |
Follow-up |
||||||
| p Value | Effect size | p Value | Effect size | p Value | p Value (significant) -Effect size | p Value | p Value (significant) -Effect size | ||||||
| Maximum flexion of the knee [°] | R |
EME PNF CT |
139.21 ± 13.87 140 [105-165] 141.67 ± 9.39 142.5 [125-160] 145.00 ± 9.22 150 [120-160] |
143.68 ± 9.40 145 [125-160] 142.11 ± 7.95 140 [130-160] 140.48 ± 7.57 140 [130-160] |
143.16 ± 10.17 140 [125-160] 142.78 ± 6.69 142.5 [130-155] 141.67 ± 6.58 130 [130-155] |
0.069§ 0.803§ 0.076§ |
0.397 0.057 0.449 |
0.186§ 0.453§ 0.054§ |
0.468 0.164 0.427 |
0.302‡ | EME-CT 0.375 |
0.777‡ | EME-CT 0.044 |
| PNF-CT 0.210 |
PNF-CT 0.167 |
||||||||||||
| EME-PNF 0.180 |
EME-PNF 0.174 |
||||||||||||
| L |
EME PNF CT |
135.79 ± 11.93 135 [115-155] 139.72 ± 11.04 140[115-160] 140.48 ± 9.86 140 [115-165] |
140.53 ± 10.12 140 [120-160] 139.72 ± 9.15 140 [125-160] 137.14 ± 7.35 135 [125-155] |
140.53 ± 9.70 140 [125-160] 140.28 ± 7.37 140 [125-155] 138.57 ± 7.44 140 [125-155] |
0.045§ 0.617§ 0.076§ |
0.774 0.026 0.427 |
0.086§ 0.617§ 0.316§ |
0.382 0.073 0.297 |
0.327‡ | EME-CT 0.382 |
0.673‡ | EME-CT 0.227 |
|
| PNF-CT 0.309 |
PNF-CT 0.231 |
||||||||||||
| EME-PNF 0.084 |
EME-PNF 0.029 |
||||||||||||
| Distancebuttock-heel [cm] | R |
EME PNF CT |
13.59 ± 7.96 11.5 [0-33] 11.40 ± 6.52 11.5 [0-23] 10.58 ± 4.67 10 [0-19] |
9.74 ± 6.94 9.5 [0-22] 9.89 ± 5.81 10 [0-19.5] 11.14 ± 5.45 11 [0-21.5] |
9.68 ± 7.09 11 [0-23] 9.42 ± 6.60 10 [0-23] 10.36 ± 4.39 11 [0-18] |
<0.001† 0.287† 0.188† |
0.779 0.470 0.436 |
<0.001† 0.043† 0.862† |
0.958 0.666 0.275 |
0.604* | EME-CT 0.224 |
0.882* | EME-CT 0.115 |
| PNF-CT 0.222 |
PNF-CT 0.168 |
||||||||||||
| EME-PNF 0.023 |
EME-PNF 0.038 |
||||||||||||
| L |
EME PNF CT |
15.08 ± 7.71 14 [0-29] 12.22 ± 7.57 13.75 [0-28] 11.79 ± 5.70 12 [0-24] |
12.03 ± 7.29 10 [0-24] 11.39 ± 6.91 11.5 [0-25] 12.71 ± 5.69 13 [0-23] |
11.13 ± 7.02 11 [0-26] 10.28 ± 7.05 11 [0-26] 11.60 ± 5.41] 13 [0-21] |
<0.001† 0.999† 0.922† |
0.831 0.245 0.226 |
<0.001† 0.089† 0.999† |
0.982 0.613 0.051 |
0.555* | EME-CT 0.113 |
0.817* | EME-CT 0.074 |
|
| PNF-CT 0.228 |
PNF-CT 0.205 |
||||||||||||
| EME-PNF 0.090 |
EME-PNF 0.121 |
||||||||||||
| Descriptive Data | Within-Groups Effect | Between-Groups Effect | |||||||||||
| Variable |
Pre-test mean ± SD median [interquartile range] |
Post-test mean ± SD median [interquartile range] |
Follow-up mean ± SD median [interquartile range] |
Post-test vs pre-test | Follow-up vs pre-test | Post-test |
Follow-up |
||||||
| p Value | Effect size | p Value | Effect size | p Value | p Value (significant) -Effect size | p Value | p Value (significant) -Effect size | ||||||
| Oscillation frequency[Hz] | R |
EME PNF CT |
17.48 ± 1.59 17.4 [14.6-21.1] 17.02 ± 1.90 16.9 [13.4-21.5] 16.93 ± 2.14 17.1 [13.0-20.9] |
18.63 ± 1.58 18.7 [16.2-22.5] 17.39 ± 2.04 17.5 [13.5-20.8] 17.49 ± 2.19 17.9 [13.1-20.9] |
18.18 ± 1.48 18.5 [15.4-20.9] 17.12 ± 2.27 17.2 [12.6-20.4] 17.40 ± 2.32 17.5 [13.4-21.9] |
0.001† 0.483† 0.095† |
0.728 0.181 0.256 |
0.084† 0.999† 0.290† |
0.285 0.119 0.203 |
0.172* | EME-CT 0.597 |
0.163* | EME-CT 0.401 |
| PNF-CT 0.047 |
PNF-CT 0.122 |
||||||||||||
| EME-PNF 0.680 |
EME-PNF 0.553 |
||||||||||||
| L |
EME PNF CT |
17.34 ± 1.40 17.6 [15.3-20.1] 16.64 ± 2.16 16.6 [12.4-20.6] 16.96 ± 2.07 16.5 [12.8-21.2] |
18.19 ± 1.54 17.3 [15.2-20.3] 16.86 ± 1.65 16.9 [13.1-19.9] 16.57 ± 1.97 16.6 [12.9-20.2] |
17.17 ± 1.40 17.2 [14.4-19.9] 16.52 ± 2.20 16.6 [12.1-19.9] 16.50 ± 2.15 16.7 [12.4-20.5] |
0.005† 0.999† 0.560† |
0.552 0.133 0.198 |
0.999† 0.999† 0.231† |
0.121 0.055 0.214 |
0.177* | EME-CT 0.916 |
0.346* | EME-CT 0.369 |
|
| PNF-CT 0.160 |
PNF-CT 0.009 |
||||||||||||
| EME-PNF 0.833 |
EME-PNF 0.353 |
||||||||||||
| Decrement [arbitrary unit] | R |
EME PNF CT |
1.29 ± 0.14 1.26 [1.1-1.6] 1.24 ± 0.17 1.29 [1.0-1.6] 1.24 ± 0.18 1.25 [0.9-1.6] |
1.28 ± 0.17 1.29 [1.0-1.6] 1.23 ± 0.18 1.21 [1.0-1.7] 1.25 ± 0.19 1.28 [0.8-1.6] |
1.29 ± 0.16 1.21 [1.1-1.5] 1.27 ± 0.15 1.20 [1.1-1.5] 1.23 ± 0.18 1.20 [0.9-1.7] |
0.702† 0.921† 0.999† |
0.059 0.056 0.053 |
0.999† 0.300† 0.999† |
0.000 0.200 0.056 |
0.159* | EME-CT 0.166 |
0.473* | EME-CT 0.352 |
| PNF-CT 0.108 |
PNF-CT 0.241 |
||||||||||||
| EME-PNF 0.286 |
EME-PNF 0.129 |
||||||||||||
| L |
EME PNF CT |
1.28 ± 0.17 1.29 [1.0-1.6] 1.23 ± 0.18 1.21 [1.0-1.7] 1.25 ± 0.19 1.28 [0.8-1.6] |
1.30 ± 0.17 1.24 [1.1-1.7] 1.24 ± 0.17 1.24 [1.0-1.6] 1.22 ± 0.20 1.21 [1.0-1.7] |
1.30 ± 0.16 1.24 [1.0-1.6] 1.27 ± 0.19 1.29 [0.9-1.7] 1.23 ± 0.19 1.19 [1.0-1.7] |
0.900† 0.999† 0.892† |
0.118 0.056 0.150 |
0.882† 0.594† 0.900† |
0.125 0.211 0.105 |
0.428* | EME-CT 0.431 |
0.514* | EME-CT 0.399 |
|
| PNF-CT 0.108 |
PNF-CT 0.211 |
||||||||||||
| EME-PNF 0.353 |
EME-PNF 0.171 |
||||||||||||
| Stiffness [N/m] | R |
EME PNF CT |
328.88 ± 36.57 333 [261-399] 314.56 ± 54.05 307 [229-452] 314.57 ± 44.27 314 [219-386] |
354.24 ± 37.10 349 [292-449] 320.74 ± 53.11 311 [227-440] 317.71 ± 51.74 332 [291-394] |
342.76 ± 43.46 341 [264-434] 317.95 ± 54.55 311 [198-422] 311.95 ± 54.06 330 [199-414] |
0.002† 0.899† 0.921† |
0.684 0.116 0.061 |
0.207† 0.914† 0.834† |
0.319 0.062 0.048 |
0.062* | EME-CT 0.811 |
0.102* | EME-CT 0.628 |
| PNF-CT 0.058 |
PNF-CT 0.110 |
||||||||||||
| EME-PNF 0.731 |
EME-PNF 0.503 |
||||||||||||
| L |
EME PNF CT |
324.71 ± 34.33 320 [278-396] 307.32 ± 52.62 300 [195-401] 305.10 ± 48.03 318 [213-420] |
345.53 ± 35.17 341 [263-404] 312.42 ± 41.62 314 [214-410] 296.29 ± 48.10 296 [199-376] |
326.29 ± 41.10 327 [252-445] 307.42 ± 53.76 316 [191-414] 297.87 ± 48.86 305 [187-371] |
0.005† 0.899† 0.587† |
0.592 0.123 0.183 |
0.999† 0.999† 0.900† |
0.038 0.002 0.148 |
0.102* | EME-CT 1.169 |
0.153* | EME-CT 0.629 |
|
| PNF-CT 0.359 |
PNF-CT 0.186 |
||||||||||||
| EME-PNF 0.859 |
EME-PNF 0.394 |
||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
