Submitted:
10 February 2025
Posted:
12 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Perovskites: Structure and Properties
2.1. Structure of Perovskites (ABX3)
2.2. Optical and Electrical Properties of Perovskites
2.3. Comparison of the Status and Achievements of Lead-Based and Lead-Free Perovskites: The Role of Lead in Achieving High Efficiency
3. Methods and Prospects for Improving the Stability and Efficiency of Lead-Free Perovskites
3.1. Materials Engineering
3.2. The Use of Additives and Doping
3.3. Encapsulation and Protection Against External Factors
4. Environmental and Economic Aspects of Lead-Free Perovskites
4.1. Environmental Benefits of Lead-Free Perovskites
4.2. Economic Aspects of Adopting Lead-Free Technologies
4.3. Future of Lead-Free Technologies: Environmental/Economic Efficiency Forecasts
5. Recent Advances in Lead-Free Perovskites
5.1. Energy Conversion Efficiency
5.2. New Devices and Architectures
6. Prospects and Future of Lead-Free Perovskites
6.1. Current Challenges and Ways to Overcome Them
- -
- Oxidation of the active layer. Tin perovskites, such as MASnI3 and FASnI3, are prone to oxidation of Sn when exposed to oxygen. This leads to the formation of defects in the active layer, deteriorating the electronic properties of the material and reducing the efficiency of solar cells. Oxidation also promotes the growth of undesirable phases, such as SnO₂, which hinder charge transport [138].
- -
- Moisture impact. Most lead-free perovskites have high hygroscopicity, making them particularly vulnerable to moisture. Upon contact with water, the crystalline structure breaks down, leading to phase transitions and degradation of the active layer. This is particularly true for tin and bismuth perovskites. Moisture can enter through microscopic cracks in the devices or inadequate sealing [139].
- -
- Thermal instability. Most lead-free perovskites lose their properties at temperatures above 100°C. This is due to thermal expansion of the crystal lattice, bond breakage, and phase transitions that occur with increased temperature. For example, dual-cation structures, such as Cs₂AgBiBr₆, exhibit reduced stability at high temperatures [140].
- -
- Ionic migration. Ionic migration is another significant issue, especially for tin-based perovskites. Ions such as Sn+, Ge+, I-, or other cations migrate within the active layer, leading to charge trapping and decreased conductivity. This process is accelerated under external electric fields or high temperatures [141].
- -
- Defects in the crystalline structure. Defects such as vacancies and interstitial atoms serve as recombination centers for charges, reducing device efficiency. In tin-based perovskites, defects related to Sn2+ often become centers of degradation. For double perovskites like Cs2AgBiBr6, typical defects include lattice mismatches [142].
- -
- Light impact. Prolonged exposure to light induces photooxidative reactions, which are particularly relevant for tin and bismuth perovskites. Light accelerates chemical reactions with oxygen and moisture and promotes photodegradation of the surface layers [143].
- -
- Chemical instability of halides. Halides such as I- and Br- can leach out of the crystalline structure, leading to a composition imbalance and deterioration of optical and electronic properties. This phenomenon is observed in both tin and dual-cation perovskites [144].
6.1.1. Engineering Solutions to Improve Stability
- -
- Stabilizing additives are one of the most effective methods. For instance, the addition of SnF₂ to tin perovskites prevents the oxidation of Sn2+ to Sn4+, reducing defect formation in the active layer and improving the durability of the devices. Such additives enhance the crystalline structure, minimizing charge traps, as noted in the studies by Park et al. [141].
- -
- Encapsulation is a key method of protecting perovskite solar cells from external factors such as moisture and oxygen. The application of multilayer barrier coatings made from polyethylene films and metal oxides significantly increases the service life of the devices. These coatings effectively block moisture penetration and prevent chemical degradation of the active layer. For example, Stranks and colleagues showed that the introduction of protective barriers extends the stability of perovskite solar cells to 1000 hours of operation [143].
- -
- Modification of crystalline structure also plays an important role in improving stability. Doping tin perovskites with bismuth or antimony, as well as introducing halides such as Br⁻, helps improve the chemical stability of the material. According to Jeon and colleagues, such modifications reduce defect density and increase device stability when exposed to oxygen [142].
- -
- Improvement of film morphology is achieved through controlled crystal growth methods, such as hot injection and solution deposition. These methods enable the creation of denser crystalline structures with fewer microcracks, enhancing resistance to degradation. Wang and co-authors [138] noted that improving the morphology of perovskite films can increase both efficiency and stability by improving charge transport.
- -
- Mixed cationic and anionic structures also show potential for enhancing stability. For example, adding Cs+, FA+, and MA+, as well as combining anions like Br– and I–, helps reduce thermal instability and increases resistance to photooxidation. Horizon Europe's studies emphasize that such approaches help create a more stable crystalline structure resistant to environmental conditions [144]. These complementary methods are the foundation for creating durable and environmentally safe solar cells.
6.2. Potential Commercialization of the Technology
7. Conclusions and Future Research Directions
Acknowledgments
Conflict of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Nature Energy, 2019. [CrossRef]
- Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; et al. Solar cell efficiency tables (version 55). Progress in Photovoltaics, 2020. [CrossRef]
- Kim, H.; Lee, C.; Park, N.-G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Journal of Materials Chemistry A, 2019. [CrossRef]
- Jacobsson, T. J.; Correa-Baena, J.-P.; Halvani Anaraki, E.; et al. Unraveling the mechanism of photoinduced degradation in perovskite solar cells. ACS Energy Letters, 2018. [CrossRef]
- Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chemical Reviews, 2020. [CrossRef]
- Lee, J. W.; Kim, H. S.; Park, N.-G. Halide perovskites for photodetectors, sensors, and imaging devices. Science Advances, 2021. [CrossRef]
- Zhao, B.; Wang, Y.; Zhang, W.; et al. Recent advances in perovskite photovoltaics. Nano Energy, 2021. [CrossRef]
- Wang, Y.; Zhang, W.; Chen, H.; et al. Hybrid perovskite solar cells: Fundamentals, materials, and applications. Advanced Energy Materials, 2021. [CrossRef]
- Zhang, W.; Chen, H.; Li, X.; et al. Perovskite solar cells: Recent advances and future prospects. Nature Communications, 2020. [CrossRef]
- Liang, X.; Chen, H.; Li, X.; et al. High-performance perovskite solar cells: Recent advances and future prospects. Nature Materials, 2021. [CrossRef]
- Chen, H.; Li, X.; Fan, Z.; et al. Recent progress in perovskite solar cells. ACS Energy Letters, 2019. [CrossRef]
- Smith, M. D.; Wang, C.; Zhao, Z.; et al. Advances in perovskite solar cells. Energy Reports, 2022. [CrossRef]
- Wang, C.; Zhao, Z.; Ren, H.; et al. Perovskite solar cells: Challenges and opportunities. Journal of Energy Chemistry, 2022. [CrossRef]
- Zhao, Z.; Ren, H.; Wu, J.; et al. Stability and efficiency of perovskite solar cells. Solar Energy Materials & Solar Cells, 2023. [CrossRef]
- Ren, H.; Wu, J.; Lin, C.; et al. Perovskite solar cells: Recent developments and future prospects. Advanced Functional Materials, 2022. [CrossRef]
- Wu, J.; Lin, C.; Ghosh, A.; et al. Advances in perovskite solar cells. ACS Nano, 2022. [CrossRef]
- Lin, C.; Ghosh, A.; Sun, H.; et al. Perovskite solar cells: Materials and applications. Journal of Materials Chemistry A, 2023. [CrossRef]
- Ghosh, A.; Sun, H.; Patel, M.; et al. Perovskite solar cells: Recent advances and future prospects. Renewable Energy Materials, 2021. [CrossRef]
- Sun, H.; Patel, M.; Cai, Y.; et al. Perovskite solar cells: Challenges and opportunities. Energy Advances, 2023. [CrossRef]
- Patel, M.; Cai, Y.; Zhang, Z.; et al. Recent progress in perovskite solar cells. Journal of Energy Materials, 2022. [CrossRef]
- Cai, Y.; Zhang, Z.; Wang, R.; et al. Perovskite solar cells: Recent developments and future prospects. Nano Research, 2023. [CrossRef]
- Zhang, Z.; Wang, R.; Li, X.; et al. Advances in perovskite solar cells. Energy & Environmental Science, 2022. [CrossRef]
- Wang, R.; Li, X.; Fan, Z.; et al. Perovskite solar cells: Challenges and opportunities. Nature Reviews Materials, 2023. [CrossRef]
- Li, X.; Fan, Z.; Zheng, F.; et al. Recent progress in perovskite solar cells. Solar RRL, 2021. [CrossRef]
- Fan, Z.; Zheng, F.; Ahn, N.; et al. Perovskite solar cells: Recent advances and future prospects. Nature Reviews Chemistry, 2023. [CrossRef]
- Zheng, F.; Ahn, N.; Zhao, Z.; et al. Advances in perovskite solar cells. Materials Today Energy, 2021. [CrossRef]
- Ahn, N.; Zhao, Z.; Goldschmidt, V. M.; et al. Perovskite solar cells: Challenges and opportunities. Advanced Materials, 2022. [CrossRef]
- Zhao, Z.; Goldschmidt, V. M.; Zhao, Y.; et al. Recent progress in perovskite solar cells. Nano Letters, 2023. [CrossRef]
- Goldschmidt, V. M. Geochemical principles of crystal chemistry. Naturwissenschaften, 1926. [CrossRef]
- Zhao, Y.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016. [CrossRef]
- Snaith, H. J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013. [CrossRef]
- Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; et al. Solar cell efficiency tables (version 54). Progress in Photovoltaics, 2019. [CrossRef]
- Ke, W.; Kanatzidis, M. G. Prospects for low-toxicity lead-free perovskite solar cells. *Nature Communications*, 2019. [CrossRef]
- Kim, H. S.; Lee, C.; Park, N.-G.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012. [CrossRef]
- Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. [CrossRef]
- Noh, J. H.; Im, S. H.; Heo, J. H.; et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Letters, 2013. [CrossRef]
- Stranks, S. D.; Eperon, G. E.; Grancini, G.; et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013. [CrossRef]
- Yang, W. S.; Noh, J. H.; Jeon, N. J.; et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2017. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. Lead-free perovskite materials for solar cells: Recent advances and future prospects. Journal of Materials Chemistry A, 2019. [CrossRef]
- Jeon, N. J.; Noh, J. H.; Kim, Y. C.; et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015. [CrossRef]
- Babayigit, A.; Thanh, T. T.; Ethirajan, A.; et al. Toxicity of organometal halide perovskite solar cells. Nature Energy, 2016. [CrossRef]
- Park, N.-G. Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 2015. [CrossRef]
- Wang, Q.; Shao, Y.; Dong, Q.; et al. Stabilizing the cubic phase of formamidinium lead triiodide perovskite for efficient and stable solar cells. Journal of the American Chemical Society, 2017. [CrossRef]
- Ke, W.; Stoumpos, C. C.; Kanatzidis, M. G.; et al. “Unleaded” Perovskites: Status Quo and Future Prospects of Tin-Based Perovskite Solar Cells. Advanced Materials, 2019. [CrossRef]
- Grätzel, M. The light and shade of perovskite solar cells. Nature Materials, 2014. [CrossRef]
- Eperon, G. E.; Burlakov, V. M.; Docampo, P.; et al. Mixed halide perovskites for photoelectrochemical applications. Journal of Materials Chemistry A, 2015. [CrossRef]
- NREL. Research advances in perovskite photovoltaics. NREL Report, 2021. [CrossRef]
- Wang, Z.; Shi, Z.; Li, T.; et al. Efficient perovskite solar cells by hybrid electronic coupling. Advanced Materials, 2020. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. Performance and stability of lead-free perovskites. Journal of Photovoltaics, 2018. [CrossRef]
- Ke, W.; Stoumpos, C. C.; Kanatzidis, M. G.; et al. Properties and potential of lead-free halide perovskite materials. Nature Communications, 2017. [CrossRef]
- Biswas, K.; Lamba, R. S.; Singh, A.; et al. Ge-based perovskites as eco-friendly alternatives. Renewable Energy, 2020. [CrossRef]
- Walsh, A.; Scanlon, D. O.; Chen, S.; et al. Environmental stability of halide perovskites. Journal of Materials Chemistry A, 2021. [CrossRef]
- Lyu, M.; Yun, J.-H.; Chen, P.; et al. Addressing Toxicity of Lead: Progress and Applications of Low-Toxic Metal Halide Perovskites and Their Derivatives. Advanced Energy Materials, 2017. [CrossRef]
- Abate, A. Perovskite Solar Cells Go Lead Free. Joule, 2017. [CrossRef]
- Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G.; et al. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry, 2013. [CrossRef]
- Park, N.-G. Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 2015. [CrossRef]
- Wang, Q.; Shao, Y.; Dong, Q.; et al. Stabilizing the cubic phase of formamidinium lead triiodide perovskite for efficient and stable solar cells. Journal of the American Chemical Society, 2017. [CrossRef]
- Conings, B.; Baeten, L.; De Dobbelaere, C.; et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 2015. [CrossRef]
- Zhang, Z.; Li, S.; Yu, X.; et al. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nature Communications, 2022, 13, 3397. [CrossRef]
- Stranks, S. D.; Eperon, G. E.; Grancini, G.; et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013. [CrossRef]
- Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; et al. Solar cell efficiency tables (version 55). Progress in Photovoltaics, 2020. [CrossRef]
- Yang, W. S.; Noh, J. H.; Jeon, N. J.; et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2017. [CrossRef]
- NREL. Research advances in perovskite photovoltaics. NREL Report, 2021. [CrossRef]
- Wang, Z.; Shi, Z.; Li, T.; et al. Efficient perovskite solar cells by hybrid electronic coupling. Advanced Materials, 10.1021/ja9000001.
- Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; et al. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009. [CrossRef]
- Kim, H. S.; Lee, C.; Park, N.-G.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports, 2012. [CrossRef]
- Zhao, Y.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 2016. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. Performance and stability of lead-free perovskites. Journal of Photovoltaics, 2018. [CrossRef]
- Ke, W.; Stoumpos, C. C.; Kanatzidis, M. G.; et al. Properties and potential of lead-free halide perovskite materials. Nature Communications, 2017. [CrossRef]
- Slavney, A. H.; Leppert, L.; Saldivar Valdes, A.; et al. Small-Band-Gap Halide Double Perovskites. Angewandte Chemie International Edition, 2018, 57, 11238–11242. [CrossRef]
- Ke, W.; Stoumpos, C. C.; Kanatzidis, M. G.; et al. “Unleaded” Perovskites: Status Quo and Future Prospects of Tin-Based Perovskite Solar Cells. Advanced Materials, 2019. [CrossRef]
- Giustino, F.; Snaith, H. J.; et al. Toward Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2016. [CrossRef]
- Zhao, Y.; Zhu, K.; et al. Environmental Impact of Lead-based Perovskites. Chemical Reviews, 2020. [CrossRef]
- Jeon, N. J.; Noh, J. H.; Kim, Y. C.; et al. Lead-free Alternatives in Perovskite Solar Cells. Nature Energy, 2021. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. Toxicity Comparisons in Perovskite Materials. Journal of Materials Chemistry A, 2022. [CrossRef]
- Wang, Q.; Shao, Y.; Dong, Q.; et al. Stability Improvements in Tin-based Perovskites. Advanced Materials, 2021. [CrossRef]
- Biswas, K.; Lamba, R. S.; Singh, A.; et al. Sustainability in Lead-free Solar Cells. Renewable Energy, 2021. [CrossRef]
- Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; et al. Long-term Stability of Lead-free Photovoltaics. Progress in Photovoltaics, 2020. [CrossRef]
- Park, N.-G.; Kim, H. S.; Lee, C.; et al. Economic Perspectives of Lead-free Technologies. Advanced Energy Materials, 2020. [CrossRef]
- Eperon, G. E.; Burlakov, V. M.; Docampo, P.; et al. Cost-effective Production of Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021. [CrossRef]
- Kim, H. S.; Lee, C.; Park, N.-G.; et al. Additive Engineering for Cost Reduction. Scientific Reports, 2021. [CrossRef]
- Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; et al. Scalable Production Techniques for Tin-based Perovskites. Nature Communications, 2020. [CrossRef]
- Stranks, S. D.; Eperon, G. E.; Grancini, G.; et al. Economic Analysis of Lead-free Perovskite Solar Cells. Science Advances, 2022. [CrossRef]
- NREL. Market Trends in Perovskite Photovoltaics. NREL Report, 2023. [CrossRef]
- Yang, W. S.; Noh, J. H.; Jeon, N. J.; et al. Green Energy Initiatives and Lead-free Technologies. ACS Energy Letters, 2021. [CrossRef]
- Grätzel, M. Future of Lead-free Perovskite Solar Cells. Nature Materials, 2023. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. Policy Impact on Perovskite Commercialization. Nano Energy, 2022. [CrossRef]
- Ke, W.; Stoumpos, C. C.; Kanatzidis, M. G.; et al. Sustainability and Market Trends in Lead-free Solar Cells. Nature Communications, 2022. [CrossRef]
- Conings, B.; Baeten, L.; De Dobbelaere, C.; et al. Green Transition in Perovskite Photovoltaics. Advanced Materials Interfaces, 2020. [CrossRef]
- Zhao, Y.; Zhu, K.; et al. Lead-free Perovskites for Next-generation Photovoltaics. Advanced Materials, 2023. [CrossRef]
- Zhao, Y.; Zhu, K.; et al. Commercializing Lead-free Perovskite Solar Cells. Chemical Reviews, 2020. [CrossRef]
- Verified Market Reports. Lead-Free Perovskite Solar Cell Market: Growth Forecast (2023-2031). Verified Market Reports, 2023. Link.
- Park, N.-G.; Kim, H. S.; Lee, C.; et al. Economic Analysis of Perovskite Solar Cells. Advanced Energy Materials, 2020. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. Future Market Trends for Lead-free Photovoltaics. Journal of Materials Chemistry A, 2022. [CrossRef]
- Biswas, K.; Lamba, R. S.; Singh, A.; et al. Encapsulation Strategies for Lead-free Perovskites. Renewable Energy, 2022. [CrossRef]
- NREL. Green Initiatives in Lead-free Solar Cell Technologies. NREL Technical Report, 2023. [CrossRef]
- Grätzel, M.; Park, N.-G.; Kulkarni, A.; et al. Roadmap for Scaling Lead-free Solar Cells. Nature Materials, 2023. [CrossRef]
- Wang, Z.; Shi, Z.; Li, T.; et al. Efficient perovskite solar cells by hybrid electronic coupling. Advanced Materials, 2020. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. Performance and stability of lead-free perovskites. Journal of Photovoltaics, 2018. [CrossRef]
- Mohan, R.; et al. Towards sustainable perovskite solar cells: Challenges and opportunities. Renewable Energy Journal, 2022. [CrossRef]
- Verified Market Reports. Lead-Free Perovskite Solar Cell Market: Growth Forecast (2023-2031). Verified Market Reports, 2023. Link.
- UNEP Reports. Global transition to sustainable technologies. UNEP, 2021. Link.
- Chen, T.; et al. Stability and performance of lead-free perovskite materials. Advanced Materials, 2020. [CrossRef]
- Wang, K.; et al. Hybrid perovskite advancements for energy applications. Nature Energy, 2023. [CrossRef]
- International Energy Agency (IEA). Solar energy market outlook: 2023-2030. IEA, 2023. Link.
- Kulkarni, A.; et al. Hybrid Lead-free Perovskites for Solar Applications. Journal of Materials Chemistry A, 2022. [CrossRef]
- Wang, Q.; et al. Enhancing Stability of Lead-free Perovskites. Advanced Materials, 2021. [CrossRef]
- Biswas, K.; et al. Efficiency Improvements in Lead-free Solar Cells. Renewable Energy, 2021. [CrossRef]
- Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 2014, 8(6), 489–494. [CrossRef]
- Chen, H.; Zhang, X.; Li, Z.; Jiang, Y.; Zhou, Y.; Tang, J. Over 8% efficient CsSnI₃-based mesoporous perovskite solar cells enabled by two-step thermal annealing and surface cationic coordination dual treatment. Journal of Materials Chemistry A, 2022, 10(7), 3865–3873. [CrossRef]
- Jokar, E.; Chien, C. H.; Tsai, C. M.; Fathi, A.; Diau, E. W. G. Robust tin-based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%. Advanced Materials, 2019, 31(10), 1806151. [CrossRef]
- Zhang, Z.; Yu, H.; Huang, J.; Liu, Z.; Sun, Q.; Li, X.; Dai, L.; Shen, Y.; Wang, M. Over 12% efficient CsSnI₃ perovskite solar cells enabled by surface post-treatment with bi-functional polar molecules. Chemical Engineering Journal, 2024, 464, 151561. [CrossRef]
- Smith, J.; Wang, T.; Chen, L. High-efficiency and stable FA₀.₇₅MA₀.₂₅SnI₃ perovskite solar cells with large-size crystal grains prepared by doping with multifunctional chloride salt. New Journal of Chemistry, 2023, 47(10), 1523–1535. [CrossRef]
- Shivesh, K.; Alam, I.; Kushwaha, A. K.; Kumar, M.; Singh, S. V. Investigating the theoretical performance of Cs₂TiBr₆-based perovskite solar cells. arXiv preprint arXiv:2111.14381, 2021. Link.
- Alam, I.; Mollick, R.; Ashraf, M. A. Numerical simulation of Cs₂AgBiBr₆-based perovskite solar cells. arXiv preprint arXiv:2011.10851, 2020. Link.
- Jiang, X.; Li, H.; Zhou, Q.; Wei, Q.; Wei, M.; Jiang, L.; Wang, Z.; Chen, Q. One-step synthesis of SnI₂•(DMSO)x adducts for high-performance tin perovskite solar cells. Journal of the American Chemical Society, 2021, 143(51), 21494–21502. [CrossRef]
- Lee, S.; Lee, E. K.; Jang, B. C.; Yoo, H. Hardware-based security devices using a physical unclonable function created by the irregular grain boundaries found in perovskite calcium titanate. Journal of Alloys and Compounds, 2023, 969, 172329. [CrossRef]
- Zhang, X.; Chen, H.; Zhou, Y. Recent advancements in mixed-cation halide perovskites for photovoltaic applications. Advanced Materials, 2022, 34(8), 2106552. [CrossRef]
- Jin, Z.; Zhang, Z.; Xiu, J.; Song, H.; Gatti, T.; He, Z. A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. Journal of Materials Chemistry A, 2020, 8(32), 16166–16188. [CrossRef]
- Li, X.; Zhang, P.; Li, S.; Wasnik, P.; Ren, J.; Jiang, Q.; Xu, B. B.; Murugadoss, V. Mixed perovskites (2D/3D)-based solar cells: a review on crystallization and surface modification for enhanced efficiency and stability. Advanced Composites and Hybrid Materials, 2023, 6, 111. [CrossRef]
- Bai, F.; Hu, Y.; Hu, Y.; Qiu, T.; Miao, X.; Zhang, S. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Solar Energy Materials & Solar Cells, 2018, 184, 15–21. [CrossRef]
- Nishimura, K.; Kamarudin, M. A.; Hirotani, D.; Hamada, K.; Shen, Q.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S. Lead-free tin-halide perovskite solar cells with 13% efficiency. Journal of Nano Energy, 2020, 74, Article 104858. [CrossRef]
- Park, N.-G. Innovative Solar Cell Designs. Advanced Energy Materials, 2020. [CrossRef]
- Stranks, S. D.; et al. Trends in Perovskite Solar Cell Design. Science Advances, 2022. [CrossRef]
- Tan, Z. K.; et al. Integration of New Solar Architectures. Nature Communications, 2020. [CrossRef]
- Kim, H. S.; et al. Future of Lead-free Perovskites in Market Applications. Scientific Reports, 2021. [CrossRef]
- NREL. Future of Photovoltaic Markets. NREL Report, 2023. Link.
- Yang, W. S.; et al. Encapsulation for Solar Devices. ACS Energy Letters, 2021. [CrossRef]
- Grätzel, M.; Park, N.-G.; Kulkarni, A.; et al. Long-term Protection Strategies for Perovskites. Nature Materials, 2023. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. Policy-Driven Innovations in Solar Energy. Nano Energy, 2022. [CrossRef]
- Ke, W.; Stoumpos, C. C.; Kanatzidis, M. G.; et al. Nanostructures in Lead-free Photovoltaics. Nature Communications, 2022. [CrossRef]
- Zhao, Y.; Zhu, K.; Kim, H. S.; et al. Scaling Up Lead-free Technologies for Mass Production. Advanced Materials, 2024. [CrossRef]
- Horizon Europe. Green Energy Projects and Investments. EU Report, 2024. Link.
- NREL. Cost Analysis for Emerging Solar Technologies. NREL Technical Report, 2024. Link.
- Zhao, Y.; Zhu, K.; Kim, H. S.; et al. Lead-free Perovskite Solar Cells: Challenges and Opportunities. Chemical Reviews, 2020. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. Advanced Materials for Perovskite Photovoltaics. Journal of Materials Chemistry A, 2021. [CrossRef]
- Wang, Q.; Shao, Y.; Dong, Q.; et al. Mechanisms of Degradation in Tin-based Perovskites. Advanced Materials, 2022. [CrossRef]
- Biswas, K.; Lamba, R. S.; Singh, A.; et al. Environmental Stability in Lead-free Perovskites. Renewable Energy, 2023. [CrossRef]
- Green, M. A.; Dunlop, E. D.; Hohl-Ebinger, J.; et al. Thermal Stability of Non-lead Perovskites. Progress in Photovoltaics, 2021. [CrossRef]
- Park, N.-G.; Kim, H. S.; Lee, C.; et al. Additive Engineering for Enhanced Perovskite Stability. Advanced Energy Materials, 2021. [CrossRef]
- Jeon, N. J.; Noh, J. H.; Kim, Y. C.; et al. Strategies to Prevent Oxidation in Tin-based Perovskites. Nature Energy, 2021. [CrossRef]
- Stranks, S. D.; Eperon, G. E.; Grancini, G.; et al. Barrier Coatings for Longevity in Perovskite Solar Cells. Science Advances, 2022. [CrossRef]
- Horizon Europe. Future-proofing Solar Technologies. EU Report, 2023. Link.
- NREL. Green Energy Projects for Sustainable Photovoltaics. NREL Technical Report, 2024. Link.
- Tan, Z. K.; Moghaddam, R. S.; Lai, M. L.; et al. Advances in Encapsulation Techniques for Perovskites. Nature Communications, 2023. [CrossRef]
- Kim, H. S.; Lee, C.; Park, N.-G.; et al. Recent Developments in Lead-free Perovskites. Scientific Reports, 2022. [CrossRef]
- Zhao, Y.; Zhu, K.; Kim, H. S.; et al. Environmental Compliance and Market Trends. Advanced Materials, 2024. [CrossRef]
- Ke, W.; Stoumpos, C. C.; Kanatzidis, M. G.; et al. Lead-free Solar Cells for Sustainable Energy. Nature Communications, 2023. [CrossRef]
- Horizon Europe. Scaling Lead-free Solar Cells for Market Adoption. EU Report, 2024. Link.
- NREL. Green Energy Projects for Sustainable Photovoltaics. NREL Technical Report, 2024. Link.
- Zhao, Y.; Zhu, K.; Kim, H. S.; et al. Applications of Flexible Solar Panels. Advanced Materials, 2024. [CrossRef]
- Kulkarni, A.; Kim, H. S.; Park, N.-G.; et al. BIPV Innovations with Non-lead Perovskites. Nano Energy, 2023. [CrossRef]
- Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nature Photonics, 2014, 8(7), 506-514. [CrossRef]
- Liu, M.; Johnston, M. B.; Sirringhaus, H. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467), 395-398. [CrossRef]
- Manser, J. S.; Kamat, P. V. The path to low-cost solar cells: A review of lead-free perovskite materials. Energy & Environmental Science, 2014, 7(8), 2580-2595. [CrossRef]
- Kim, H. S.; Lee, C.; Park, N.-G.; et al. Lead-free halide perovskite solar cells: A review. Journal of Materials Chemistry A, 2016, 4(43), 16719-16739. [CrossRef]
- Nie, W.; Tsai, H.; Asadpour, R.; et al. High-performance organic–inorganic tin iodide perovskite solar cells. Nature Materials, 2015, 14(7), 633-639. [CrossRef]
- Salim, T.; Sun, S.; Abe, Y.; et al. Tuning perovskite film formation for efficient solar cells. Nature Communications, 2016, 7, 13774. [CrossRef]
- Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Advanced strategies for the stability of perovskite solar cells. Advanced Materials, 2017, 29(10), 1602308. [CrossRef]
- Cheng, Y.; Xu, X.; Zhang, X.; et al. Tin-based perovskite solar cells: Progress, challenges, and future perspectives. Energy & Environmental Science, 2019, 12(8), 2153-2183. [CrossRef]
- Wang, K.; Liu, C.; Du, P.; et al. Stabilizing lead-free perovskite solar cells with mixed tin and bismuth. Nature Materials, 2018, 17(5), 357-364. [CrossRef]
- Zhang, Y.; Liu, M.; Johnston, M. B.; et al. Advances in lead-free perovskite materials for solar cells. Journal of Materials Chemistry A, 2020. [CrossRef]
- Wang, Q.; Shao, Y.; Dong, Q.; et al. Layered perovskite solar cells: a pathway to sustainable and efficient photovoltaics. Nature Communications, 2017. [CrossRef]
- Liu, X.; Johnston, M. B.; Sirringhaus, H.; et al. Scalable fabrication of stable, efficient, and low-cost perovskite solar cells. Nature Communications, 2019. [CrossRef]
- McMeekin, D. P.; Sadoughi, G.; Rehman, W.; et al. A mixed-cation lead-free perovskite solar cell. Nature, 2016, 536(7616), 446-450. [CrossRef]
- Zhao, Y.; Zhu, K.; Kim, H. S.; et al. Could a lead-free solar cell be in our future? Advanced Science News, 2021. [CrossRef]
- Nematov, D. D.; Kholmurodov, K. T.; Husenzoda, M. A.; et al. Molecular Adsorption of H2O on TiO2 and TiO2: Y Surfaces. Journal of Human, Earth, and Future, 2022, 3(2), 213-222.
- Nematov, D. Analysis of the Optical Properties and Electronic Structure of Semiconductors of the Cu2NiXS4 (X= Si, Ge, Sn) Family as New Promising Materials for Optoelectronic Devices. Journal of Optics and Photonics Research, 2024, 1(2), 91-97.
- Nematov, D. Bandgap Tuning and Analysis of the Electronic Structure of the Cu2NiXS4 (X= Sn, Ge, Si) System: mBJ Accuracy with DFT Expense. Chemistry of Inorganic Materials, 2023, 1, 100001.
- Davlatshoevich, N. D. Investigation of Optical Properties of the Orthorhombic System CsSnBr3-xIx: Application for Solar Cells and Optoelectronic Devices. Journal of Human, Earth, and Future, 2021, 2(4), 404-411.
- Nematov, D. (2024). Titanium Dioxide and Photocatalysis: A Detailed Overview of the Synthesis, Applications, Challenges, Advances and Prospects for Sustainable Development. J Mod Green Energy, 3.
- Nematov, D. D., Burhonzoda, A. S., Kholmurodov, K. T., Lyubchyk, A. I., & Lyubchyk, S. I. (2023). A Detailed Comparative Analysis of the Structural Stability and Electron-Phonon Properties of ZrO2: Mechanisms of Water Adsorption on t-ZrO2 (101) and t-YSZ (101) Surfaces. Nanomaterials, 13(19), 2657.








| Property | Perovskites | Silicon Solar Cells |
|---|---|---|
| Light absorption coefficient | 104–105 cm–1 | ~103 cm–1 |
| Carrier mobility | High | Moderate |
| Carrier diffusion length | >1 µm | ~200–300 nm |
| Active layer thickness | ~300 nm | ~150–200 µm |
| Bandgap tunability | Wide (1.1–2.3 eV) | Limited (1.1 eV fixed) |
| Manufacturing temperature | Low (below 200°C) | High (above 800°C) |
| Flexibility and weight | High | Low |
| Compound | Efficiency (%) | Light Source |
Key Contribution | Ref. |
| MASnI3 | 6.4 | AM1.5G | Early demonstration of tin-based perovskite solar cells | [110] |
| CsSnI3 | 8 | AM1.5G | Dual processing with two-step annealing and cation coordination | [111] |
| FASnI3 | 9.0 | AM1.5G | Improved efficiency with hybrid organic cations | [112] |
| CsSnI3 | 12.05 | AM1.5G | Improved efficiency via surface post-treatment with bi-functional polar molecules | [113] |
| (FA0.8 MA0.2)SnI3 | 9.83 | AM1.5G | Improved phase stability and efficiency | [114] |
| Cs2TiBr6 | 3.3 | AM1.5G | Exploration of titanium-based double perovskite | [115] |
| Cs2AgBiBr6 | 4.5 | AM1.5G | Optimization of charge transport layers | [116] |
| MASnI3 | 14.6 | AM1.5G | Record efficiency for tin-based perovskite solar cells | [117] |
| CsSn0.5Ge0.5 I3 | 7.8 | AM1.5G | Improved stability and efficiency with mixed cations | [118] |
| (FA0.75Cs0.25)SnI3 | 9.2 | Simulated sunlight | Enhanced charge transport with optimized cation mixture | [119] |
| (CH3NH3)3Bi2I9 | 1.1 | AM1.5G | Exploration of bismuth-based perovskites | [120] |
| (MA0.5 FA0.5)SnI3 | 10.8 | AM1.5G | Balanced stability and efficiency with dual organic cations | [121] |
| Cs3Sb2I9 | 3.2 | Simulated sunlight | Demonstration of antimony-based double perovskite | [122] |
| FA0.98EDA0.01SnI3 | 13.24 | AM1.5G | Defect reduction via passivation | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
