Submitted:
05 February 2025
Posted:
05 February 2025
You are already at the latest version
Abstract
Age-related macular degeneration (AMD) is a degenerative retina disease characterized by irreversible damage to macular cells and has become one of the leading causes of blindness in the elderly worldwide. Therapies based on cells or cell-biomaterial scaffolds are popular AMD treatments in recent years, where cell therapy is the use of cell types such as progenitor/stem cells, which are delivered into the subretinal space by injection or vector transplantation to treat AMD. Meanwhile, cell-biomaterial scaffolds delivered to the lesion site by vector transplantation have been widely developed, and the implanted cell-biomaterial scaffolds implanted cell-biomaterial scaffolds can promote the reintegration of cells at the lesion site and solve the problems of translocation and discrete cellular structure produced by cell injection. Although these methods have achieved some results, a large number of preclinical studies and clinical trials are still needed to verify their stability and reliability. Therefore, this article provides a review of the latest findings and real-life challenges of cell-based and cell-biomaterial scaffolds for the treatment of AMD to offer new ideas for subsequent disease prevention and treatment of AMD.
Keywords:
1. Introduction
2. Age-Related Macular Degeneration
3. Treatment of AMD
3.1. Cellular Therapy
3.1.1. RPC
3.1.2. ESC
3.1.4. MSC
3.2. Cell-Biomaterial Scaffold Therapy
3.2.1. Cell-Biomaterial Scaffold Functionality
3.2.2. Cells - Biomaterial Scaffold Properties
4. Key Challenges of RPE Alternative Therapies
4.1. Cell Graft Survival and Long-Term Replacement Capability
4.2. Host Tissue Rejection
4.3. Cell Delivery
4.4. Evaluation of Cell Replacement Therapies
4.5. Organoids
5. Conclusions
Authors' contributions
Funding
Ethics approval and consent to participate
Consent for publication
Availability of data and materials
Acknowledgments
Competing interests
References
- Garcia-Ayuso, Di Pierdomenico, García-Bernal, et al. Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural regeneration research 2022, 179, 1937–1944. [Google Scholar]
- Coco-Martin, R.M.; Pastor-Idoate, S.; Pastor, J.C. Cell Replacement Therapy for Retinal and Optic Nerve Diseases: Cell Sources, Clinical Trials and Challenges. Pharmaceutics 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014, 2, e106–116. [Google Scholar] [CrossRef] [PubMed]
- Abdi, F.; Mohammadi, S.S.; Falavarjani, K.G. Intravitreal Methotrexate. Journal of ophthalmic & vision research 2021, 16, 657–669. [Google Scholar] [CrossRef]
- Afarid, M.; Sanie-Jahromi, F. Potential neuroprotective biomolecules in ophthalmology. International ophthalmology 2021, 41, 1103–1109. [Google Scholar] [CrossRef]
- Al-Khersan, H.; Hussain, R.M.; Ciulla, T.A.; Dugel, P.U. Innovative therapies for neovascular age-related macular degeneration. Expert opinion on pharmacotherapy 2019, 20, 1879–1891. [Google Scholar] [CrossRef]
- Fisher, C.R.; Ferrington, D.A. Perspective on AMD Pathobiology: A Bioenergetic Crisis in the RPE. Investigative ophthalmology & visual science 2018, 59, AMD41–AMD47. [Google Scholar] [CrossRef]
- Nowak, J.Z. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacological reports : PR 2006, 58, 353–363. [Google Scholar]
- Zhou, W.; Chai, Y.; Lu, S.; Yang, Q.; Tang, L.; Zhou, D. Advances in the study of tissue-engineered retinal pigment epithelial cell sheets. Regenerative therapy 2024, 27, 419–433. [Google Scholar] [CrossRef]
- Ben M'Barek, K.; Monville, C. Cell Therapy for Retinal Dystrophies: From Cell Suspension Formulation to Complex Retinal Tissue Bioengineering. Stem cells international 2019, 2019, 4568979. [Google Scholar] [CrossRef]
- Rizzolo, L.J.; Nasonkin, I.O.; Adelman, R.A. Retinal Cell Transplantation, Biomaterials, and In Vitro Models for Developing Next-generation Therapies of Age-related Macular Degeneration. Stem cells translational medicine 2022, 11, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Rohiwal, S.S.; Ellederová, Z.; Ardan, T.; Klima, J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Weiland, J.D.; Roska, B.; Humayun, M.S. Retinal stimulation strategies to restore vision: Fundamentals and systems. Progress in retinal and eye research 2016, 53, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Fan, B.; Li, Y.L.; Zuo, Z.Y.; Li, G.Y. Oxidative Stress-Involved Mitophagy of Retinal Pigment Epithelium and Retinal Degenerative Diseases. Cell Mol Neurobiol 2023, 43, 3265–3276. [Google Scholar] [CrossRef]
- Abidi, M.; Karrer, E.; Csaky, K.; Handa, J.T. A Clinical and Preclinical Assessment of Clinical Trials for Dry Age-Related Macular Degeneration. Ophthalmology science 2022, 2, 100213. [Google Scholar] [CrossRef]
- Wang, K.; Li, H.; Sun, R.; Liu, C.; Luo, Y.; Fu, S.; Ying, Y. Emerging roles of transforming growth factor beta signaling in wet age-related macular degeneration. Acta Biochim Biophys Sin (Shanghai) 2019, 51, 1–8. [Google Scholar] [CrossRef]
- Ahmed, I.; Johnston, R.J., Jr.; Singh, M.S. Pluripotent stem cell therapy for retinal diseases. Ann Transl Med 2021, 9, 1279. [Google Scholar] [CrossRef]
- Kaarniranta, K.; Pawlowska, E.; Szczepanska, J.; Blasiak, J. DICER1 in the Pathogenesis of Age-related Macular Degeneration (AMD) - Alu RNA Accumulation versus miRNA Dysregulation. Aging and disease 2020, 11, 851–862. [Google Scholar] [CrossRef]
- Wu, A.; Lu, R.; Lee, E. Tissue engineering in age-related macular degeneration: a mini-review. J Biol Eng 2022, 16, 11. [Google Scholar] [CrossRef]
- Zisimopoulos, A.; Klavdianou, O.; Theodossiadis, P.; Chatziralli, I. The Role of the Microbiome in Age-Related Macular Degeneration: A Review of the Literature. Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde 2021, 244, 173–178. [Google Scholar] [CrossRef]
- Akyol, E.; Lotery, A. Gene, Cell and Antibody-Based Therapies for the Treatment of Age-Related Macular Degeneration. Biologics : targets & therapy 2020, 14, 83–94. [Google Scholar] [CrossRef]
- Jack, L.S.; Sadiq, M.A.; Do, D.V.; Nguyen, Q.D. Emixustat and Lampalizumab: Potential Therapeutic Options for Geographic Atrophy. Developments in ophthalmology 2016, 55, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Jang, K.; Sohn, J.; Park, J.I.; Hwang, D.D. Effect of intravitreal ranibizumab and aflibercept injections on retinal nerve fiber layer thickness. Scientific reports 2021, 11, 5010. [Google Scholar] [CrossRef] [PubMed]
- Gil-Martínez, M.; Santos-Ramos, P.; Fernández-Rodríguez, M.; Abraldes, M.J.; Rodríguez-Cid, M.J.; Santiago-Varela, M.; Fernández-Ferreiro, A.; Gómez-Ulla, F. Pharmacological Advances in the Treatment of Age-related Macular Degeneration. Current medicinal chemistry 2020, 27, 583–598. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.C.; Brown, M.M.; Rapuano, S.; Boyer, D. Cost-Utility Analysis of VEGF Inhibitors for Treating Neovascular Age-Related Macular Degeneration. American journal of ophthalmology 2020, 218, 225–241. [Google Scholar] [CrossRef]
- Khanani, A.M.; Hershberger, V.S.; Pieramici, D.J.; Khurana, R.N.; Brunstein, F.; Ma, L.; Maass, K.F.; Honigberg, L.A.; Tom, I.; Chen, H.; et al. Phase 1 Study of the Anti-HtrA1 Antibody-binding Fragment FHTR2163 in Geographic Atrophy Secondary to Age-related Macular Degeneration. American journal of ophthalmology 2021, 232, 49–57. [Google Scholar] [CrossRef]
- Airody, A.; Baseler, H.A.; Seymour, J.; Allgar, V.; Mukherjee, R.; Downey, L.; Dhar-Munshi, S.; Mahmood, S.; Balaskas, K.; Empeslidis, T.; et al. Treatment of age-related macular degeneration with aflibercept using a treat, extend and fixed protocol; A 4-year study of treatment outcomes, durability, safety and quality of life (An extension to the MATE randomised controlled trial). Acta ophthalmologica 2024, 102, e328–e338. [Google Scholar] [CrossRef]
- Kassa, E.; Ciulla, T.A.; Hussain, R.M.; Dugel, P.U. Complement inhibition as a therapeutic strategy in retinal disorders. Expert opinion on biological therapy 2019, 19, 335–342. [Google Scholar] [CrossRef]
- Chia, M.A.; Keane, P.A. Beyond anti-VEGF: can faricimab reduce treatment burden for retinal disease? Lancet (London, England) 2022, 399, 697–699. [Google Scholar] [CrossRef]
- Yannuzzi, N.A.; Freund, K.B. Brolucizumab: evidence to date in the treatment of neovascular age-related macular degeneration. Clinical ophthalmology (Auckland, N.Z.) 2019, 13, 1323–1329. [Google Scholar] [CrossRef]
- Li, G.; Zhu, N.; Ji, A. Comparative efficacy and safety of Faricimab and other anti-VEGF therapy for age-related macular degeneration and diabetic macular edema: A systematic review and meta-analysis of randomized clinical trials. Medicine 2023, 102, e36370. [Google Scholar] [CrossRef] [PubMed]
- Dreismann, A.K.; Hallam, T.M.; Tam, L.C.; Nguyen, C.V.; Hughes, J.P.; Ellis, S.; Harris, C.L. Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunological reviews 2023, 313, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Khanani, A.M.; Thomas, M.J.; Aziz, A.A.; Weng, C.Y.; Danzig, C.J.; Yiu, G.; Kiss, S.; Waheed, N.K.; Kaiser, P.K. Review of gene therapies for age-related macular degeneration. Eye (London, England) 2022, 36, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, C. Advancements in the treatment of age-related macular degeneration: a comprehensive review. Postgraduate medical journal, 1093. [Google Scholar] [CrossRef]
- Khanani, A.M.; Maturi, R.K.; Bagheri, N.; Bakall, B.; Boyer, D.S.; Couvillion, S.S.; Dhoot, D.S.; Holekamp, N.M.; Jamal, K.N.; Marcus, D.M.; et al. A Phase I, Single Ascending Dose Study of GEM103 (Recombinant Human Complement Factor H) in Patients with Geographic Atrophy. Ophthalmology science 2022, 2, 100154. [Google Scholar] [CrossRef]
- Gelfman, C.M.; Grishanin, R.; Bender, K.O.; Nguyen, A.; Greengard, J.; Sharma, P.; Nieves, J.; Kiss, S.; Gasmi, M. Comprehensive Preclinical Assessment of ADVM-022, an Intravitreal Anti-VEGF Gene Therapy for the Treatment of Neovascular AMD and Diabetic Macular Edema. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics 2021, 37, 181–190. [Google Scholar] [CrossRef]
- da Cruz, L.; Fynes, K.; Georgiadis, O.; Kerby, J.; Luo, Y.H.; Ahmado, A.; Vernon, A.; Daniels, J.T.; Nommiste, B.; Hasan, S.M.; et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nature biotechnology 2018, 36, 328–337. [Google Scholar] [CrossRef]
- da Cruz, L.; Soomro, T.; Georgiadis, O.; Nommiste, B.; Sagoo, M.S.; Coffey, P. The Fate of RPE Cells Following hESC-RPE Patch Transplantation in Haemorrhagic Wet AMD: Pigmentation, Extension of Pigmentation, Thickness of Transplant, Assessment for Proliferation and Visual Function-A 5 Year-Follow Up. Diagnostics (Basel, Switzerland) 2024, 14. [Google Scholar] [CrossRef]
- Koh, S.; Chen, W.J.; Dejneka, N.S.; Harris, I.R.; Lu, B.; Girman, S.; Saylor, J.; Wang, S.; Eroglu, C. Subretinal Human Umbilical Tissue-Derived Cell Transplantation Preserves Retinal Synaptic Connectivity and Attenuates Müller Glial Reactivity. The Journal of neuroscience : the official journal of the Society for Neuroscience 2018, 38, 2923–2943. [Google Scholar] [CrossRef]
- Lin, T.W.; Chien, Y.; Lin, Y.Y.; Wang, M.L.; Yarmishyn, A.A.; Yang, Y.P.; Hwang, D.K.; Peng, C.H.; Hsu, C.C.; Chen, S.J.; et al. Establishing Liposome-Immobilized Dexamethasone-Releasing PDMS Membrane for the Cultivation of Retinal Pigment Epithelial Cells and Suppression of Neovascularization. International journal of molecular sciences 2019, 20. [Google Scholar] [CrossRef]
- Wang, J.; Fan, W.; Liu, B.; Pu, N.; Wu, H.; Xue, R.; Li, S.; Song, Z.; Tao, Y. Encapsulated cell technology: Delivering cytokines to treat posterior ocular diseases. Pharmacological research 2024, 203, 107159. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.W.; Wang, L.; Li, S.Y.; Zhao, C.J.; Hao, J.; Li, Q.Y.; Zhao, T.T.; Wu, W.; Wang, Y.; et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell discovery 2018, 4, 50. [Google Scholar] [CrossRef] [PubMed]
- John, S.; Natarajan, S.; Parikumar, P.; Shanmugam, P.M.; Senthilkumar, R.; Green, D.W.; Abraham, S.J. Choice of Cell Source in Cell-Based Therapies for Retinal Damage due to Age-Related Macular Degeneration: A Review. Journal of ophthalmology 2013, 2013, 465169. [Google Scholar] [CrossRef] [PubMed]
- Abdouh, M.; Lu, M.; Chen, Y.; Goyeneche, A.; Burnier, J.V.; Burnier, M.N., Jr. Filtering blue light mitigates the deleterious effects induced by the oxidative stress in human retinal pigment epithelial cells. Experimental eye research 2022, 217, 108978. [Google Scholar] [CrossRef] [PubMed]
- Rajendran Nair, D.S.; Zhu, D.; Sharma, R.; Martinez Camarillo, J.C.; Bharti, K.; Hinton, D.R.; Humayun, M.S.; Thomas, B.B. Long-Term Transplant Effects of iPSC-RPE Monolayer in Immunodeficient RCS Rats. Cells 2021, 10. [Google Scholar] [CrossRef]
- Binder, S.; Stanzel, B.V.; Krebs, I.; Glittenberg, C. Transplantation of the RPE in AMD. Progress in retinal and eye research 2007, 26, 516–554. [Google Scholar] [CrossRef]
- Chae, J.B.; Jang, H.; Son, C.; Park, C.W.; Choi, H.; Jin, S.; Lee, H.Y.; Lee, H.; Ryu, J.H.; Kim, N.; et al. Targeting senescent retinal pigment epithelial cells facilitates retinal regeneration in mouse models of age-related macular degeneration. GeroScience 2021, 43, 2809–2833. [Google Scholar] [CrossRef]
- Gupta, S.; Lytvynchuk, L.; Ardan, T.; Studenovska, H.; Faura, G.; Eide, L.; Znaor, L.; Erceg, S.; Stieger, K.; Motlik, J.; et al. Retinal Pigment Epithelium Cell Development: Extrapolating Basic Biology to Stem Cell Research. Biomedicines 2023, 11. [Google Scholar] [CrossRef]
- Johnen, S.; Koutsonas, A. [Dry AMD - Cellular and Genetic Therapies]. Klinische Monatsblatter fur Augenheilkunde 2019, 236, 1096–1102. [Google Scholar] [CrossRef]
- Tomczak, W.; Winkler-Lach, W.; Tomczyk-Socha, M.; Misiuk-Hojło, M. Advancements in Ocular Regenerative Therapies. Biology 2023, 12. [Google Scholar] [CrossRef]
- Battu, R.; Ratra, D.; Gopal, L. Newer therapeutic options for inherited retinal diseases: Gene and cell replacement therapy. Indian journal of ophthalmology 2022, 70, 2316–2325. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Z.; Gu, P. Stem/progenitor cell-based transplantation for retinal degeneration: a review of clinical trials. Cell death & disease 2020, 11, 793. [Google Scholar] [CrossRef]
- Xu, H.J.; Li, Q.Y.; Zou, T.; Yin, Z.Q. Development-related mitochondrial properties of retinal pigment epithelium cells derived from hEROs. International journal of ophthalmology 2021, 14, 1138–1150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Su, B.; Jiao, L.; Xu, Z.H.; Zhang, C.J.; Nie, J.; Gao, M.L.; Zhang, Y.V.; Jin, Z.B. Transplantation of GMP-grade human iPSC-derived retinal pigment epithelial cells in rodent model: the first pre-clinical study for safety and efficacy in China. Ann Transl Med 2021, 9, 245. [Google Scholar] [CrossRef]
- Weiss, J.N.; Levy, S. Stem Cell Ophthalmology Treatment Study (SCOTS): Bone Marrow-Derived Stem Cells in the Treatment of Age-Related Macular Degeneration. Medicines (Basel, Switzerland) 2020, 7. [Google Scholar] [CrossRef]
- Abud, M.B.; Baranov, P.; Patel, S.; Hicks, C.A.; Isaac, D.L.C.; Louzada, R.N.; Dromel, P.; Singh, D.; Sinden, J.; Ávila, M.P.; et al. In vivo study to assess dosage of allogeneic pig retinal progenitor cells: Long-term survival, engraftment, differentiation and safety. Journal of cellular and molecular medicine 2022, 26, 3254–3268. [Google Scholar] [CrossRef]
- Aweidah, H.; Matsevich, C.; Khaner, H.; Idelson, M.; Ejzenberg, A.; Reubinoff, B.; Banin, E.; Obolensky, A. Survival of Neural Progenitors Derived from Human Embryonic Stem Cells Following Subretinal Transplantation in Rodents. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics 2023, 39, 347–358. [Google Scholar] [CrossRef]
- Chaqour, B.; Karrasch, C. Eyeing the Extracellular Matrix in Vascular Development and Microvascular Diseases and Bridging the Divide between Vascular Mechanics and Function. International journal of molecular sciences 2020, 21. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, D.; Shen, B.; Zhang, Y.; Gu, P. Stem/Progenitor Cells and Biodegradable Scaffolds in the Treatment of Retinal Degenerative Diseases. Current stem cell research & therapy 2018, 13, 160–173. [Google Scholar] [CrossRef]
- Zeng, C.W. Advancing Spinal Cord Injury Treatment through Stem Cell Therapy: A Comprehensive Review of Cell Types, Challenges, and Emerging Technologies in Regenerative Medicine. International journal of molecular sciences 2023, 24. [Google Scholar] [CrossRef]
- Hall, J.C.; Paull, D.; Pébay, A.; Lidgerwood, G.E. Human pluripotent stem cells for the modelling of retinal pigment epithelium homeostasis and disease: A review. Clinical & experimental ophthalmology 2022, 50, 667–677. [Google Scholar] [CrossRef]
- Klimanskaya, I.; Hipp, J.; Rezai, K.A.; West, M.; Atala, A.; Lanza, R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning and stem cells 2004, 6, 217–245. [Google Scholar] [CrossRef] [PubMed]
- Limnios, I.J.; Chau, Y.Q.; Skabo, S.J.; Surrao, D.C.; O'Neill, H.C. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions. Stem cell research & therapy 2021, 12, 248. [Google Scholar] [CrossRef]
- Garcia, T.Y.; Gutierrez, M.; Reynolds, J.; Lamba, D.A. Modeling the Dynamic AMD-Associated Chronic Oxidative Stress Changes in Human ESC and iPSC-Derived RPE Cells. Investigative ophthalmology & visual science 2015, 56, 7480–7488. [Google Scholar] [CrossRef]
- Ajgaonkar, B.S.; Kumaran, A.; Kumar, S.; Jain, R.D.; Dandekar, P.P. Cell-based Therapies for Corneal and Retinal Disorders. Stem Cell Rev Rep 2023, 19, 2650–2682. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.P.; Hsiao, Y.J.; Chang, K.J.; Foustine, S.; Ko, Y.L.; Tsai, Y.C.; Tai, H.Y.; Ko, Y.C.; Chiou, S.H.; Lin, T.C.; et al. Pluripotent Stem Cells in Clinical Cell Transplantation: Focusing on Induced Pluripotent Stem Cell-Derived RPE Cell Therapy in Age-Related Macular Degeneration. International journal of molecular sciences 2022, 23. [Google Scholar] [CrossRef]
- Akiba, R.; Takahashi, M.; Baba, T.; Mandai, M. Progress of iPS cell-based transplantation therapy for retinal diseases. Jpn J Ophthalmol 2023, 67, 119–128. [Google Scholar] [CrossRef]
- D'Antonio-Chronowska, A.; D'Antonio, M.; Frazer, K.A. In vitro Differentiation of Human iPSC-derived Retinal Pigment Epithelium Cells (iPSC-RPE). Bio-protocol 2019, 9, e3469. [Google Scholar] [CrossRef]
- Truong, V.; Viken, K.; Geng, Z.; Barkan, S.; Johnson, B.; Ebeling, M.C.; Montezuma, S.R.; Ferrington, D.A.; Dutton, J.R. Automating Human Induced Pluripotent Stem Cell Culture and Differentiation of iPSC-Derived Retinal Pigment Epithelium for Personalized Drug Testing. SLAS technology 2021, 26, 287–299. [Google Scholar] [CrossRef]
- Lucas-Ruiz, F.; Galindo-Romero, C.; García-Bernal, D.; Norte-Muñoz, M.; Rodríguez-Ramírez, K.T.; Salinas-Navarro, M.; Millán-Rivero, J.E.; Vidal-Sanz, M.; Agudo-Barriuso, M. Mesenchymal stromal cell therapy for damaged retinal ganglion cells, is gold all that glitters? Neural regeneration research 2019, 14, 1851–1857. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Chailakhyan, R.K.; Latsinik, N.V.; Panasyuk, A.F.; Keiliss-Borok, I.V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974, 17, 331–340. [Google Scholar] [CrossRef]
- Huang, Q.; Ding, Y.; Yu, J.G.; Li, J.; Xiang, Y.; Tao, N. Induction of Differentiation of Mesenchymal Stem Cells into Retinal Pigment Epithelial Cells for Retinal Regeneration by Using Ciliary Neurotrophic Factor in Diabetic Rats. Current medical science 2021, 41, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, Z.; Wang, L.; Ou, Q.; Feng, Z.; Xiao, H.; Shen, Q.; Li, Y.; Jin, C.; Xu, J.Y.; et al. Direct conversion of human umbilical cord mesenchymal stem cells into retinal pigment epithelial cells for treatment of retinal degeneration. Cell death & disease 2022, 13, 785. [Google Scholar] [CrossRef]
- Tavakoli, Z.; Yazdian, F.; Tabandeh, F.; Sheikhpour, M. Regenerative medicine as a novel strategy for AMD treatment: a review. Biomedical physics & engineering express 2019, 6, 012001. [Google Scholar] [CrossRef]
- Gullapalli, V.K.; Zarbin, M.A. New Prospects for Retinal Pigment Epithelium Transplantation. Asia-Pacific journal of ophthalmology (Philadelphia, Pa.) 2022, 11, 302–313. [Google Scholar] [CrossRef]
- Abbasian, M.; Massoumi, B.; Mohammad-Rezaei, R.; Samadian, H.; Jaymand, M. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering? International journal of biological macromolecules 2019, 134, 673–694. [Google Scholar] [CrossRef]
- Babi, M.; Riesco, R.; Boyer, L.; Fatona, A.; Accardo, A.; Malaquin, L.; Moran-Mirabal, J. Tuning the Nanotopography and Chemical Functionality of 3D Printed Scaffolds through Cellulose Nanocrystal Coatings. ACS applied bio materials 2021, 4, 8443–8455. [Google Scholar] [CrossRef]
- Aguilar, A.; Zein, N.; Harmouch, E.; Hafdi, B.; Bornert, F.; Offner, D.; Clauss, F.; Fioretti, F.; Huck, O.; Benkirane-Jessel, N.; et al. Application of Chitosan in Bone and Dental Engineering. Molecules (Basel, Switzerland) 2019, 24. [Google Scholar] [CrossRef]
- Bucatariu, S.M.; Constantin, M.; Varganici, C.D.; Rusu, D.; Nicolescu, A.; Prisacaru, I.; Carnuta, M.; Anghelache, M.; Calin, M.; Ascenzi, P.; et al. A new sponge-type hydrogel based on hyaluronic acid and poly(methylvinylether-alt-maleic acid) as a 3D platform for tumor cell growth. International journal of biological macromolecules 2020, 165, 2528–2540. [Google Scholar] [CrossRef]
- Altunbek, M.; Gezek, M.; Buck, P.; Camci-Unal, G. Development of Human-Derived Photocrosslinkable Gelatin Hydrogels for Tissue Engineering. Biomacromolecules 2024, 25, 165–176. [Google Scholar] [CrossRef]
- Altiti, A.; He, M.; VanPatten, S.; Cheng, K.F.; Ahmed, U.; Chiu, P.Y.; Mughrabi, I.T.; Jabari, B.A.; Burch, R.M.; Manogue, K.R.; et al. Thiocarbazate building blocks enable the construction of azapeptides for rapid development of therapeutic candidates. Nature communications 2022, 13, 7127. [Google Scholar] [CrossRef]
- Di Pompo, G.; Liguori, A.; Carlini, M.; Avnet, S.; Boi, M.; Baldini, N.; Focarete, M.L.; Bianchi, M.; Gualandi, C.; Graziani, G. Electrospun fibers coated with nanostructured biomimetic hydroxyapatite: A new platform for regeneration at the bone interfaces. Biomaterials advances 2023, 144, 213231. [Google Scholar] [CrossRef] [PubMed]
- Weiden, J.; Schluck, M.; Ioannidis, M.; van Dinther, E.A.W.; Rezaeeyazdi, M.; Omar, F.; Steuten, J.; Voerman, D.; Tel, J.; Diken, M.; et al. Robust Antigen-Specific T Cell Activation within Injectable 3D Synthetic Nanovaccine Depots. ACS biomaterials science & engineering 2021, 7, 5622–5632. [Google Scholar] [CrossRef]
- Atehortua, C.; Montoya, Y.; García, A.; Bustamante, J. Hemolytic, Biocompatible, and Functional Effect of Cellularized Polycaprolactone-Hydrolyzed Collagen Electrospun Membranes for Possible Application as Vascular Implants. Journal of biomedical nanotechnology 2021, 17, 1184–1198. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.A.; Jain, P.K.; Nanda, H.S. Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties. Journal of biomaterials science. Polymer edition 2023, 34, 1408–1429. [Google Scholar] [CrossRef] [PubMed]
- Cardenas Turner, J.; Collins, G.; Blaber, E.A.; Almeida, E.A.C.; Arinzeh, T.L. Evaluating the cytocompatibility and differentiation of bone progenitors on electrospun zein scaffolds. Journal of tissue engineering and regenerative medicine 2020, 14, 173–185. [Google Scholar] [CrossRef]
- Khodamoradi, M.; Eskandari, M.; Keshvari, H.; Zarei, R. An electro-conductive hybrid scaffold as an artificial Bruch's membrane. Materials science & engineering. C, Materials for biological applications 2021, 126, 112180. [Google Scholar] [CrossRef]
- Biswas, A.; Kumar, S.; Choudhury, A.D.; Bisen, A.C.; Sanap, S.N.; Agrawal, S.; Mishra, A.; Verma, S.K.; Kumar, M.; Bhatta, R.S. Polymers and their engineered analogues for ocular drug delivery: Enhancing therapeutic precision. Biopolymers, 1002. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Liu, Y.; Zhang, C.J.; Zhang, C.; Zhu, P. Alginate/gelatin blended hydrogel fibers cross-linked by Ca(2+) and oxidized starch: Preparation and properties. Materials science & engineering. C, Materials for biological applications 2019, 99, 1469–1476. [Google Scholar] [CrossRef]
- Burhan, A.M.; Klahan, B.; Cummins, W.; Andrés-Guerrero, V.; Byrne, M.E.; O'Reilly, N.J.; Chauhan, A.; Fitzhenry, L.; Hughes, H. Posterior Segment Ophthalmic Drug Delivery: Role of Muco-Adhesion with a Special Focus on Chitosan. Pharmaceutics 2021, 13. [Google Scholar] [CrossRef]
- Zapata, M.E.V.; Tovar, C.D.G.; Hernandez, J.H.M. The Role of Chitosan and Graphene Oxide in Bioactive and Antibacterial Properties of Acrylic Bone Cements. Biomolecules 2020, 10. [Google Scholar] [CrossRef]
- Al-Absi, M.Y.; Caprifico, A.E.; Calabrese, G. Chitosan and Its Structural Modifications for siRNA Delivery. Advanced pharmaceutical bulletin 2023, 13, 275–282. [Google Scholar] [CrossRef]
- Bellich, B.; D'Agostino, I.; Semeraro, S.; Gamini, A.; Cesàro, A. "The Good, the Bad and the Ugly" of Chitosans. Marine drugs 2016, 14. [Google Scholar] [CrossRef] [PubMed]
- Calejo, M.T.; Ilmarinen, T.; Jongprasitkul, H.; Skottman, H.; Kellomäki, M. Honeycomb porous films as permeable scaffold materials for human embryonic stem cell-derived retinal pigment epithelium. Journal of biomedical materials research. Part A 2016, 104, 1646–1656. [Google Scholar] [CrossRef] [PubMed]
- Majidnia, E.; Ahmadian, M.; Salehi, H.; Amirpour, N. Development of an electrospun poly(ε-caprolactone)/collagen-based human amniotic membrane powder scaffold for culturing retinal pigment epithelial cells. Scientific reports 2022, 12, 6469. [Google Scholar] [CrossRef]
- Lu, J.T.; Lee, C.J.; Bent, S.F.; Fishman, H.A.; Sabelman, E.E. Thin collagen film scaffolds for retinal epithelial cell culture. Biomaterials 2007, 28, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Geanaliu-Nicolae, R.E.; Andronescu, E. Blended Natural Support Materials-Collagen Based Hydrogels Used in Biomedicine. Materials (Basel, Switzerland) 2020, 13. [Google Scholar] [CrossRef]
- Abedin Zadeh, M.; Alany, R.G.; Satarian, L.; Shavandi, A.; Abdullah Almousa, M.; Brocchini, S.; Khoder, M. Maillard Reaction Crosslinked Alginate-Albumin Scaffolds for Enhanced Fenofibrate Delivery to the Retina: A Promising Strategy to Treat RPE-Related Dysfunction. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Anwary, M.; Kumar, P.; du Toit, L.C.; Choonara, Y.E.; Pillay, V. Polymeric, injectable, intravitreal hydrogel devices for posterior segment applications and interventions. Artificial cells, nanomedicine, and biotechnology 2018, 46, 1074–1081. [Google Scholar] [CrossRef]
- Liu, M.; Huang, Y.; Tao, C.; Yang, W.; Chen, J.; Zhu, L.; Pan, T.; Narain, R.; Nan, K.; Chen, Y. Self-Healing Alginate Hydrogel Formed by Dynamic Benzoxaborolate Chemistry Protects Retinal Pigment Epithelium Cells against Oxidative Damage. Gels (Basel, Switzerland) 2022, 9. [Google Scholar] [CrossRef]
- Shin, E.Y.; Park, J.H.; Shin, M.E.; Song, J.E.; Thangavelu, M.; Carlomagno, C.; Motta, A.; Migliaresi, C.; Khang, G. Injectable taurine-loaded alginate hydrogels for retinal pigment epithelium (RPE) regeneration. Materials science & engineering. C, Materials for biological applications 2019, 103, 109787. [Google Scholar] [CrossRef]
- Alshehri, F.A.; Alharbi, M.S. The Effect of Adjunctive Use of Hyaluronic Acid on Prevalence of Porphyromonas gingivalis in Subgingival Biofilm in Patients with Chronic Periodontitis: A Systematic Review. Pharmaceutics 2023, 15. [Google Scholar] [CrossRef]
- Aubry, S.; Collart-Dutilleul, P.Y.; Renaud, M.; Batifol, D.; Montal, S.; Pourreyron, L.; Carayon, D. Benefit of Hyaluronic Acid to Treat Facial Aging in Completely Edentulous Patients. Journal of clinical medicine 2022, 11. [Google Scholar] [CrossRef] [PubMed]
- Kamatar, A.; Gunay, G.; Acar, H. Natural and Synthetic Biomaterials for Engineering Multicellular Tumor Spheroids. Polymers 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Bolger, M.; Groynom, R.; Bogie, K.; Lavik, E. Reporter Scaffolds for Clinically Relevant Cell Transplantation Studies. Annals of biomedical engineering 2020, 48, 1982–1990. [Google Scholar] [CrossRef]
- Iyer, S.; Radwan, A.E.; Hafezi-Moghadam, A.; Malyala, P.; Amiji, M. Long-acting intraocular Delivery strategies for biological therapy of age-related macular degeneration. Journal of controlled release : official journal of the Controlled Release Society 2019, 296, 140–149. [Google Scholar] [CrossRef]
- Khristov, V.; Maminishkis, A.; Amaral, J.; Rising, A.; Bharti, K.; Miller, S. Validation of iPS Cell-Derived RPE Tissue in Animal Models. Advances in experimental medicine and biology 2018, 1074, 633–640. [Google Scholar] [CrossRef]
- McCormick, R.; Pearce, I.; Kaye, S.; Haneef, A. Optimisation of a Novel Bio-Substrate as a Treatment for Atrophic Age-Related Macular Degeneration. Frontiers in bioengineering and biotechnology 2020, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Su, Y.; Zhang, H.; Liu, N.; Wang, Z.; Gao, X.; Gao, J.; Zheng, A. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug delivery 2021, 28, 1342–1355. [Google Scholar] [CrossRef]
- Belgio, B.; Boschetti, F.; Mantero, S. Towards an In Vitro Retinal Model to Study and Develop New Therapies for Age-Related Macular Degeneration. Bioengineering (Basel, Switzerland) 2021, 8. [Google Scholar] [CrossRef]
- Homaeigohar, S.; Boccaccini, A.R. Nature-Derived and Synthetic Additives to poly(ɛ-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Frontiers in chemistry 2021, 9, 809676. [Google Scholar] [CrossRef]
- Faura, G.; Studenovska, H.; Sekac, D.; Ellederova, Z.; Petrovski, G.; Eide, L. The Effects of the Coating and Aging of Biodegradable Polylactic Acid Membranes on In Vitro Primary Human Retinal Pigment Epithelium Cells. Biomedicines 2024, 12. [Google Scholar] [CrossRef]
- Farahani, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Tayebi, L.; Mostafavi, E. Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications. Journal of functional biomaterials 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Kashani, A.H.; Lebkowski, J.S.; Rahhal, F.M.; Avery, R.L.; Salehi-Had, H.; Chen, S.; Chan, C.; Palejwala, N.; Ingram, A.; Dang, W.; et al. One-Year Follow-Up in a Phase 1/2a Clinical Trial of an Allogeneic RPE Cell Bioengineered Implant for Advanced Dry Age-Related Macular Degeneration. Translational vision science & technology 2021, 10, 13. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lou, W.S.; Chen, J.C.; Weng, K.Y.; Shih, M.C.; Hung, Y.W.; Chen, Z.Y.; Wang, M.C. Bio-Compatibility and Bio-Insulation of Implantable Electrode Prosthesis Ameliorated by A-174 Silane Primed Parylene-C Deposited Embedment. Micromachines 2020, 11. [Google Scholar] [CrossRef]
- Kashani, A.H.; Lebkowski, J.S.; Hinton, D.R.; Zhu, D.; Faynus, M.A.; Chen, S.; Rahhal, F.M.; Avery, R.L.; Salehi-Had, H.; Chan, C.; et al. Survival of an HLA-mismatched, bioengineered RPE implant in dry age-related macular degeneration. Stem cell reports 2022, 17, 448–458. [Google Scholar] [CrossRef]
- Ortigoza-Diaz, J.; Scholten, K.; Larson, C.; Cobo, A.; Hudson, T.; Yoo, J.; Baldwin, A.; Weltman Hirschberg, A.; Meng, E. Techniques and Considerations in the Microfabrication of Parylene C Microelectromechanical Systems. Micromachines 2018, 9. [Google Scholar] [CrossRef]
- Amram, B.; Cohen-Tayar, Y.; David, A.; Ashery-Padan, R. The retinal pigmented epithelium - from basic developmental biology research to translational approaches. Int J Dev Biol 2017, 61, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Petrash, C.C.; Palestine, A.G.; Canto-Soler, M.V. Immunologic Rejection of Transplanted Retinal Pigmented Epithelium: Mechanisms and Strategies for Prevention. Frontiers in immunology 2021, 12, 621007. [Google Scholar] [CrossRef]
- Kashani, A.H. Stem cell-derived retinal pigment epithelium transplantation in age-related macular degeneration: recent advances and challenges. Current opinion in ophthalmology 2022, 33, 211–218. [Google Scholar] [CrossRef]
- Vitillo, L.; Tovell, V.E.; Coffey, P. Treatment of Age-Related Macular Degeneration with Pluripotent Stem Cell-Derived Retinal Pigment Epithelium. Current eye research 2020, 45, 361–371. [Google Scholar] [CrossRef]
- Alhasani, R.H.; Almarhoun, M.; Zhou, X.; Reilly, J.; Patterson, S.; Zeng, Z.; Shu, X. Tauroursodeoxycholic Acid Protects Retinal Pigment Epithelial Cells from Oxidative Injury and Endoplasmic Reticulum Stress In Vitro. Biomedicines 2020, 8. [Google Scholar] [CrossRef]
- Sugita, S.; Mandai, M.; Kamao, H.; Takahashi, M. Immunological aspects of RPE cell transplantation. Progress in retinal and eye research 2021, 84, 100950. [Google Scholar] [CrossRef] [PubMed]
- Pishavar, E.; Luo, H.; Bolander, J.; Atala, A.; Ramakrishna, S. Nanocarriers, Progenitor Cells, Combinational Approaches, and New Insights on the Retinal Therapy. International journal of molecular sciences 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Andreazzoli, M.; Barravecchia, I.; De Cesari, C.; Angeloni, D.; Demontis, G.C. Inducible Pluripotent Stem Cells to Model and Treat Inherited Degenerative Diseases of the Outer Retina: 3D-Organoids Limitations and Bioengineering Solutions. Cells 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Kuehn, M.H. Human Retinal Organoids in Therapeutic Discovery: A Review of Applications. Handbook of experimental pharmacology 2023, 281, 157–187. [Google Scholar] [CrossRef]
- Mandai, M. Pluripotent stem cell-derived retinal organoid/cells for retinal regeneration therapies: A review. Regenerative therapy 2023, 22, 59–67. [Google Scholar] [CrossRef]
- Adler, R.; Curcio, C.; Hicks, D.; Price, D.; Wong, F. Cell death in age-related macular degeneration. Molecular vision 1999, 5, 31. [Google Scholar]
- Cuevas, E.; Holder, D.L.; Alshehri, A.H.; Tréguier, J.; Lakowski, J.; Sowden, J.C. NRL(-/-) gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem cells (Dayton, Ohio) 2021, 39, 414–428. [Google Scholar] [CrossRef]
- Matsuyama, T.; Tu, H.Y.; Sun, J.; Hashiguchi, T.; Akiba, R.; Sho, J.; Fujii, M.; Onishi, A.; Takahashi, M.; Mandai, M. Genetically engineered stem cell-derived retinal grafts for improved retinal reconstruction after transplantation. iScience 2021, 24, 102866. [Google Scholar] [CrossRef]
- Lin, B.; McLelland, B.T.; Aramant, R.B.; Thomas, B.B.; Nistor, G.; Keirstead, H.S.; Seiler, M.J. Retina Organoid Transplants Develop Photoreceptors and Improve Visual Function in RCS Rats With RPE Dysfunction. Investigative ophthalmology & visual science 2020, 61, 34. [Google Scholar] [CrossRef]
| Treatment | AMD Classification | |
| Dry AMD | Wet AMD | |
| Antibody | Lampalizumab [22] | Ranibizumab [23] |
| Ecuccab [24] | Bevacizumab [25] | |
| HtrA serine peptidase 1 antibody [26] | Aflibercept [27] | |
| C3 complement inhibitor Pegcetacoplan(APL-2) [28] | Faricimab [29] | |
| Brolucizumab [30] | ||
| Bispecific antibodies [31] | ||
| Gene | GT005 [32] | HMR59 [33] |
| AAVCAGsCD59 [21] | ABBV-RGX-314 [34] | |
| Recombinant human complement factor (GEM103) [35] | ADVM-022 [36] | |
| Cell | Human embryonic stem cell (hESC)-derived RPE [37] | Coated synthetic basement membrane loaded with human ESC-derived RPE patches [38] |
| Human umbilical cord tissue-derived cells (palucorcel) [39] | PDMS membrane coated with laminin and liposomes loaded with dexamethasone [40] | |
| Encapsulated Cell Technology (ECT) [41] | Human ESC Derived RPE [42] | |
| Bone marrow-derived stem cells (BMSC) [43] | ||
| Cell type | Vantage | Challenge | Quote |
| RPCs | Exhibits specific stem cell proliferation and differentiation properties; can differentiate into a variety of retinal cell types; avoids ethical issues; lowers the risk of immune rejection and tumor development | Limited proliferative capacity; lack of sufficient donor cells; limited ability to differentiate into specific target cells | [52] |
| ESCs | Potential to differentiate into various types of cells | Ethical issues; risk of tumorigenesis; risk of immune rejection | [53] |
| iPSCs | Reprogrammed from adult somatic cells to avoid ethical issues Potential to differentiate into various types of cells | Tumorigenic risk; Genetic or epigenetic abnormalities caused by reprogramming; | [54] |
| MSCs | Derived from adult tissues, simple and widely available, immunomodulatory, low tumourigenicity | Low survival rate due to microenvironmental effects at the site of injury; further work is needed to determine the best source of donors | [55] |
| Polymers | Vantage | Drawbacks | Quote |
| Gelatine | Biocompatibility, biodegradability, non-toxicity, plasticity and adhesion | High moisture absorption and poor mechanical properties | [87,88,89] |
| Chitosan | Low cost, antimicrobial, low toxicity, biodegradable and biocompatible | Low solubility at physiological pH, easy interaction with other biological structures | [88,90,91,92,93] |
| Collagen | Biocompatibility, Biomimetic, Biodegradability and Haemostasis | Poor mechanical properties, poor thermal properties, enzymatic degradation | [94,95,96,97] |
| Alginate | Easily extracted, abundantly available, biocompatible, biodegradable and non-toxic | high cost | [89,98,99,100] |
| Hyaluronic Acid | Antibacterial, antioxidant, biodegradable | Readily degradable, potentially variable elements | [88,101,102,103,104] |
| Poly (lactic-co-glycolic acid) (PLGA) | Good mechanical properties, non-toxic, biodegradable, non-immunogenic, controlled drug release | / | [105,106,107,108,109] |
| Polycaprolactone (PCL) | Biocompatible, Low cost, absorbable | Insufficient mechanical strength, low number of cellular recognition sites, poor bioactivity, hydrophobicity | [95,110,111] |
| Polylactic Acid (PLA) | Biocompatibility, biodegradability, piezoelectricity | Poor mechanical properties, hydrophobicity, poor electrical conductivity | [112,113] |
| Parylene-C | Mechanical flexibility, optical transparency, low inherent stresses | Low air permeability, low mechanical strength, limited thermal budget | [114,115,116,117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).