Submitted:
27 March 2025
Posted:
31 March 2025
Read the latest preprint version here
Abstract
Keywords:
Introduction
Discussion



Conclusion
References
- Koonin, E. V., Dolja, V. V., & Krupovic, M. (2022). The logic of virus evolution. Cell host & microbe, 30(7), 917–929. [CrossRef]
- Fensterl, V., Chattopadhyay, S., & Sen, G. C. (2015). No Love Lost Between Viruses and Interferons. Annual review of virology, 2(1), 549–572. [CrossRef]
- Lengyel P. (1982). Biochemistry of interferons and their actions. Annual review of biochemistry, 51, 251–282. [CrossRef]
- Sen G. C. (1984). Biochemical pathways in interferon-action. Pharmacology & therapeutics, 24(2), 235–257. [CrossRef]
- Martínez J. L. (2013). Bacterial pathogens: from natural ecosystems to human hosts. Environmental microbiology, 15(2), 325–333. [CrossRef]
- Diard, M., & Hardt, W. D. (2017). Evolution of bacterial virulence. FEMS microbiology reviews, 41(5), 679–697. [CrossRef]
- Alphonse, N., Dickenson, R. E., & Odendall, C. (2021). Interferons: Tug of War Between Bacteria and Their Host. Frontiers in cellular and infection microbiology, 11, 624094. [CrossRef]
- Daffis, S., Szretter, K. J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T. Y., Schneller, S., Zust, R., Dong, H., Thiel, V., Sen, G. C., Fensterl, V., Klimstra, W. B., Pierson, T. C., Buller, R. M., Gale, M., Jr, Shi, P. Y., & Diamond, M. S. (2010). 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468(7322), 452–456. [CrossRef]
- Szretter, K. J., Daniels, B. P., Cho, H., Gainey, M. D., Yokoyama, W. M., Gale, M., Jr, Virgin, H. W., Klein, R. S., Sen, G. C., & Diamond, M. S. (2012). 2′-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS pathogens, 8(5), e1002698. [CrossRef]
- Diamond M. S. (2014). IFIT1: A dual sensor and effector molecule that detects non-2′-O methylated viral RNA and inhibits its translation. Cytokine & growth factor reviews, 25(5), 543–550. [CrossRef]
- Menachery, V. D., Debbink, K., & Baric, R. S. (2014). Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus research, 194, 191–199. [CrossRef]
- Menachery, V. D., Gralinski, L. E., Mitchell, H. D., Dinnon, K. H., 3rd, Leist, S. R., Yount, B. L., Jr, Graham, R. L., McAnarney, E. T., Stratton, K. G., Cockrell, A. S., Debbink, K., Sims, A. C., Waters, K. M., & Baric, R. S. (2017). Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis. mSphere, 2(6), e00346-17. [CrossRef]
- Schindewolf, C., & Menachery, V. D. (2023). Coronavirus 2′-O-methyltransferase: A promising therapeutic target. Virus research, 336, 199211. [CrossRef]
- Schindewolf, C., Lokugamage, K., Vu, M. N., Johnson, B. A., Scharton, D., Plante, J. A., Kalveram, B., Crocquet-Valdes, P. A., Sotcheff, S., Jaworski, E., Alvarado, R. E., Debbink, K., Daugherty, M. D., Weaver, S. C., Routh, A. L., Walker, D. H., Plante, K. S., & Menachery, V. D. (2023). SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3. Journal of virology, 97(2), e0153222. [CrossRef]
- Menachery, V. D., Yount, B. L., Jr, Josset, L., Gralinski, L. E., Scobey, T., Agnihothram, S., Katze, M. G., & Baric, R. S. (2014). Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-o-methyltransferase activity. Journal of virology, 88(8), 4251–4264. [CrossRef]
- Lazear, H. M., Schoggins, J. W., & Diamond, M. S. (2019). Shared and Distinct Functions of Type I and Type III Interferons. Immunity, 50(4), 907–923. [CrossRef]
- Dowling, J. W., & Forero, A. (2022). Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. Journal of immunology (Baltimore, Md. : 1950), 208(2), 247–256. [CrossRef]
- Chiale, C., Greene, T. T., & Zuniga, E. I. (2022). Interferon induction, evasion, and paradoxical roles during SARS-CoV-2 infection. Immunological reviews, 309(1), 12–24. [CrossRef]
- Garcia-Del-Barco, D., Risco-Acevedo, D., Berlanga-Acosta, J., Martos-Benítez, F. D., & Guillén-Nieto, G. (2021). Revisiting Pleiotropic Effects of Type I Interferons: Rationale for Its Prophylactic and Therapeutic Use Against SARS-CoV-2. Frontiers in immunology, 12, 655528. [CrossRef]
- Felgenhauer, U., Schoen, A., Gad, H. H., Hartmann, R., Schaubmar, A. R., Failing, K., Drosten, C., & Weber, F. (2020). Inhibition of SARS-CoV-2 by type I and type III interferons. The Journal of biological chemistry, 295(41), 13958–13964. [CrossRef]
- Lokugamage, K. G., Hage, A., de Vries, M., Valero-Jimenez, A. M., Schindewolf, C., Dittmann, M., Rajsbaum, R., & Menachery, V. D. (2020). Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. Journal of virology, 94(23), e01410-20. [CrossRef]
- Shimizu, J., Sasaki, T., Ong, G. H., Koketsu, R., Samune, Y., Nakayama, E. E., Nagamoto, T., Yamamoto, Y., Miyazaki, K., & Shioda, T. (2024). IFN-γ derived from activated human CD4+ T cells inhibits the replication of SARS-CoV-2 depending on cell-type and viral strain. Scientific reports, 14(1), 26660. [CrossRef]
- Vallejo, A., Vizcarra, P., Quereda, C., Moreno, A., Casado, J. L., & CoVEX study group (2021). IFN-γ+ cell response and IFN-γ release concordance after in vitro SARS-CoV-2 stimulation. European journal of clinical investigation, 51(12), e13636. [CrossRef]
- Chen, J., Liu, J., Chen, Z., Peng, H., Zhu, C., Feng, D., Zhang, S., Zhao, P., Zhang, X., & Xu, J. (2022). Angiotensin-Converting Enzyme 2 Potentiates SARS-CoV-2 Infection by Antagonizing Type I Interferon Induction and Its Down-Stream Signaling Pathway. mSphere, 7(4), e0021122. [CrossRef]
- Busnadiego, I., Fernbach, S., Pohl, M. O., Karakus, U., Huber, M., Trkola, A., Stertz, S., & Hale, B. G. (2020). Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. mBio, 11(5), e01928-20. [CrossRef]
- Goletti, D., Petrone, L., Manissero, D., Bertoletti, A., Rao, S., Ndunda, N., Sette, A., & Nikolayevskyy, V. (2021). The potential clinical utility of measuring severe acute respiratory syndrome coronavirus 2-specific T-cell responses. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 27(12), 1784–1789. [CrossRef]
- Tovey, M. G., & Lallemand, C. (2010). Safety, Tolerability, and Immunogenicity of Interferons. Pharmaceuticals (Basel, Switzerland), 3(4), 1162–1186. [CrossRef]
- Meyts, I., & Casanova, J. L. (2021). Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. European journal of immunology, 51(5), 1039–1061. [CrossRef]
- Zhang, Q., Matuozzo, D., Le Pen, J., Lee, D., Moens, L., Asano, T., Bohlen, J., Liu, Z., Moncada-Velez, M., Kendir-Demirkol, Y., Jing, H., Bizien, L., Marchal, A., Abolhassani, H., Delafontaine, S., Bucciol, G., COVID Human Genetic Effort, Bayhan, G. I., Keles, S., Kiykim, A., … Casanova, J. L. (2022). Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. The Journal of experimental medicine, 219(8), e20220131. [CrossRef]
- Abolhassani, H., Landegren, N., Bastard, P., Materna, M., Modaresi, M., Du, L., Aranda-Guillén, M., Sardh, F., Zuo, F., Zhang, P., Marcotte, H., Marr, N., Khan, T., Ata, M., Al-Ali, F., Pescarmona, R., Belot, A., Béziat, V., Zhang, Q., Casanova, J. L., … Pan-Hammarström, Q. (2022). Inherited IFNAR1 Deficiency in a Child with Both Critical COVID-19 Pneumonia and Multisystem Inflammatory Syndrome. Journal of clinical immunology, 42(3), 471–483. [CrossRef]
- Su, H. C., Jing, H., Zhang, Y., & Casanova, J. L. (2023). Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annual review of immunology, 41, 561–585. [CrossRef]
- Jafarzadeh, A., Nemati, M., Saha, B., Bansode, Y. D., & Jafarzadeh, S. (2021). Protective Potentials of Type III Interferons in COVID-19 Patients: Lessons from Differential Properties of Type I- and III Interferons. Viral immunology, 34(5), 307–320. [CrossRef]
- Sorrentino, L., Silvestri, V., Oliveto, G., Scordio, M., Frasca, F., Fracella, M., Bitossi, C., D’Auria, A., Santinelli, L., Gabriele, L., Pierangeli, A., Mastroianni, C. M., d’Ettorre, G., Antonelli, G., Caruz, A., Ottini, L., & Scagnolari, C. (2022). Distribution of Interferon Lambda 4 Single Nucleotide Polymorphism rs11322783 Genotypes in Patients with COVID-19. Microorganisms, 10(2), 363. [CrossRef]
- Zahid, W., Farooqui, N., Zahid, N., Ahmed, K., Anwar, M. F., Rizwan-Ul-Hasan, S., Hussain, A. R., Sarría-Santamera, A., & Abidi, S. H. (2023). Association of Interferon Lambda 3 and 4 Gene SNPs and Their Expression with COVID-19 Disease Severity: A Cross-Sectional Study. Infection and drug resistance, 16, 6619–6628. [CrossRef]
- Fang, M. Z., Jackson, S. S., & O’Brien, T. R. (2020). IFNL4: Notable variants and associated phenotypes. Gene, 730, 144289. [CrossRef]
- Svensson Akusjärvi, S., & Zanoni, I. (2024). Yin and yang of interferons: lessons from the coronavirus disease 2019 (COVID-19) pandemic. Current opinion in immunology, 87, 102423. [CrossRef]
- Mogensen T. H. (2022). Human genetics of SARS-CoV-2 infection and critical COVID-19. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 28(11), 1417–1421. [CrossRef]
- Romeih, M., Mahrous, M. R., & El Kassas, M. (2022). Incidental radiological findings suggestive of COVID-19 in asymptomatic patients. World journal of radiology, 14(1), 1–12. [CrossRef]
- Orchansky, P., Rubinstein, M., & Sela, I. (1982). Human interferons protect plants from virus infection. Proceedings of the National Academy of Sciences of the United States of America, 79(7), 2278–2280. [CrossRef]
- Malik, A. E., Issekutz, T. B., & Derfalvi, B. (2021). The Role of Type III Interferons in Human Disease. Clinical and investigative medicine. Medecine clinique et experimentale, 44(2), E5–E18. [CrossRef]
- Mesev, E. V., LeDesma, R. A., & Ploss, A. (2019). Decoding type I and III interferon signalling during viral infection. Nature microbiology, 4(6), 914–924. [CrossRef]
- Rojas, J. M., Alejo, A., Martín, V., & Sevilla, N. (2021). Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cellular and molecular life sciences : CMLS, 78(4), 1423–1444. [CrossRef]
- Takaoka, A., & Yanai, H. (2006). Interferon signalling network in innate defence. Cellular microbiology, 8(6), 907–922. [CrossRef]
- Tian, Y., Wang, M. L., & Zhao, J. (2019). Crosstalk between Autophagy and Type I Interferon Responses in Innate Antiviral Immunity. Viruses, 11(2), 132. [CrossRef]
- Rabbani, M. A., Ribaudo, M., Guo, J. T., & Barik, S. (2016). Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3. Journal of virology, 90(24), 11145–11156. [CrossRef]
- Zhou, X., Michal, J. J., Zhang, L., Ding, B., Lunney, J. K., Liu, B., & Jiang, Z. (2013). Interferon induced IFIT family genes in host antiviral defense. International journal of biological sciences, 9(2), 200–208. [CrossRef]
- Loevenich, S., Malmo, J., Liberg, A. M., Sherstova, T., Li, Y., Rian, K., Johnsen, I. B., & Anthonsen, M. W. (2019). Cell-Type-Specific Transcription of Innate Immune Regulators in response to HMPV Infection. Mediators of inflammation, 2019, 4964239. [CrossRef]
- Loevenich, S., Spahn, A. S., Rian, K., Boyartchuk, V., & Anthonsen, M. W. (2021). Human Metapneumovirus Induces IRF1 via TANK-Binding Kinase 1 and Type I IFN. Frontiers in immunology, 12, 563336. [CrossRef]
- Tanaka, Y., Morita, N., Kitagawa, Y., Gotoh, B., & Komatsu, T. (2022). Human metapneumovirus M2-2 protein inhibits RIG-I signaling by preventing TRIM25-mediated RIG-I ubiquitination. Frontiers in immunology, 13, 970750. [CrossRef]
- Hastings, A. K., Erickson, J. J., Schuster, J. E., Boyd, K. L., Tollefson, S. J., Johnson, M., Gilchuk, P., Joyce, S., & Williams, J. V. (2015). Role of type I interferon signaling in human metapneumovirus pathogenesis and control of viral replication. Journal of virology, 89(8), 4405–4420. [CrossRef]
- van den Hoogen, B. G., van Boheemen, S., de Rijck, J., van Nieuwkoop, S., Smith, D. J., Laksono, B., Gultyaev, A., Osterhaus, A. D. M. E., & Fouchier, R. A. M. (2014). Excessive production and extreme editing of human metapneumovirus defective interfering RNA is associated with type I IFN induction. The Journal of general virology, 95(Pt 8), 1625–1633. [CrossRef]
- Schoggins J. W. (2019). Interferon-Stimulated Genes: What Do They All Do?. Annual review of virology, 6(1), 567–584. [CrossRef]
- Su J. (2022). The discovery of type IV interferon system revolutionizes interferon family and opens up a new frontier in jawed vertebrate immune defense. Science China. Life sciences, 65(11), 2335–2337. [CrossRef]
- Pang, A. N., Chen, S. N., Liu, L. H., Li, B., Song, J. W., Zhang, S., & Nie, P. (2024). IFN-υ and its receptor subunits, IFN-υR1 and IL10RB in mallard Anas platyrhynchos. Poultry science, 103(6), 103673. [CrossRef]
- Chen, S. N., Li, B., Gan, Z., Wang, K. L., Li, L., Pang, A. N., Peng, X. Y., Ji, J. X., Deng, Y. H., Li, N., Liu, L. H., Sun, Y. L., Wang, S., Huang, B., & Nie, P. (2023). Transcriptional Regulation and Signaling of Type IV IFN with Identification of the ISG Repertoire in an Amphibian Model, Xenopus laevis. Journal of immunology (Baltimore, Md. : 1950), 210(11), 1771–1789. [CrossRef]
- Frenkel, D., Puckett, L., Petrovic, S., Xia, W., Chen, G., Vega, J., Dembinsky-Vaknin, A., Shen, J., Plante, M., Burt, D. S., & Weiner, H. L. (2008). A nasal proteosome adjuvant activates microglia and prevents amyloid deposition. Annals of neurology, 63(5), 591–601. [CrossRef]
- Frenkel, D., Maron, R., Burt, D. S., & Weiner, H. L. (2005). Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. The Journal of clinical investigation, 115(9), 2423–2433. [CrossRef]
- Cao, W., Kim, J. H., Reber, A. J., Hoelscher, M., Belser, J. A., Lu, X., Katz, J. M., Gangappa, S., Plante, M., Burt, D. S., & Sambhara, S. (2017). Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice. Vaccine, 35(25), 3318–3325. [CrossRef]
- Chabot, S., Brewer, A., Lowell, G., Plante, M., Cyr, S., Burt, D. S., & Ward, B. J. (2005). A novel intranasal Protollin-based measles vaccine induces mucosal and systemic neutralizing antibody responses and cell-mediated immunity in mice. Vaccine, 23(11), 1374–1383. [CrossRef]
- Kosmaoglou, M., Schwarz, N., Bett, J. S., & Cheetham, M. E. (2008). Molecular chaperones and photoreceptor function. Progress in retinal and eye research, 27(4), 434–449. [CrossRef]
- Roy, S., & Nagrale, P. (2022). Encoding the Photoreceptors of the Human Eye. Cureus, 14(10), e30125. [CrossRef]
- Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology spectrum, 4(2), 10.1128/microbiolspec.VMBF-0016-2015. [CrossRef]
- Blázquez, J., Oliver, A., & Gómez-Gómez, J. M. (2002). Mutation and evolution of antibiotic resistance: antibiotics as promoters of antibiotic resistance?. Current drug targets, 3(4), 345–349. [CrossRef]
- Handa, V. L., Patel, B. N., Bhattacharya, D. A., Kothari, R. K., Kavathia, D. G., & Vyas, B. R. M. (2024). A study of antibiotic resistance pattern of clinical bacterial pathogens isolated from patients in a tertiary care hospital. Frontiers in microbiology, 15, 1383989. [CrossRef]
- Riggs A. D. (2021). Making, Cloning, and the Expression of Human Insulin Genes in Bacteria: The Path to Humulin. Endocrine reviews, 42(3), 374–380. [CrossRef]
- Ferrer-Miralles, N., Domingo-Espín, J., Corchero, J. L., Vázquez, E., & Villaverde, A. (2009). Microbial factories for recombinant pharmaceuticals. Microbial cell factories, 8, 17. [CrossRef]
- Spadiut, O., Capone, S., Krainer, F., Glieder, A., & Herwig, C. (2014). Microbials for the production of monoclonal antibodies and antibody fragments. Trends in biotechnology, 32(1), 54–60. [CrossRef]
- Vieira Gomes, A. M., Souza Carmo, T., Silva Carvalho, L., Mendonça Bahia, F., & Parachin, N. S. (2018). Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms, 6(2), 38. [CrossRef]
- Wang, Y., Li, X., Chen, X., Nielsen, J., Petranovic, D., & Siewers, V. (2021). Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion. Microbial cell factories, 20(1), 134. [CrossRef]
- Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., Chandak, P., Liu, S., Van Katwyk, P., Deac, A., Anandkumar, A., Bergen, K., Gomes, C. P., Ho, S., Kohli, P., Lasenby, J., Leskovec, J., Liu, T. Y., Manrai, A., Marks, D., … Zitnik, M. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620(7972), 47–60. [CrossRef]
- Kolluri, S., Lin, J., Liu, R., Zhang, Y., & Zhang, W. (2022). Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: a Review. The AAPS journal, 24(1), 19. [CrossRef]
- Messeri, L., & Crockett, M. J. (2024). Artificial intelligence and illusions of understanding in scientific research. Nature, 627(8002), 49–58. [CrossRef]
- Şahin, M. F., Topkaç, E. C., Doğan, Ç., Şeramet, S., Özcan, R., Akgül, M., & Yazıcı, C. M. (2024). Still Using Only ChatGPT? The Comparison of Five Different Artificial Intelligence Chatbots’ Answers to the Most Common Questions About Kidney Stones. Journal of endourology, 38(11), 1172–1177. [CrossRef]
- Carp, T. N. (2025). Recent Human Metapneumovirus Outbreak in East Asia: The Time to Shift Immunological Gears is Now. [CrossRef]
- Carp, T. N. (2025). Why Creating Transmissible Microbial Interferon Factories May Bring a Promise of a “Golden Era” in Future Human and Animal Health. Preprints. [CrossRef]
- Carp, T. N. (2024). Calibrating Human Immunity in the Context of Advanced Microbial Evolution and Self-Camouflaging. Preprints. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
