Submitted:
04 November 2025
Posted:
05 November 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Methodology
Conceptual Framework for Pathogen Attenuation and Genetic Modification
Literature Review and Hypothesis Generation
AI-driven Mathematical Modelling of Epidemiological Outcomes
AI Acknowledgment
Results
AI Modeling Outcomes: Pandemic Prevention Probabilities
| Simulation Run | Domestic Coverage at Day 60 (%) | Peak Wild I_w (% N) | Outcome (Prevention) |
| Grok 3 Beta (Mean) | 85 | 4.2 | 60% Yes |
| Grok 4 Beta (Mean) | 88 | 3.1 | 62% Yes |
| mRNA Baseline | 40 (static) | 12.5 | 39% Yes |
Discussion
Conclusions
Supplementary Materials
References
- Koonin, E. V., Dolja, V. V., & Krupovic, M. (2022). The logic of virus evolution. Cell host & microbe, 30(7), 917–929. [CrossRef]
- Fensterl, V., Chattopadhyay, S., & Sen, G. C. (2015). No Love Lost Between Viruses and Interferons. Annual review of virology, 2(1), 549–572. [CrossRef]
- Lengyel P. (1982). Biochemistry of interferons and their actions. Annual review of biochemistry, 51, 251–282. [CrossRef]
- Sen G. C. (1984). Biochemical pathways in interferon-action. Pharmacology & therapeutics, 24(2), 235–257. [CrossRef]
- Martínez J. L. (2013). Bacterial pathogens: from natural ecosystems to human hosts. Environmental microbiology, 15(2), 325–333. [CrossRef]
- Diard, M., & Hardt, W. D. (2017). Evolution of bacterial virulence. FEMS microbiology reviews, 41(5), 679–697. [CrossRef]
- Alphonse, N., Dickenson, R. E., & Odendall, C. (2021). Interferons: Tug of War Between Bacteria and Their Host. Frontiers in cellular and infection microbiology, 11, 624094. [CrossRef]
- Daffis, S., Szretter, K. J., Schriewer, J., Li, J., Youn, S., Errett, J., Lin, T. Y., Schneller, S., Zust, R., Dong, H., Thiel, V., Sen, G. C., Fensterl, V., Klimstra, W. B., Pierson, T. C., Buller, R. M., Gale, M., Jr, Shi, P. Y., & Diamond, M. S. (2010). 2’-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468(7322), 452–456. [CrossRef]
- Szretter, K. J., Daniels, B. P., Cho, H., Gainey, M. D., Yokoyama, W. M., Gale, M., Jr, Virgin, H. W., Klein, R. S., Sen, G. C., & Diamond, M. S. (2012). 2’-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS pathogens, 8(5), e1002698. [CrossRef]
- Diamond M. S. (2014). IFIT1: A dual sensor and effector molecule that detects non-2’-O methylated viral RNA and inhibits its translation. Cytokine & growth factor reviews, 25(5), 543–550. [CrossRef]
- Menachery, V. D., Debbink, K., & Baric, R. S. (2014). Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments. Virus research, 194, 191–199. [CrossRef]
- Menachery, V. D., Gralinski, L. E., Mitchell, H. D., Dinnon, K. H., 3rd, Leist, S. R., Yount, B. L., Jr, Graham, R. L., McAnarney, E. T., Stratton, K. G., Cockrell, A. S., Debbink, K., Sims, A. C., Waters, K. M., & Baric, R. S. (2017). Middle East Respiratory Syndrome Coronavirus Nonstructural Protein 16 Is Necessary for Interferon Resistance and Viral Pathogenesis. mSphere, 2(6), e00346-17. [CrossRef]
- Schindewolf, C., & Menachery, V. D. (2023). Coronavirus 2’-O-methyltransferase: A promising therapeutic target. Virus research, 336, 199211. [CrossRef]
- Schindewolf, C., Lokugamage, K., Vu, M. N., Johnson, B. A., Scharton, D., Plante, J. A., Kalveram, B., Crocquet-Valdes, P. A., Sotcheff, S., Jaworski, E., Alvarado, R. E., Debbink, K., Daugherty, M. D., Weaver, S. C., Routh, A. L., Walker, D. H., Plante, K. S., & Menachery, V. D. (2023). SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3. Journal of virology, 97(2), e0153222. [CrossRef]
- Menachery, V. D., Yount, B. L., Jr, Josset, L., Gralinski, L. E., Scobey, T., Agnihothram, S., Katze, M. G., & Baric, R. S. (2014). Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2’-o-methyltransferase activity. Journal of virology, 88(8), 4251–4264. [CrossRef]
- Lazear, H. M., Schoggins, J. W., & Diamond, M. S. (2019). Shared and Distinct Functions of Type I and Type III Interferons. Immunity, 50(4), 907–923. [CrossRef]
- Dowling, J. W., & Forero, A. (2022). Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. Journal of immunology (Baltimore, Md. : 1950), 208(2), 247–256. [CrossRef]
- Chiale, C., Greene, T. T., & Zuniga, E. I. (2022). Interferon induction, evasion, and paradoxical roles during SARS-CoV-2 infection. Immunological reviews, 309(1), 12–24. [CrossRef]
- Garcia-Del-Barco, D., Risco-Acevedo, D., Berlanga-Acosta, J., Martos-Benítez, F. D., & Guillén-Nieto, G. (2021). Revisiting Pleiotropic Effects of Type I Interferons: Rationale for Its Prophylactic and Therapeutic Use Against SARS-CoV-2. Frontiers in immunology, 12, 655528. [CrossRef]
- Felgenhauer, U., Schoen, A., Gad, H. H., Hartmann, R., Schaubmar, A. R., Failing, K., Drosten, C., & Weber, F. (2020). Inhibition of SARS-CoV-2 by type I and type III interferons. The Journal of biological chemistry, 295(41), 13958–13964. [CrossRef]
- Lokugamage, K. G., Hage, A., de Vries, M., Valero-Jimenez, A. M., Schindewolf, C., Dittmann, M., Rajsbaum, R., & Menachery, V. D. (2020). Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV. Journal of virology, 94(23), e01410-20. [CrossRef]
- Shimizu, J., Sasaki, T., Ong, G. H., Koketsu, R., Samune, Y., Nakayama, E. E., Nagamoto, T., Yamamoto, Y., Miyazaki, K., & Shioda, T. (2024). IFN-γ derived from activated human CD4+ T cells inhibits the replication of SARS-CoV-2 depending on cell-type and viral strain. Scientific reports, 14(1), 26660. [CrossRef]
- Vallejo, A., Vizcarra, P., Quereda, C., Moreno, A., Casado, J. L., & CoVEX study group (2021). IFN-γ+ cell response and IFN-γ release concordance after in vitro SARS-CoV-2 stimulation. European journal of clinical investigation, 51(12), e13636. [CrossRef]
- Chen, J., Liu, J., Chen, Z., Peng, H., Zhu, C., Feng, D., Zhang, S., Zhao, P., Zhang, X., & Xu, J. (2022). Angiotensin-Converting Enzyme 2 Potentiates SARS-CoV-2 Infection by Antagonizing Type I Interferon Induction and Its Down-Stream Signaling Pathway. mSphere, 7(4), e0021122. [CrossRef]
- Busnadiego, I., Fernbach, S., Pohl, M. O., Karakus, U., Huber, M., Trkola, A., Stertz, S., & Hale, B. G. (2020). Antiviral Activity of Type I, II, and III Interferons Counterbalances ACE2 Inducibility and Restricts SARS-CoV-2. mBio, 11(5), e01928-20. [CrossRef]
- Goletti, D., Petrone, L., Manissero, D., Bertoletti, A., Rao, S., Ndunda, N., Sette, A., & Nikolayevskyy, V. (2021). The potential clinical utility of measuring severe acute respiratory syndrome coronavirus 2-specific T-cell responses. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 27(12), 1784–1789. [CrossRef]
- Tovey, M. G., & Lallemand, C. (2010). Safety, Tolerability, and Immunogenicity of Interferons. Pharmaceuticals (Basel, Switzerland), 3(4), 1162–1186. [CrossRef]
- Meyts, I., & Casanova, J. L. (2021). Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. European journal of immunology, 51(5), 1039–1061. [CrossRef]
- Zhang, Q., Matuozzo, D., Le Pen, J., Lee, D., Moens, L., Asano, T., Bohlen, J., Liu, Z., Moncada-Velez, M., Kendir-Demirkol, Y., Jing, H., Bizien, L., Marchal, A., Abolhassani, H., Delafontaine, S., Bucciol, G., COVID Human Genetic Effort, Bayhan, G. I., Keles, S., Kiykim, A., … Casanova, J. L. (2022). Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. The Journal of experimental medicine, 219(8), e20220131. [CrossRef]
- Abolhassani, H., Landegren, N., Bastard, P., Materna, M., Modaresi, M., Du, L., Aranda-Guillén, M., Sardh, F., Zuo, F., Zhang, P., Marcotte, H., Marr, N., Khan, T., Ata, M., Al-Ali, F., Pescarmona, R., Belot, A., Béziat, V., Zhang, Q., Casanova, J. L., … Pan-Hammarström, Q. (2022). Inherited IFNAR1 Deficiency in a Child with Both Critical COVID-19 Pneumonia and Multisystem Inflammatory Syndrome. Journal of clinical immunology, 42(3), 471–483. [CrossRef]
- Su, H. C., Jing, H., Zhang, Y., & Casanova, J. L. (2023). Interfering with Interferons: A Critical Mechanism for Critical COVID-19 Pneumonia. Annual review of immunology, 41, 561–585. [CrossRef]
- Jafarzadeh, A., Nemati, M., Saha, B., Bansode, Y. D., & Jafarzadeh, S. (2021). Protective Potentials of Type III Interferons in COVID-19 Patients: Lessons from Differential Properties of Type I- and III Interferons. Viral immunology, 34(5), 307–320. [CrossRef]
- Sorrentino, L., Silvestri, V., Oliveto, G., Scordio, M., Frasca, F., Fracella, M., Bitossi, C., D’Auria, A., Santinelli, L., Gabriele, L., Pierangeli, A., Mastroianni, C. M., d’Ettorre, G., Antonelli, G., Caruz, A., Ottini, L., & Scagnolari, C. (2022). Distribution of Interferon Lambda 4 Single Nucleotide Polymorphism rs11322783 Genotypes in Patients with COVID-19. Microorganisms, 10(2), 363. [CrossRef]
- Zahid, W., Farooqui, N., Zahid, N., Ahmed, K., Anwar, M. F., Rizwan-Ul-Hasan, S., Hussain, A. R., Sarría-Santamera, A., & Abidi, S. H. (2023). Association of Interferon Lambda 3 and 4 Gene SNPs and Their Expression with COVID-19 Disease Severity: A Cross-Sectional Study. Infection and drug resistance, 16, 6619–6628. [CrossRef]
- Fang, M. Z., Jackson, S. S., & O’Brien, T. R. (2020). IFNL4: Notable variants and associated phenotypes. Gene, 730, 144289. [CrossRef]
- Svensson Akusjärvi, S., & Zanoni, I. (2024). Yin and yang of interferons: lessons from the coronavirus disease 2019 (COVID-19) pandemic. Current opinion in immunology, 87, 102423. [CrossRef]
- Mogensen T. H. (2022). Human genetics of SARS-CoV-2 infection and critical COVID-19. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 28(11), 1417–1421. [CrossRef]
- Romeih, M., Mahrous, M. R., & El Kassas, M. (2022). Incidental radiological findings suggestive of COVID-19 in asymptomatic patients. World journal of radiology, 14(1), 1–12. [CrossRef]
- Orchansky, P., Rubinstein, M., & Sela, I. (1982). Human interferons protect plants from virus infection. Proceedings of the National Academy of Sciences of the United States of America, 79(7), 2278–2280. [CrossRef]
- Malik, A. E., Issekutz, T. B., & Derfalvi, B. (2021). The Role of Type III Interferons in Human Disease. Clinical and investigative medicine. Medecine clinique et experimentale, 44(2), E5–E18. [CrossRef]
- Mesev, E. V., LeDesma, R. A., & Ploss, A. (2019). Decoding type I and III interferon signalling during viral infection. Nature microbiology, 4(6), 914–924. [CrossRef]
- Rojas, J. M., Alejo, A., Martín, V., & Sevilla, N. (2021). Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cellular and molecular life sciences : CMLS, 78(4), 1423–1444. [CrossRef]
- Takaoka, A., & Yanai, H. (2006). Interferon signalling network in innate defence. Cellular microbiology, 8(6), 907–922. [CrossRef]
- Tian, Y., Wang, M. L., & Zhao, J. (2019). Crosstalk between Autophagy and Type I Interferon Responses in Innate Antiviral Immunity. Viruses, 11(2), 132. [CrossRef]
- Rabbani, M. A., Ribaudo, M., Guo, J. T., & Barik, S. (2016). Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3. Journal of virology, 90(24), 11145–11156. [CrossRef]
- Zhou, X., Michal, J. J., Zhang, L., Ding, B., Lunney, J. K., Liu, B., & Jiang, Z. (2013). Interferon induced IFIT family genes in host antiviral defense. International journal of biological sciences, 9(2), 200–208. [CrossRef]
- Loevenich, S., Malmo, J., Liberg, A. M., Sherstova, T., Li, Y., Rian, K., Johnsen, I. B., & Anthonsen, M. W. (2019). Cell-Type-Specific Transcription of Innate Immune Regulators in response to HMPV Infection. Mediators of inflammation, 2019, 4964239. [CrossRef]
- Loevenich, S., Spahn, A. S., Rian, K., Boyartchuk, V., & Anthonsen, M. W. (2021). Human Metapneumovirus Induces IRF1 via TANK-Binding Kinase 1 and Type I IFN. Frontiers in immunology, 12, 563336. [CrossRef]
- Tanaka, Y., Morita, N., Kitagawa, Y., Gotoh, B., & Komatsu, T. (2022). Human metapneumovirus M2-2 protein inhibits RIG-I signaling by preventing TRIM25-mediated RIG-I ubiquitination. Frontiers in immunology, 13, 970750. [CrossRef]
- Hastings, A. K., Erickson, J. J., Schuster, J. E., Boyd, K. L., Tollefson, S. J., Johnson, M., Gilchuk, P., Joyce, S., & Williams, J. V. (2015). Role of type I interferon signaling in human metapneumovirus pathogenesis and control of viral replication. Journal of virology, 89(8), 4405–4420. [CrossRef]
- van den Hoogen, B. G., van Boheemen, S., de Rijck, J., van Nieuwkoop, S., Smith, D. J., Laksono, B., Gultyaev, A., Osterhaus, A. D. M. E., & Fouchier, R. A. M. (2014). Excessive production and extreme editing of human metapneumovirus defective interfering RNA is associated with type I IFN induction. The Journal of general virology, 95(Pt 8), 1625–1633. [CrossRef]
- Schoggins J. W. (2019). Interferon-Stimulated Genes: What Do They All Do?. Annual review of virology, 6(1), 567–584. [CrossRef]
- Su J. (2022). The discovery of type IV interferon system revolutionizes interferon family and opens up a new frontier in jawed vertebrate immune defense. Science China. Life sciences, 65(11), 2335–2337. [CrossRef]
- Pang, A. N., Chen, S. N., Liu, L. H., Li, B., Song, J. W., Zhang, S., & Nie, P. (2024). IFN-υ and its receptor subunits, IFN-υR1 and IL10RB in mallard Anas platyrhynchos. Poultry science, 103(6), 103673. [CrossRef]
- Chen, S. N., Li, B., Gan, Z., Wang, K. L., Li, L., Pang, A. N., Peng, X. Y., Ji, J. X., Deng, Y. H., Li, N., Liu, L. H., Sun, Y. L., Wang, S., Huang, B., & Nie, P. (2023). Transcriptional Regulation and Signaling of Type IV IFN with Identification of the ISG Repertoire in an Amphibian Model, Xenopus laevis. Journal of immunology (Baltimore, Md. : 1950), 210(11), 1771–1789. [CrossRef]
- Frenkel, D., Puckett, L., Petrovic, S., Xia, W., Chen, G., Vega, J., Dembinsky-Vaknin, A., Shen, J., Plante, M., Burt, D. S., & Weiner, H. L. (2008). A nasal proteosome adjuvant activates microglia and prevents amyloid deposition. Annals of neurology, 63(5), 591–601. [CrossRef]
- Frenkel, D., Maron, R., Burt, D. S., & Weiner, H. L. (2005). Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. The Journal of clinical investigation, 115(9), 2423–2433. [CrossRef]
- Cao, W., Kim, J. H., Reber, A. J., Hoelscher, M., Belser, J. A., Lu, X., Katz, J. M., Gangappa, S., Plante, M., Burt, D. S., & Sambhara, S. (2017). Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice. Vaccine, 35(25), 3318–3325. [CrossRef]
- Chabot, S., Brewer, A., Lowell, G., Plante, M., Cyr, S., Burt, D. S., & Ward, B. J. (2005). A novel intranasal Protollin-based measles vaccine induces mucosal and systemic neutralizing antibody responses and cell-mediated immunity in mice. Vaccine, 23(11), 1374–1383. [CrossRef]
- Kosmaoglou, M., Schwarz, N., Bett, J. S., & Cheetham, M. E. (2008). Molecular chaperones and photoreceptor function. Progress in retinal and eye research, 27(4), 434–449. [CrossRef]
- Roy, S., & Nagrale, P. (2022). Encoding the Photoreceptors of the Human Eye. Cureus, 14(10), e30125. [CrossRef]
- Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology spectrum, 4(2), 10.1128/microbiolspec.VMBF-0016-2015. [CrossRef]
- Blázquez, J., Oliver, A., & Gómez-Gómez, J. M. (2002). Mutation and evolution of antibiotic resistance: antibiotics as promoters of antibiotic resistance?. Current drug targets, 3(4), 345–349. [CrossRef]
- Handa, V. L., Patel, B. N., Bhattacharya, D. A., Kothari, R. K., Kavathia, D. G., & Vyas, B. R. M. (2024). A study of antibiotic resistance pattern of clinical bacterial pathogens isolated from patients in a tertiary care hospital. Frontiers in microbiology, 15, 1383989. [CrossRef]
- Riggs A. D. (2021). Making, Cloning, and the Expression of Human Insulin Genes in Bacteria: The Path to Humulin. Endocrine reviews, 42(3), 374–380. [CrossRef]
- Ferrer-Miralles, N., Domingo-Espín, J., Corchero, J. L., Vázquez, E., & Villaverde, A. (2009). Microbial factories for recombinant pharmaceuticals. Microbial cell factories, 8, 17. [CrossRef]
- Spadiut, O., Capone, S., Krainer, F., Glieder, A., & Herwig, C. (2014). Microbials for the production of monoclonal antibodies and antibody fragments. Trends in biotechnology, 32(1), 54–60. [CrossRef]
- Vieira Gomes, A. M., Souza Carmo, T., Silva Carvalho, L., Mendonça Bahia, F., & Parachin, N. S. (2018). Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms, 6(2), 38. [CrossRef]
- Wang, Y., Li, X., Chen, X., Nielsen, J., Petranovic, D., & Siewers, V. (2021). Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion. Microbial cell factories, 20(1), 134. [CrossRef]
- Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., Chandak, P., Liu, S., Van Katwyk, P., Deac, A., Anandkumar, A., Bergen, K., Gomes, C. P., Ho, S., Kohli, P., Lasenby, J., Leskovec, J., Liu, T. Y., Manrai, A., Marks, D., … Zitnik, M. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620(7972), 47–60. [CrossRef]
- Kolluri, S., Lin, J., Liu, R., Zhang, Y., & Zhang, W. (2022). Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: a Review. The AAPS journal, 24(1), 19. [CrossRef]
- Messeri, L., & Crockett, M. J. (2024). Artificial intelligence and illusions of understanding in scientific research. Nature, 627(8002), 49–58. [CrossRef]
- Şahin, M. F., Topkaç, E. C., Doğan, Ç., Şeramet, S., Özcan, R., Akgül, M., & Yazıcı, C. M. (2024). Still Using Only ChatGPT? The Comparison of Five Different Artificial Intelligence Chatbots’ Answers to the Most Common Questions About Kidney Stones. Journal of endourology, 38(11), 1172–1177. [CrossRef]
- Plotkin, S. A., & Mortimer, E. A. (Eds.). (2008). Vaccines (5th ed.). Philadelphia, PA: Saunders Elsevier.
- Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of Chicago Press. [CrossRef]
- Hauser, D. J., & Fleming, M. E. (2021). Mother Nature’s Fury: Antagonist Metaphors for Natural Disasters Increase Forecasts of Their Severity and Encourage Evacuation. Journal of Language and Social Psychology, 40(1), 3–22.
- Vigh, J. L. (2010). Formation of the Hurricane Eye (Doctoral dissertation). Retrieved from https://www.researchgate.net/publication/270703003_Formation_of_the_Hurricane_Eye.
- Sharpe, C. (2023). L’Œil du cyclone: Disaster and ‘wakeful’ modes of perception in Maximin and Glissant. Francosphères, 12(2), 157–173. [CrossRef]
- Simondon, G. (2005). L’individuation à la lumière des notions de forme et d’information. Grenoble, France: Éditions Jérôme Millon.
- Sun Tzu. (1971). The Art of War (L. Giles, Trans.). Oxford, UK: Oxford University Press.
- Bachelard, G. (1994). The Poetics of Space (M. Jolas, Trans.). Boston, MA: Beacon Press.
- Tauber, A. I. (1994). The Immune Self: Theory or Metaphor? Cambridge, UK: Cambridge University Press.
- Bayat M, Nahid-Samiei R, Sadri Nahand J and Naghili B (2025) Interferon and immunity: the role of microRNA in viral evasion strategies. Front. Immunol. 16:1567459. doi: . [CrossRef]
- Guo Z, Zhang Q, Zhang Y, Wu C, Zheng Y, Tong F, et al. Effects of exogenous indole-3-acetic acid on the density of trichomes, expression of artemisinin biosynthetic genes, and artemisinin biosynthesis in Artemisia annua. Biotechnol Appl Biochem. 2023; 70: 1870–1880. [CrossRef]
- Su C-M, Du Y, Rowland RRR, Wang Q and Yoo D (2023) Reprogramming viral immune evasion for a rational design of next-generation vaccines for RNA viruses. Front. Immunol. 14:1172000. doi: . [CrossRef]
- Junji Zhu, Cindy Chiang, Michaela U. Gack; Viral evasion of the interferon response at a glance. J Cell Sci 15 June 2023; 136 (12): jcs260682. doi: . [CrossRef]
- Minkoff, J.M., tenOever, B. Innate immune evasion strategies of SARS-CoV-2. Nat Rev Microbiol 21, 178–194 (2023). [CrossRef]
- Muhammad, I., Contes, K., Bility, M. T., & Tang, Q. (2025). Chasing Virus Replication and Infection: PAMP-PRR Interaction Drives Type I Interferon Production, Which in Turn Activates ISG Expression and ISGylation. Viruses, 17(4), 528. [CrossRef]
- Weng, C. Current research progress on the viral immune evasion mechanisms of African swine fever virus. Animal Diseases 4, 18 (2024). [CrossRef]
- Mapar, M., Rydzak, T., Hommes, J. W., Surewaard, B. G., & Lewis, I. A. (2025). Diverse molecular mechanisms underpinning Staphylococcus aureus small colony variants. Trends in Microbiology, 33(2), 223-232. [CrossRef]
- Naeem, M., Alkhodairy, H.F., Ashraf, I. et al. CRISPR/Cas System Toward the Development of Next-Generation Recombinant Vaccines: Current Scenario and Future Prospects. Arab J Sci Eng 48, 1–11 (2023). [CrossRef]
- Visscher, P.M., Gyngell, C., Yengo, L. et al. Heritable polygenic editing: the next frontier in genomic medicine?. Nature 637, 637–645 (2025). [CrossRef]
- Xue, W., Li, T., Gu, Y., Li, S., & Xia, N. (2023). Molecular engineering tools for the development of vaccines against infectious diseases: current status and future directions. Expert Review of Vaccines, 22(1), 563–578. [CrossRef]
- Chehelgerdi, M., Chehelgerdi, M., Khorramian-Ghahfarokhi, M. et al. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 23, 9 (2024). [CrossRef]
- Zhou, X., Wu, Y., Zhu, Z. et al. Mucosal immune response in biology, disease prevention and treatment. Sig Transduct Target Ther 10, 7 (2025). [CrossRef]
- Cao L., Qian W., Li W., Ma Z. and Xie S. (2023) Type III interferon exerts thymic stromal lymphopoietin in mediating adaptive antiviral immune response. Front. Immunol. 14:1250541. doi: . [CrossRef]
- Peterson S. T., Kennedy, E. A., Brigleb, P. H., Taylor G. M., Urbanek K., Bricker T. L., Lee S., Shin H., Dermody T. S., Boon A. C. M, Baldridge M. T. (2019). Disruption of Type III Interferon (IFN) Genes Ifnl2 and Ifnl3 Recapitulates Loss of the Type III IFN Receptor in the Mucosal Antiviral Response. J Virol 93:10.1128/jvi.01073-19. [CrossRef]
- Achille Broggi, Francesca Granucci, Ivan Zanoni (2020); Type III interferons: Balancing tissue tolerance and resistance to pathogen invasion. J Exp Med; 217 (1): e20190295. doi: . [CrossRef]
- Nathan C. Layman, Beth M. Tuschhoff, Scott L. Nuismer (2021), Designing transmissible viral vaccines for evolutionary robustness and maximum efficiency, Virus Evolution, Volume 7, Issue 1, veab002, . [CrossRef]
- Cao M., Li Y., Song X., Lu Z., Zhai H., Qiu H., Sun Y. (2025). Broad-spectrum vaccines against various and evolving viruses: from antigen design to nanoparticle delivery. J Virol 99:e00997-25. [CrossRef]
- Zhang, Q., Cheng, J., Hou, J. et al. Synthetic biology-inspired development of live attenuated influenza vaccines. npj Vaccines 10, 204 (2025). [CrossRef]
- Ge, Q., Chen, P., Cheng, Y., & Xiao, Y. (2024). The long road for vaccine development with difficulties and hopes. Emerging Microbes & Infections, 13(1). [CrossRef]
- Ye, Y., Pandey, A., Bawden, C. et al. Integrating artificial intelligence with mechanistic epidemiological modeling: a scoping review of opportunities and challenges. Nat Commun 16, 581 (2025). [CrossRef]
- 104. Shi Chen, Patrick Robinson, Daniel Janies, Michael Dulin (2020), Four Challenges Associated With Current Mathematical Modeling Paradigm of Infectious Diseases and Call for a Shift, Open Forum Infectious Diseases, Volume 7, Issue 8, ofaa333, . [CrossRef]
- Gillum D. R. (2025). A possible turning point for research governance in the life sciences. mSphere, 10(8), e0040725. [CrossRef]
- Jewell, N. P. (2024). Artificial Intelligence for Modelling Infectious Disease Epidemics. University of Bristol Preprint. https://research-information.bris.ac.uk/files/446849799/Artificial_Intelligence_for_Modelling_Infectious_Disease_Epidemics_-_Accepted.pdf.
- Panda, D.S., Dixit, R., Dixit, A. et al. (2024), Mathematical Model and AI Integration for COVID-19: Improving Forecasting and Policy-Making. SN COMPUT. SCI. 5, 246. [CrossRef]
- Figueroa, Ú., Jarry, C., Inzunza, M., Montero, I., Garrido, F., Villagrán, I., ... & Varas, J. (2025). Innovation Meets Practice: A Scalable Simulation-based Methodology for Massive Paracentesis Training. Gastroenterology, 168(5), 865-869. [CrossRef]
- Gewaid, H., & Bowie, A. G. (2024). Regulation of type I and type III interferon induction in response to pathogen sensing. Current Opinion in Immunology, 87, 102424. [CrossRef]
- Sheen J. K., Kennedy-Shaffer L., Levy M. Z., Metcalf C. J. E. (2025) Design of field trials for the evaluation of transmissible vaccines in animal populations. PLOS Computational Biology 21(2): e1012779. [CrossRef]
- The PLOS Computational Biology Staff (2025) Correction: Design of field trials for the evaluation of transmissible vaccines in animal populations. PLoS Comput Biol 21(9): e1013530. [CrossRef]
- Bulletin of the Atomic Scientists. (2024). A Framework for Tomorrow’s Pathogen Research. Pathogens Project Report. https://thebulletin.org/pathogens-project/report-2024/ethical-obligations/.
- NIH. (2025). Terminating or Suspending Dangerous Gain-of-Function Research. NOT-OD-25-127. https://grants.nih.gov/grants/guide/notice-files/NOT-OD-25-127.html.
- White House. (2025). Improving the Safety and Security of Biological Research. Executive Order 14292. https://www.whitehouse.gov/presidential-actions/2025/05/improving-the-safety-and-security-of-biological-research/.
- Carp, T. N. (2025). Recent Human Metapneumovirus Outbreak in East Asia: The Time to Shift Immunological Gears is Now. [CrossRef]
- Carp, T. N. (2025). Why Creating Transmissible Microbial Interferon Factories May Bring a Promise of a “Golden Era” in Future Human and Animal Health. Preprints. [CrossRef]
- Carp, T. N. (2024). Calibrating Human Immunity in the Context of Advanced Microbial Evolution and Self-Camouflaging. Preprints. [CrossRef]
- Brodrick, M. (2023, October 27). The Eye of the Hurricane. Open Health Policy. Retrieved from https://www.openhealthpolicy.com/p/the-eye-of-the-hurricane.
- ABPI. (2025). The future of vaccines: Innovations in next-generation platforms. Association of the British Pharmaceutical Industry Report. https://www.abpi.org.uk/value-and-access/vaccines/the-future-of-vaccines/.
- KGL Team. (2024). UIS Faculty Research on Mathematical Modeling, AI, and the Dynamics of COVID-19 Spread. University of Illinois Springfield Report. https://www.uis.edu/news/uis-faculty-research-mathematical-modeling-ai-and-dynamics-covid-19-spread-0.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
