Submitted:
19 January 2025
Posted:
21 January 2025
You are already at the latest version
Abstract
The management of infectious diseases has proven to be a daunting task for clinicians worldwide and the rapid development of antibiotic resistance among Gram-negative bacteria is making it even more challenging. The first-line therapy is empirical and it most often comprises β-lactam antibiotics. Among Gram-negative bacteria Proteus mirabilis, important community and hospital pathogen associated primarily with urinary tract and wound infection, holds a special place. This review’s aim was to collate and examine recent studies investigating resistance phenotypes and mechanisms of Proteus species and the global significance of its resistance evolution. P. mirabilis as the dominant pathogen develops resistance to expanded-spectrum cephalosporins (ESC) by producing extended-spectrum β-lactamases (ESBL) and plasmid-mediated AmpC β-lactamases (p-AmpC). β-lactamase-mediated resistance to carbapenems in Enterobacterales including Proteus spp. is mostly due to expression of carbapenemases of class A (KPC), class B (metallo-β-lactamases or MBLs of IMP, VIM or NDM series) or class D or carbapenem-hydrolyzing oxacillinases (CHDL). Previously, a dominant ESBL type in P. mirabilis was TEM-52, yet lately it has been replaced by CTX-M variants, particularly CTX-M-3 and CTX-M-65. ESC resistance can also be mediated by p-AmpC with CMY-16 as the dominant variant. Carbapenem resistance in Proteus spp. is a challenge due to its intrinsic resistance to colistin and tigecyclin. The first carbapenemases reported, belonged to class B, most frequently VIM-1 and NDM-5. In Europe, predominantly France and Belgium, a clonal lineage positive for OXA-23 CHD spread rapidly undetected, due to its low-level resistance to carbapenems. Amazing capacity of Proteus spp. to accumulate a plethora of various resistance traits leading to multidrug or extensively- drug- resistant phenotype.
Keywords:
2. Extended-Spectrum β-Lactamases
| Type of ESBL | Substrate profile | reference |
|---|---|---|
| PER-1 | Penicillins, ESC, cefepime, monobactams | [18] |
| VEB-1 | Penicillins, ESC, cefepime, monobactams | [22] |
| TEM-52 | Penicillins, ESC, cefepime, monobactams | [14,15,16,17] |
| CTX-M-3 | Penicillins, ESC, cefepime, monobactams | [21] |
| CTX-M-65 | Penicillins, ESC, cefepime, monobactams | [20] |
| CTX-M-15 | Penicillins, ESC, cefepime, monobactams | [19] |
3. AmpC β-Lactamases
| Type of AmpC | Substrate profile | reference |
|---|---|---|
| CMY-16 | Penicillins, ESC, monobactams, cephamycins, β-lactam-inhibitor combinatons | [23,25,26,27] |
| CMY-2 | Penicillins, ESC, monobactams, cephamycins, β-lactam-inhibitor combinatons | [28] |
| CIT | Penicillins, ESC, monobactams, cephamycins, β-lactam-inhibitor combinatons | [29] |
4. Carbapenemases
| Type of carbapenemase | Substrate profile | reference |
|---|---|---|
| VIM-1 | Penicillins, ESC, carbapenems | [30] |
| NDM-5 | Penicillins, ESC, carbapenems | [22] |
| OXA-48 | Penicillins, monobactams, carbapenems | [32] |
| OXA-162 | Penicillins, monobactams, carbapenems | [32] |
| OXA-181 | Penicillins, monobactams, carbapenems | [32] |
| OXA-23 | Penicillins, monobactams, carbapenems | [33,34] |
| OXA-58 | Penicillins, monobactams, carbapenems | [34] |
5. Fluoroquinolone Resistance
6. Laboratory Detection of Extended-Spectrum β-Lactamases, Plasmid Mediated AmpC β-Lactamases and Carbapenemases in Proteus spp.
7. Therapeutic Options
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Bradford, P.A. Extended-spectrum β-lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin. Microbiol. Rev. 2001, 14, 933–951. [Google Scholar] [CrossRef] [PubMed]
- Grover, N.; Sahni, A.K.; Bhattacharya, S. Therapeutic challenges of ESBLS and AmpC beta-lactamase producers in a tertiary care center. Med J Armed Forces India. 2013, 69, 4–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bush, K. Is it important to identify extended-spectrum beta-lactamase-producing isolates? Eur J Clin Microbiol Infect Dis. 1996, 15, 361–4. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yin, M.; Fang, C.; Fu, Y.; Dai, X.; Zeng, W.; Zhang, L. Genetic analysis of resistance and virulence characteristics of clinical multidrug-resistant Proteus mirabilis isolates. Front Cell Infect Microbiol. 2023, 13, 1229194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef]
- Bonnet, R. Growing group of extended-spectrum β-lactamases: The CTX-M enzymes. Antimicrob. Agents. Chemother. 2004, 48, 1–14. [Google Scholar] [CrossRef]
- Rossolini, G.M.; D’Andrea, M.M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Infect. 2008, 14, 33–41. [Google Scholar] [CrossRef]
- Cantón, R.; Coque, T.M. ; The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 2006, 9, 466–475. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC β-lactamases. J. Clin. Microbiol. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile β-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef]
- Canton, R.; Akova, M.; Carmeli, Y.; Giske, C.G.; Glupczynski, Y.; Gniadkowski, M.; et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2012, 18, 413–431. [Google Scholar] [CrossRef] [PubMed]
- Girlich, D.; Bonnin, R. A; Dortet, L; Naas, T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Front Microbiol. 2020, 11, 256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 2006, 6, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Perilli, M.; Segatore, B.; De Massis, M.R.; Pagani, L.; Luzzaro, F.; Rossolini, G.M.; et al. Biochemical characterization of TEM-92 extended-spectrum beta-lactamase, a protein differing from TEM-52 in the signal peptide. Antimicrob Agents Chemother. 2002, 46, 3981–3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perilli, M.; Segatore, B.; Mugnaioli, C.; Celenza, G.; Rossolini, G.M.; Stefani, S.; Luzzaro, F.; Pini, B.; Amicosante, G. Persistence of TEM-52/TEM-92 and SHV-12 extended-spectrum β-lactamases in clinical isolates of Enterobacteriaceae in Italy. Microb Drug Resist. 2011, 17, 521–4. [Google Scholar] [CrossRef] [PubMed]
- Sardelić, S.; Bedenić, B.; Sijak, D.; Colinon, C.; Kalenić, S. Emergence of Proteus mirabilis isolates producing TEM-52 extended-spectrum beta-lactamases in Croatia. Chemotherapy. 2010, 56, 208–13. [Google Scholar] [CrossRef]
- Tonkić, M.; Mohar, B.; Šiško-Kraljević, K.; Meško-Meglič, K.; Goić-Barišić, I.; Novak, A. High prevalence and molecular characterization of extended-spectrum β-lactamase-producing Proteus mirabilis strains in southern Croatia. J Med Microbiol. 2010, 59, 1185–1190. [Google Scholar] [CrossRef]
- Iabadene, H.; Dallenne, C.; Messai, Y.; Geneste, D.; Bakour, R.; Arlet, G. Emergence of extended-spectrum beta-lactamase PER-1 in Proteus vulgaris and Providencia stuartii isolates from Algiers, Algeria. Antimicrob Agents Chemother. 2009, 53, 4043–4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mahrouki, S.; Belhadj, O.; Chihi, H.; Mohamed, B.M.; Celenza, G.; Amicosante, G.; et al. Chromosomal blaCTX-M-₁₅ associated with ISEcp1 in Proteus mirabilis and Morganella morganii isolated at the Military Hospital of Tunis, Tunisia. J Med Microbiol. 2012, 61, 1286–1289. [Google Scholar] [CrossRef] [PubMed]
- Karpenko, A.; Shelenkov, A.; Petrova, L.; Gusarov, V.; Zamyatin, M.; Mikhaylova, Y.; Akimin, V. Two multidrug-resistant Proteus mirabilis clones carrying extended spectrum beta-lactamases revealed in a single hospital department by whole genome sequencing. Heliyon. 2024, 29, 40821. [Google Scholar] [CrossRef]
- Biggel, M.; Boss, S.; Uea-Anuwong, T.; Lugsomya, K.; Magouras, I.; Stephan, R. Complete Genome Sequence of the Extensively Drug-Resistant Extended-Spectrum β-Lactamase-Producing Proteus mirabilis Isolate HK294, Obtained from Poultry Feces in Hong Kong. Microbiol Resour Announc. 2023, 20, e0022523. [Google Scholar] [CrossRef] [PubMed]
- Valentin, T.; Feierl, G.; Masoud-Landgraf, L.; Kohek, P.; Luxner, J.; Zarfel, G. Proteus mirabilis harboring carbapenemase NDM-5 and ESBL VEB-6 detected in Austria. Diagn Microbiol Infect Dis. 2018, 91, 284–286. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, M.M.; Literacka, E.; Zioga, A.; Giani, T.; Baraniak, A.; Fiett, J. Evolution and spread of multidrug-resistant Proteus mirabilis clone with chromosomal AmpC β-lactamase in Europe. Antimicrob. Agents Chemothe. 2011, 55, 2735–2742. [Google Scholar] [CrossRef] [PubMed]
- Shaban, M.; Elshaer, S.L.; Abd El-Rahman, O.A. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol. 2022, 11, 247. [Google Scholar] [CrossRef]
- Migliavacca, R.; Migliavacca, A.; Nucleo, E.; Ciaponi, A.; Spalla, M.; De Luca, C.; Pagani, L. Molecular epidemiology of ESBL producing Proteus mirabilis isolates from a long –term care and rehabilitation facility in Italy. New Microbiologica. 2007, 30, 362–366. [Google Scholar]
- Bedenić, B.; Firis, N.; Elveđi-Gašparović, V.; Krilanović, M.; Matanović, K.; Štimac, I.; A., *!!! REPLACE !!!*; et al. Emergence of multidrug-resitant Proteus mirabilis in a long-term care facility in Croatia. Wien Klin Wochenschr. 2016, 128, 404–13. [Google Scholar] [CrossRef]
- Rubic, Z.; Soprek, S.; Jelic, M.; Novak, A.; Goic-Barisic, I.; Radic, M.; Tambić-Andraševć, A; Tonkić, M. Molecular Characterization of β-Lactam Resistance and Antimicrobial Susceptibility to Possible Therapeutic Options of AmpC-Producing Multidrug-Resistant Proteus mirabilis in a University Hospital of Split, Croatia. Microb Drug Resist. 2021, 27, 162–169. [Google Scholar] [CrossRef]
- Yang, J.H.; Sheng, W.H.; Hsueh, P.R.; SMART Program. Antimicrobial susceptibility and distribution of extended-spectrum β-lactamases, AmpC β-lactamases and carbapenemases among Proteus, Providencia and Morganella isolated from global hospitalised patients with intra-abdominal and urinary tract infections: Results of the Study for Monitoring Antimicrobial Resistance Trends (SMART), 2008-2011. J Glob Antimicrob Resist. 2020, 22, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Santiago, G.S.; Gonçalves, D.; da Silva Coelho, I.; de Mattos de Oliveira Coelho, S.; Neto Ferreira, H. Conjugative plasmidic AmpC detected in Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae human clinical isolates from Portugal. Braz J Microbiol. 2020, 51, 1807–1812. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bontron, S.; Poirel, L.; Kieffer, N.; Savov, E.; Trifonova, A.; Todorova, I.; Kueffer, G.; et al. Increased Resistance to Carbapenems in Proteus mirabilis Mediated by Amplification of the blaVIM-1-Carrying and IS26-Associated Class 1 Integron. Microb Drug Resist. 2019, 25, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Hamprecht, A.; Sattler, J.; Noster, J.; Stelzer, Y.; Fuchs, F.; Dorth, V.; et al. Proteus mirabilis - analysis of a concealed source of carbapenemases and development of a diagnostic algorithm for detection. Clin Microbiol Infect. 2023, 29, 1198.e1–1198.e6. [Google Scholar] [CrossRef] [PubMed]
- Sattler, J.; Noster, J.; Stelzer, Y.; Spille, M.; Schäfer, S.; Xanthopoulou, K.; et al. OXA-48-like carbapenemases in Proteus mirabilis - novel genetic environments and a challenge for detection. Emerg Microbes Infect. 2024, 13, 2353310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Potron, A.; Hocquet, D.; Triponney, P.; Plésiat, P.; Bertrand, X.; Valot, B. Carbapenem-Susceptible OXA-23-Producing Proteus mirabilis in the French Community. Antimicrob Agents Chemother. 2019, 63, e00191–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bonnin, R.A.; Girlich, D.; Jousset, A.B.; Gauthier, L.; Cuzon, G.; Bogaerts, P.; et al. A single Proteus mirabilis lineage from human and animal sources: a hidden reservoir of OXA-23 or OXA-58 carbapenemases in Enterobacterales. Sci Rep. 2020, 10, 9160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Literacka, E.; Izdebski, R.; Baraniak, A.; Żabicka, D.; Schneider, A.; Urbanowicz, P. . Proteus mirabilis Producing the OXA-58 Carbapenemase in Poland. Antimicrob Agents Chemother. 2019, 25, 00106–19. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; He, J.; Shi, X.; Hu, L.; Yin, Y.; Yu, Y.; Hua, X. Genotypic characterization of a Proteus mirabilis strain harboring blaKPC-2 on the IncN plasmid isolated from a patient with bloodstream infection in China. J Infect Public Health. 2023, 16, 1033–1036. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Shen, Z.; Xia, L.; Wang, J.; Zhao, L. Characterization of NDM-1-Producing Carbapenemase in Proteus mirabilis among Broilers in China. Microorganisms. 2021, 26, 2443. [Google Scholar] [CrossRef]
- Beltrão, E.M.B.; Oliveira, É.M.; Scavuzzi, A.M.L.; Firmo, E.F.; Lopes, A.C.S. Virulence factors of Proteus mirabilis clinical isolates carrying blaKPC-2 and blaNDM-1 and first report blaOXA-10 in Brazil. J Infect Chemother. 2022, 28, 363–372. [Google Scholar] [CrossRef]
- Jayol, A.; Janvier, F.; Guillard, T.; Chau, F.; Mérens, A.; Robert, J.; et al. qnrA6 genetic environment and quinolone resistance conferred on Proteus mirabilis. J Antimicrob Chemother. 2016, 71, 903–8. [Google Scholar] [CrossRef]
- Jarlier, V.; Nicolas, M.H.; Fournier, G.; Philippon, A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Black, J.A.; Moland, E.S.; Thomson, K.S. AmpC disk test for detection of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J. Clin. Microbiol. 2005, 43, 3110–3113. [Google Scholar] [CrossRef] [PubMed]
- van der Zwaluw, K.; De Haan, A.; Pluister, G.N.; Bootsma, H.J.; de Neeling, A.J. The Carbapenem Inactivation Method (CIM), a simple and low-cost alternative for the carba NP test to assess phenotypic carbapenemase activity in Gram-negative rods. PLoS ONE 2015, 10, e0123690. [Google Scholar] [CrossRef] [PubMed]
- Amjad, A.; Mirza, I.; Abbasi, S.; Farwa, U.; Malik, N.; Zia, F. Modified Hodge test: A simple and effective test for detection of carbapenemase production. Iran. J. Microbiol. 2011, 3, 189–193. [Google Scholar]
- Lee, K.; Lim, Y.S.; Yong, D.; Yum, J.H.; Chong, Y. Evaluation of the Hodge test and the imipenem-EDTA-double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003, 41, 4623–4629. [Google Scholar] [CrossRef]
- McKamey, L.; Venugopalan, V.; Cherabuddi, K.; Borgert, S.; Voils, S.; et al. Assessing antimicrobial stewardship initiatives: Clinical evaluation of cefepime or piperacillin/tazobactam in patients with bloodstream infections secondary to AmpC-producing organisms. Int J Antimicrob Agents 2018, 52, 719–723. [Google Scholar] [CrossRef]
- Cheng, L.; Nelson, B.C.; Mehta, M.; Seval, N.; Park, S.; Giddin, M.J.; Shi, Q.; Whitter, S.; Gomez Simonds, A.; Uhlemann, A.C. Piperacillin-tazobactam versus other antibacterial agents for treatment of bloodstream infections due to AmpC β-lactamase producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e00276–17. [Google Scholar] [CrossRef]
- Negri, M.C.; Baquero, F. In vitro selective concentrations of cefepime and ceftazidime for AmpC beta-lactamase hyperproducer Enterobacter cloacae variants. Clin. Microbiol. Infect. 1999, 5, S25–S28. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
