Submitted:
20 January 2025
Posted:
21 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Measurements and Observations
2.3. Statistical Analysis
3. Results
3.1. Effect of Urban vs. Rural Locations on the Functional and Biological Characteristics of Bee Colonies
3.2. The Impact of Geographic Location on the Functional and Biological Characteristics of Bee Colonies
3.2. Influence of the Year of Study on the Functional and Biological Characteristics of Bee Colonies
3.2. Correlation Between Individual Traits
| Trait* | B1 | B2 | OIndex | BC0 | BC1 | BGD | SC1 | BC2 | SC2 | HY |
| B2 | 0.67 | |||||||||
| OIndex | 0.22 | -0.47 | ||||||||
| BC0 | 0.41 | 0.62 | -0.29 | |||||||
| BC1 | 0.38 | 0.48 | -0.20 | 0.60 | ||||||
| BGD | -0.20 | -0.32 | -0.63 | |||||||
| SC1 | 0.52 | 0.63 | -0.18 | 0.60 | 0.77 | |||||
| SC2 | 0.38 | |||||||||
| HY | -0.39 | -0.19 | 0.19 | 0.20 | 0.26 | |||||
| VInf. | -0.17 | 0.28 | 0.25 | |||||||
| BC3 | 0.17 | |||||||||
| SC3 | 0.43 | 0.34 | 0.22 | 0.22 | 0.45 | -0.25 | ||||
| SB | 0.18 | -0.28 | -0.28 | -0.22 | 0.22 | -0.17 |
| Grup of colonies | N | Trait* | ||
| BC0 (dm2) | BC1 (dm2) | BGD (%) | ||
| BCO < Median | 79 | 17.9 | 48.6 | 284 |
| BCO > Median | 81 | 39.9 | 68.5 | 176 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Semkiw, P. (2023) Preparation of a report on the state of beekeeping in Poland and analysis of the quality (authenticity/contamination and/or adulteration) of honey imported from Ukraine. Available online: https://www.inhort.pl/wp-content/uploads/2024/01/11.3_2023_Streszczenie.pdf (access 24.03.2024).
- Huddleston B., Ataman E., d'Ostiani L.F., 2003. Towards a GIS-based analysis of mountain environments and population. Working Paper No 10, Environment and Natural Resources, Food and Agriculture Organization of the United Nations, Rome, 2. http://www.fao.org/3/y4558e/y4558e.pdf.
- FAOSTAT-Food and Agriculture Data. Available online: https://www.fao.org/faostat/en/#home (access 10.09.2024).
- The World Factbook. (2024). Available online: https://web.archive.org/web/20150703221950/https://www.cia.gov/Library/publications/the-world-factbook/geos/xx.html (access 24.03.2024).
- Breeze, T.D., Bailey, A.P., Balcombe, K.G., Potts, S.G. Pollination services in the UK: How important are honeybees? Agriculture, Ecosystems & Environment. 2011; 142(3–4):137–43. [CrossRef]
- Breeze, T.D., Vaissière, B.E., Bommarco, R., Petanidou, T., Seraphides, N., Kozák, L., et al. Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PloS One 2014; 9(1):e82996. [CrossRef]
- Vanengelsdorp, D, Meixner M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of invertebrate pathology. 2010; 103: S80–S95. [CrossRef]
- Kluser, S., Chauzat M.P., Pettis J.S. UNEP emerging issues: Global honey bee colony disorder and other threats to insect pollinators. United Nations Environment Program, Nairobi, Kenya. 2010.
- Staveley, J.P., Law, S.A., Fairbrother, A., Menzie, C.A. A. Causal Analysis of Observed Declines in Managed Honey Bees (Apis mellifera). Human and Ecological Risk Assessment. 2014; 20(2):566–91. [CrossRef]
- Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution. 2010; 25(6):345–53. [CrossRef]
- Rosenkranz, P., Aumeier, P., Ziegelmann, B. Biology and control of Varroa destructor. Journal of invertebrate pathology. 2010; 103 Suppl 1:S96–119. Epub 2009/11/17. [CrossRef]
- Dixon DJ, Zheng H, Otto CRV. Land conversion and pesticide use degrade forage areas for honey bees in America's beekeeping epicenter. PLoS One. 2021 May 13;16(5):e0251043. [CrossRef]
- Otto CR V, Roth CL, Carlson BL, Smart MD. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proc Natl Acad Sci U S A. 2016; 113:10430–5. [CrossRef]
- Otto CRV, Zheng H, Gallant AL, Iovanna R, Carlson BL, Smart MD, Hyberg S. Past role and future outlook of the Conservation Reserve Program for supporting honey bees in the Great Plains. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7629-7634. doi: 10.1073/pnas.1800057115. Epub 2018 Jul 2. Erratum in: Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7651. doi: 10.1073/pnas.1812119115. PMID: 29967144; PMCID: PMC6055134.
- Zawislak J, Adamczyk J, Johnson DR, Lorenz G, Black J, Hornsby Q, Stewart SD, Joshi N. Comprehensive Survey of Area-Wide Agricultural Pesticide Use in Southern United States Row Crops and Potential Impact on Honey Bee Colonies. Insects. 2019 Sep 2;10(9):280. [CrossRef]
- Rinkevich FD, Danka RG, Rinderer TE, Margotta JW, Bartlett LJ, Healy KB. Relative impacts of Varroa destructor (Mesostigmata:Varroidae) infestation and pesticide exposure on honey bee colony health and survival in a high-intensity corn and soybean producing region in northern Iowa. J Insect Sci. 2024 May 1;24(3):18. [CrossRef]
- Fortel L, Henry M, Guilbaud L, Guirao AL, Kuhlmann M, Mouret H, et al. Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community (Hymenoptera: Anthophila) along an Urbanization Gradient. Smith MA, editor. PLoS One. 2014; 9: e104679. [CrossRef]
- Harrison T, Winfree R. Urban drivers of plant-pollinator interactions. Evans K, editor. Funct Ecol. 2015;29: 879–888. [CrossRef]
- Banaszak-Cibicka, W., Żmihorski, M. Wild bees along an urban gradient: winners and losers. J Insect Conserv 16, 331–343 (2012). [CrossRef]
- Cane JH (2005) Pollination potential of the bee Osmia aglaia for cultivated red raspberries and blackberries (Rubus: Rosaceae). Hort Sci 40:1705–1708.
- Chapman RE, Bourke AFG (2001) The influence of sociality on the conservation biology of social insects. Ecol Lett 4:650–662.
- Birdshire, K.R., Carper, A.L. & Briles, C.E. Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosyst 23, 689–702 (2020).
- Ropars L, Dajoz I, Fontaine C, Muratet A, Geslin B (2019) Wild pollinator activity negatively related to honey bee colony densities in urban context. PLoS ONE 14(9): e0222316. [CrossRef]
- Geldmann J, Gonza´ lez-Varo JP. Conserving honey bees does not help wildlife. Science (80-). 2018;359: 392–393. [CrossRef]
- Colla SR, MacIvor JS. Questioning public perception, conservation policy, and recovery actions for honeybees in North America. Conserv Biol. 2017; 31: 1202–1204. [CrossRef]
- Geslin B, Gauzens B, Baude M, Dajoz I, Fontaine C, Henry M, et al. Massively Introduced Managed Species and Their Consequences for Plant–Pollinator Interactions. Adv Ecol Res. 2017;57: 1–53. pmid:22265567.
- Mallinger RE, Gaines-Day HR, Gratton C. Do managed bees have negative effects on wild bees?: A systematic review of the literature. Raine NE, editor. PLoS One. 2017;12: e0189268. pmid:29220412.
- Wojcik VA, Morandin LA, Davies Adams L, Rourke KE. Floral Resource Competition Between Honey Bees and Wild Bees: Is There Clear Evidence and Can We Guide Management and Conservation? Environ Entomol. 2018; 1–12. pmid:29145607.
- Schofield, H. 2010 Paris fast becoming queen bee of the urban apiary world: BBC; 2010. Available online: http://www.bbc.co.uk/news/world-europe-10942618 (access 07.05.2024).
- Kosut, Marin & Moore, Lisa. (2013). Buzz: Urban Beekeeping and the Power of the Bee. [CrossRef]
- Vanengelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS. Colony collapse disorder: a descriptive study. PLoS One. 2009 Aug 3;4(8):e6481. [CrossRef]
- Chauzat M-P, Cauquil L, Roy L, Franco S, Hendrikx P, Ribière-Chabert M (2013) Demographics of the European Apicultural Industry. PLoS ONE 8(11): e79018. [CrossRef]
- Visick OD, Ratnieks FLW. Density of wild honey bee, Apis mellifera, colonies worldwide. Ecol Evol. 2023 Oct 11;13(10):e10609. [CrossRef]
- Imdorf A., Bühlmann G., Gerig L., Kilchenmann V., Wille H. (1987) Überprüfung der Schätzmethode zur Ermittlung der Brutfläche und der Anzahl Arbeiterinnen in freifliegenden Bienenvölkern. Apidologie, 18, (2):137-146. (DOI): . [CrossRef]
- Dietemann, V., Nazzi, F., Martin, S. J., Anderson, D. L., Locke, B., Delaplane, K. S., … Ellis, J. D. (2013). Standard methods for Varroa research. Journal of Apicultural Research, 52(1), 1–54. [CrossRef]
- TIBCO Software Inc. (2017). Statistica (data analysis software system), version 13.
- Joan Casanelles Abella, Miriam Leimbgruber, Stefanie Müller, Simonetta Selva, David Frey, Marco Moretti -City4Bees (2023). For a sustainable coexistence between honeybees and wild bees in cities. Final report. Swiss Federal Research Institute WSL.
- Harrison, T. and Winfree, R. (2015), Urban drivers of plant-pollinator interactions. Funct Ecol, 29: 879-888. [CrossRef]
- Remmers, R., Frantzeskaki, N. Bees in the city: Findings from a scoping review and recommendations for urban planning. Ambio 53, 1281–1295 (2024). [CrossRef]
- Wilson CJ, Jamieson MA (2019) The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS ONE 14(12): e0225852. [CrossRef]
- Lecocq A, Kryger P, Vejsnæs F, Bruun Jensen A (2015) Weight Watching and the Effect of Landscape on Honeybee Colony Productivity: Investigating the Value of Colony Weight Monitoring for the Beekeeping Industry. PLoS ONE 10(7): e0132473. [CrossRef]
- Baldock KCR et al. 2015 Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc. R. Soc. B 282: 20142849. http://dx.doi.org/10.1098/rspb.2014.2849.
- Gabka J. Correlations between the strength, amount of brood, and honey production of the honey bee colony. Med Weter. 2014:70(12):754–756.
- Calderón, R. A., & Lin, H. (2021). Reproduction of Varroa destructor in worker and drone brood cells of the honey bee in Costa Rica. Journal of Apicultural Research, 60(3), 183-191.
- Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A., & Omholt, S. W. (2004). Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the parasitic mite Varroa destructor. The Open Biology Journal, 3, 30-38.
- Strange, J. P., & Sheppard, W. S. (2001). Use of pulsed-field gel electrophoresis to identify non-Mendelian inheritance of mitochondrial DNA in honey bees (Apis mellifera L.). Journal of Apicultural Research, 40(1-2), 3-7.
- Floris, I.; Pusceddu, M.; Satta, A. How the Infestation Level of Varroa destructor Affects the Distribution Pattern of Multi-Infested Cells in Worker Brood of Apis mellifera. Vet. Sci. 2020, 7, 136. [CrossRef]
- Gregorc, A.; Sampson, B. Diagnosis of Varroa Mite (Varroa destructor) and Sustainable Control in Honey Bee (Apis mellifera) Colonies—A Review. Diversity 2019, 11, 243. [CrossRef]
- Ricardo Anguiano-Baez, Ernesto Guzman-Novoa, Mollah Md. Hamiduzzaman, Laura G. Espinosa-Montaño, Adriana Correa-Benítez, Varroa destructor (Mesostigmata: Varroidae) Parasitism and Climate Differentially Influence the Prevalence, Levels, and Overt Infections of Deformed Wing Virus in Honey Bees (Hymenoptera: Apidae), Journal of Insect Science, Volume 16, Issue 1, 2016, 44, . [CrossRef]
- Morfin N, Foster LJ, Guzman-Novoa E, Van Westendorp P, Currie RW and Higo H (2024) Varroa destructor economic injury levels and pathogens associated with colony losses in Western Canada. Front. Bee Sci. 2:1355401. [CrossRef]
- Gounari, S., Proutsos, N., & Goras, G. (2022). How does weather impact on beehive productivity in a Mediterranean island?. Italian Journal of Agrometeorology, (1), 65–81. [CrossRef]
- Mahankuda, B., Tiwari, R. (2024). Impact of Climate Change on Honeybees and Crop Production. In: Sheraz Mahdi, S., Singh, R., Dhekale, B. (eds) Adapting to Climate Change in Agriculture-Theories and Practices. Springer, Cham. [CrossRef]
- Moeller, F. E. (1980). Managing Colonies for High-Honey Yields. Agriculture Handbook Number 335, USDA.
- Schweitzer, P., Nombré, I., & Boussim, J. I. (2013). Honey Production for Assessing the Impact of Climatic Changes on Vegetation. Tropicultura, 31(2), 98-102.
- Masaka, K. (2023). Yearly Fluctuations in Honey Production in Hokkaido, Northern Japan, with Special Reference to Weather Conditions and Masting Behavior. International Journal on Food, Agriculture and Natural Resources, 4(3), 62-68.
- Anthony C Ayers, Sandra M Rehan, Bee–plant interaction and community response along an urbanization gradient, Journal of Urban Ecology, Volume 9, Issue 1, 2023, juad006, . [CrossRef]
- Birdshire, K.R., Carper, A.L. & Briles, C.E. Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosyst 23, 689–702 (2020). [CrossRef]
- EL-Kazafy A. Taha and Saad Naser Al-Kahtani, 2013. Relationship between Population Size and Productivity of Honey Bee Colonies. Journal of Entomology, 10: 163-169. [CrossRef]
- Jevtić G, Mladenović M, B Anđelković 1 , N. Nedić 2 , D. Sokolović 1 , R. Štrbanović 2009 "The Correlation Between Colony Strength, Food Supply, and Honey Yield in Honey Bee Colonies" Biotechnology in Animal Husbandry 25 (5-6), p 1141-1147,.
- Bhusal S. J., Thapa R. B. (2006) - Response of colony strength to honey production: regression and correlation analysis. J. Inst.Agric. Anim. Sci., 27: 133-137.




| No of apiary | Location of the urban apiary (city) | Coordinates of urban apiary | Distance (km) and direction to the control apiary (rural) |
| 1 | Warsaw | 52°17'05.0"N 20°55'52.0"E | 39,5 km, S |
| 2 | Lublin | 51°14'48.6"N 22°32'54.7"E | 22.4 km W |
| 3 | Pulawy | 51°24'35.7"N 21°58'44.2"E | 4.5 km, SW |
| 4 | Cracow | 49°59'42.6"N 19°59'23.2"E | 17.2 km, E |
| 5 | Tychy | 50°6'10.8"N 19°2'7.098"E | 35.8 km, SE |
| Traits or measurements* | Type of location | Statistical test** | p -Value | |
| Urban (mean± SE) | Rural (mean± SE) | |||
| B1 | 5.9 ± 0.12 | 5.8 ± 0.15 | U = 3269, N1= 87, N2 = 76 | 0.90 |
| B2 | 5.1 ± 0.12 | 5.0 ± 0.17 | U = 3195, N1= 87, N2 = 74 | 0.93 |
| OIndex | 0.82 ± 0.11 | 0.91 ± 0.12 | U = 3195, N1= 89, N2 = 85 | 0.51 |
| BC0 (dm2) | 28.10 ± 1.42 | 30.02 ± 1.80 | t = - 0.82, df = 159, N1 = 87, N2 = 74 | 0.40 |
| BC1 (dm2) | 62.8 ± 2.18 | 53.9 ± 2.59 | t = 2.67, df = 158, N1 = 87, N2 = 73 | ≤ 0.01 |
| BGD (%) | 260.8 ± 13.83 | 192.3 ± 6.90 | U = 2152, N1= 87, N2 = 73 | ≤ 0.01 |
| BC2 (dm2) | 62.0 ± 1.79 | 63.1 ± 2.83 | Welch's t -test = - 0.30, df = 119.5, N1 = 85, N2 = 70 | 0.75 |
| BC3 (dm2) | 1.75 ± 0.43 | 1.78 ± 0.44 | U = 2956, N1= 86, N2 = 70 | 0.84 |
| SC1 (number) | 8706.4 ± 404.6 | 8626.0 ± 495.3 | U = 2994, N1= 87, N2 = 73 | 0.62 |
| SC2 (number) | 14404.3 ± 580.3 | 13231.6 ± 504.5 | U = 2657, N1= 85, N2 = 70 | 0.25 |
| SC3 (number) | 7074.7 ± 200.1 | 7021.0 ± 261.8 | U = 2847, N1= 86, N2 = 70 | 0.56 |
| VInf. (No/10g of bees) | 0.19 ± 0.04 | 0.17 ± 0.04 | U = 2875, N1= 89, N2 = 87 | ≤ 0.01 |
| SB (points 0-3) | 2.074 ± 0.06 | 2.6 ± 0.11 | U = 3101, N1= 87, N2 = 72 | 0.87 |
| HY (kg) | 36.9 ± 1.55 | 30.8 ± 1.61 | U = 2685, N1= 86, N2 = 71 | 0.11 |
| Traits or measurements* | Location*** | Statistical test** | p-Value | ||||
| Warsow (mean± SE) | Lublin (mean± SE) | Pulawy (mean± SE) | Cracow (mean± SE) | Tychy (mean± SE) | |||
| B1 | 4.8 ± 0.07 a | 7.4 ± 0.19 c | 5.8 ± 0.15 b | 5.9 ± 0.12 b | 5.7 ± 0.09 b | H = 91,37, df = 4, N = 163) | ≤ 0.01 |
| B2 | 4.3 ± 0.17 a | 6.1 ± 0.22 c | 4.8 ± 0.20 ab | 5.5 ± 0.10 bc | 5.1 ± 0.10 b | H = 45,93, df = 4, N= 161 | ≤ 0.01 |
| OIndex | 0.60 ± 0.11 a | 1.55 ± 0.24 b | 0.95 ± 0.15 ab | 0.34 ± 0.09 a | 0.53 ± 0.11 ab | H =19,06, df =4, N= 174 | ≤ 0.01 |
| BC0 (dm2) | 25.25 ± 1.34 a | 39.15 ± 2.93 b | 28.71 ± 2.64 a | 20.83 ± 1.74 a | 29.72 ± 1.42 ab | F = 7.4, df = 4 | ≤ 0.01 |
| BC1 (dm2) | 56.5 ± 3.02 a | 72.0 ± 9.98 b | 53.8 ± 3.33 a | 63.5 ± 4.93 ab | 48.6 ± 1.85 a | F = 5.7, df = 4 | ≤ 0.01 |
| BGD (%) | 226.1 ± 5.98 b | 210.0 ± 16.67 a | 227.1 ± 19.80 a | 336.7 ± 34.32 b | 166.6 ± 5.95 a | H = 32,02, df = 4, N = 160) | ≤ 0.01 |
| BC2 (dm2) | 65.0 ± 2.87 b | 71.5 ± 3.28 b | 60.0 ± 3.25 b | 40.4 ± 3.70 a | 69.9 ± 1,31 b | Hartley’s = 12,22, df = 4 | ≤ 0.01 |
| BC3 (dm2) | 1.16 ± 0.47 ab | 2.79 ± 0.85 ab | 3.04 ± 0.76 b | 0.03 ± 0.02 a | 0.35 ± 0.37 ab | H = 14,19, df = 4, N= 156 | ≤ 0.01 |
| SC1 (number) | 6759.4 ± 304.2 a | 13767.5 ± 873.5 c | 7409.1 ± 357.0 a | 9996.2 ± 541.2 b | 6162.5 ± 133.6 a | H = 61,38, df = 4, N= 160 | ≤ 0.01 |
| SC2 (number) | 15241.3 ± 1130.6 b | 14074.1 ± 695.0 b | 1322.3 ± 503.9 b | 10100.0 ± 373.3 a | 15695.0 ± 13.2 b | H = 29,97, df = 4, N= 155 | ≤ 0.01 |
| SC3 (number) | 5886.1 ± 204.6 a | 9405.0 ± 308.0 b | 6571.6 ± 256.6 a | 7871.7 ± 233.4 c | 5982.5 ± 341.8 a | H = 29,97, df = 4, N= 155 | ≤ 0.01 |
| VInf. (No/10g of bees) | 0.16 ± 0.07 | 0.21 ± 0.08 | 0.12 ± 0.03 | 0.27 ± 0.07 | 0.15 ± 0.04 | H = 3,24, df = 4, N= 176 | 0.51 |
| SB (points 0-3) | 2.80 ± 0.09 | 2.89 ± 0.09 | 2.52 ± 0.14 | 2.55 ± 0.15 | 2.85 ± 0.08 | H = 6,92, df = 4, N= 159 | 0.14 |
| HY (kg) | 68.3 ± 3.4 c | 27.0 ± 1.6 ab | 20.9 ± 0.9 a | 20.8 ± 0.91 a | 34.4 ± 2.96 b | H=92,82, df = 4, N= 157 | ≤ 0.01 |
| Traits or measurements * | Year of research | Statistical test** | p -Value | |
| 2021 (mean ± SE) | 2022 (mean ± SE) | |||
| B1 | 5.8 ± 0.09 | 5.9 ± 0.19 | U = 3278,5, N1= 89, N2 = 74 | 0.96 |
| B2 | 4.7 ± 0.14 | 5.3 ± 0.14 | U = 2375, N1= 87, N2 = 74 | ≤ 0.01 |
| OIndex | 1.02 ± 0.10 | 0.72 ± 0.12 | U = 2821, N1= 84, N2 = 90 | ≤ 0.01 |
| BC0 (dm2) | 26.91 ± 1.75 | 30.75 ± 1.45 | t = - 1.7, df = 159, N1 = 87, N2 = 74 | 0.09 |
| BC1 (dm2) | 53.2 ± 2.53 | 63.4 ± 2.20 | t = -3.04, df = 158, N1 = 87, N2 = 73 | ≤ 0.01 |
| BGD (%) | 223.5 ± 12.19 | 234.6 ± 12.02 | U = 3039, N1= 87, N2 = 73 | 0.60 |
| BC2 (dm2) | 65.3 ± 1.99 | 60.1 ± 2.44 | Welch's = 1.66, df = 150.4, N1 = 72, N2 = 83 | 0.09 |
| BC3 (dm2) | 1.94 ± 0.45 | 1.62 ± 0.42 | U = 2785, N1= 72, N2 = 84 | 0.24 |
| SC1 (number) | 7790.6 ± 439.8 | 9407.3 ± 431.6 | U = 2170, N1= 73, N2 = 87 | ≤ 0.01 |
| SC2 (number) | 15625,8 ± 630.9 | 12355,6 ± 426.7 | U = 1772,5, N1= 72, N2 = 85 | ≤ 0.01 |
| SC3 (number) | 6544.3 ± 255.4 | 7484.6 ± 191.6 | U = 2049,5, N1= 72, N2 = 84 | ≤ 0.01 |
| VInf. (No/10g of bees) | 0.15 ± 0.04 | 0.21 ± 0.04 | U = 3299,5, N1= 72, N2 = 84 | 0.07 |
| SB (points 0-3) | 2.85 ± 0.06 | 2.53 ± 0.10 | U = 2592,5, N1= 72, N2 = 84 | ≤ 0.01 |
| HY (kg) | 36.8 ± 2.71 | 37.5 ± 2.78 | U = 2952, N1= 73, N2 = 84 | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
