Submitted:
14 January 2025
Posted:
15 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Population Model
3. Stock Assessment
3.1. Empirical Models
3.2. Analytical Models
3.3. Surplus Production Models
3.4. The Gordon Schaefer Model
3.4.1. Parameter Estimation
3.4.2. Annual Sustainable Production
3.4.3. Depletion
3.4.4. Reference Points
3.4.5. Bifurcation Analysis
3.4.6. Tax Policy
3.4.7. Management Advice
3.5. The Fox and Pella-Tomlinson models
3.6. Other Stock Assessment Methods
3.6.1. Delay Difference Models
3.6.2. Virtual Population Analysis
3.6.3. Length- and Age-Based Models
3.6.4. Time Series and Forecasting
4. Studies on Stock Assessment and Application of GS model
5. Conclusions and Recommendation for Future Research
Author Contributions
Conflicts of Interest
References
- Tesfaye, M.; Getahun, A. Review on fish stock assessments models with more emphasis on the use of empirical and analytical models for potential yield prediction. Acta Entomology and Zoology 2021, 2, 23–30. [Google Scholar] [CrossRef]
- Maunder, M. N.; Punt, A. E. A review of integrated analysis in fisheries stock assessment. Fisheries Research 2012, 142, 61–72. [Google Scholar] [CrossRef]
- Darasi, F.; Mahenna, S.; Aksissou, M. The coastal fisheries in tangier port: Catch assessment and current status. Egyptian Journal of Aquatic Biology & Fisheries 2020, 24, 496–506. [Google Scholar]
- Darwall, W. R. T.; Allison, E. H. Monitoring, assessing, and managing fish stocks in lake malawi/nyassa: Current approaches and future possibilities. Aquatic Ecosystem Health and Management 2002, 5, 293–305. [Google Scholar] [CrossRef]
- Government of Malawi. Analysis of catch and effort data for the fisheries of nkhotakota 1976-1999. Department of Fisheries: Mangochi, Malawi, 2001.
- Smith, M. T.; Addison, J. T. Methods for stock assessment of crustacean fisheries. Fisheries Research 2003, 65, 231–256. [Google Scholar] [CrossRef]
- M’balaka, M. S.; Kanyerere, G.; Kawonga, D. Assessment of artisanal chambo fisheries in mangochi district. International Journal of Fisheries and Aquatic Studies 2018, 6, 96–102. [Google Scholar]
- Government of Malawi. Analysis of catch and effort data for the fisheries of southeast arm of lake malawi, Department of Fisheries: Mangochi, Malawi, 2002.
- Government of Malawi. National fisheries policy 2012 - 2017, Department of Fisheries: Mangochi, Malawi, 2012.
- Maguza-Tembo, F. Bio-economics of common resource over exploitation: Case of lake malombe chambo (oreochromis sp. cichlidae) fishery in malawi. MSc Thesis, Tromsϕ University, Norway, 2002. [Google Scholar]
- Weyl, O. L. F.; Ribbink, A. J.; Tweddle, D. Lake Malawi: fishes, fisheries, biodiversity, health and habitat. Aquatic Ecosystem Health & Management 2010, 13, 241–254. [Google Scholar]
- FAO. Management techniques for elasmobranch fisheries (FAO Fisheries Technical Paper 487), FAO: Rome, Italy, 2005.
- Bell, R. J.; Collie, J. S.; Jamu, D; Banda, M. Changes in the biomass of chambo in the southeast arm of Lake Malawi: A stock assessment of Oreochromis spp. Journal of Great Lakes Research 2012, 38, 720–729. [Google Scholar] [CrossRef]
- Singini, W.; Kaunda, E.; Kasulo, V.; Jere, W. Wealth based fisheries management of chambo (oreochromis spp.) fish stock of lake malombe in malawi. International Journal of Fisheries and Aquaculture 2013, 5, 270–277. [Google Scholar]
- Haddon, M. Modelling and quantitative methods in fisheries, Chapman and Hall/CRC: New York, USA, 2011; pp. 102–176. [CrossRef]
- Anderson, L. G.; Siejo, J. C. Bio-economics of fisheries management, Wiley Blackwell: New York, USA, 2010; pp. 8–26.
- FAO. Stock assessment for fishery management: A framework guide to the stock assessment tools of the fisheries management science programme (FAO Fisheries Technical Paper 487), FAO: Rome, Italy, 2006.
- Ertiban, S. M. The empirical models in fish stock assessment. Agriculture and Biology Journal of North America 2016, 7, 287–295. [Google Scholar]
- Razzaq, S.; Kalhoro, M. A.; Memon, A. M.; Buzdar, M. A.; Shafi, M.; Saeed, F.; Baloch, A. Fishery stock assessment of megalaspis cordyla by using non equilibrium surplus production models in the arabian sea coast of pakistan. The Journal of Animal and Plant Sciences 2019, 29, 132–140. [Google Scholar]
- National Research Council. Improving fish stock assessments, National Academies Press: Washington DC, USA, 1998; pp. 21–126.
- Ryder, R.; Henderson, H. Estimates of potential fish yield for the nasser reservoir, arab republic of egypt. Journal of the Fisheries Board of Canada 1975, 32, 2137–2151. [Google Scholar] [CrossRef]
- Chen, X. (Ed.). Fisheries Resources Economics, China Agriculture Press: China, 2021; pp. 1–40.
- Thompson, A. B.; Allison, E. H. Potential Yield Estimates of Unexploited Pelagic Fish Stocks in Lake Malawi. Fisheries Management and Ecology 1997, 4, 31–48. [Google Scholar] [CrossRef]
- Zainun, I.; Sofyan, S. , Fajri, F.; Bagio, B. Application of surplus production model on tuna fishery in sabang, weh island, indonesia. OP Conference Series: Earth and Environmental Science 2019, 348, 1–7. [Google Scholar]
- Mohsin, M.; Guilin, D.; Zhuo, C.; Hengbin, Y.; Noman, M. Maximum sustainable yield estimates of carangoides fishery resource in pakistan and its bioeconomic implications. Pakistan J. Zool 2019, 51, 279–287. [Google Scholar] [CrossRef]
- Causido-Rocha, M.; Pennino, M. G.; Izquierdo, F.; Paz, A. Surplus production models: A practical review of recent approaches. Reviews in Fish Biology and Fisheries 2022, 32, 1–18. [Google Scholar] [CrossRef]
- Ibrahim, M. An application of optimal control to the marine artisanal fisheries in ghana. Commun. Math. Biol. Neurosci 2019, 22, 1–27. [Google Scholar]
- Adkins, W. A.; Davidson, M. G. Ordinary differential equations, Springer: New York, USA, 2010; pp. 18–20.
- Dewantara, E. C.; Fahrudin, A.; Wahyudin, Y. Maximum economic yield (mey) of stolephorus sp fisheries in the area of fisheries sanctuary of karang jeruk, tegal regency. Journal on Marine and Fisheries Social Ecological System 2002, 29–34. [Google Scholar]
- Mohsin, M.; Hengbin, Y.; Luyao, Z.; Shah, S. B. H. Assessment of bioeconomic and management aspects of tuner fishery resource in pakistan. The Journal of Animal & Plant Sciences 2020, 30, 1516–1524. [Google Scholar]
- Hengbin, Y.; Mohsin, M.; Noman, M.F. Application of gordon-shaefer model to evaluate bioeconomic and management aspects of Scomberomorus sinensis fishery in shandong, china. Indian Journal of Geo Marine Sciences 2020, 47, 1250–1257. [Google Scholar]
- Mendenhall, W.; Beaver, R. J. Beaver, B. M. Introduction to probability and statistics, Brooks/Cole: USA, 2009; pp. 502–541.
- Anna, Z. An analysis of capture fisheries resource depletion in cirata reservoir, west java, Indonesia. Biodiversitas 2018, 19, 927–935. [Google Scholar] [CrossRef]
- Memon, K. H.; Liu, Q.; Shaikh, Q.; Kalhoro, M. A.; Chang, M. S.; Memon, A. M.; Ruk, M.; Ujjan, S. A. Applications of ceda (catch effort data analysis) computer software in estimation of maximum sustainable yield of the black pomfret parastromateus nigerfishery from pakistani waters. Indian Journal of Geo Marine Sciences 2017, 46, 576–581. [Google Scholar]
- Mohsin, M.; Mu, Y. T.; Noman, M.; Hengbin, Y.; Mehak, A. Estimation of maximum sustainable harvest levels and bioeconomic implications of babylonia spirata fisheries in pakistan by using ceda and aspic. Oceanography & Fisheries Open Access Journal 2018, 7, 001–008. [Google Scholar]
- Singini, W.; Kaunda, E.; Kasulo, V.; Jere, W.; Msiska, O. Bioeconomic approach to rebuilding small haplochromine cichlids of lake malombe, malawi. International Journal of Scientific and Technology Research 2012, 1, 10–15. [Google Scholar]
- Grafton, R. Q.; Kirekly, J.; Kompas, T.; Squires, D. Economics of fisheries management, Routledge: London, UK, 2018; pp. 1–176. [CrossRef]
- Habib, A.; Ullah, M. H.; Duy, N. N. Bioeconomics of Commercial Marine Fisheries of Bay of Bengal: Status and Direction. Hindawi Publishing Corporation. 2014, 1–10. [Google Scholar] [CrossRef]
- Ibrahim, M. Optimal control of a fishery utilising compensation and critical depensation models. Applied Mathematics & Information Sciences: An International Journal 2020, 14, 467–479. [Google Scholar]
- Stergiou, K. I.; Christou, E. D. Modelling and forecasting annual fisheries catches: Comparison of regression, univariate and multivariate time series methods. Fisheries Research 1995, 25, 105–138. [Google Scholar] [CrossRef]
- Kar, T. K.; Chakraborty, k. ; Bioeconomic analysis of Maryland’s Chesapeake bay oyster fishery with reference to optimal utilization and management of resource. International Journal of Engineering Science and Technology 2009, 1, 172–189. [Google Scholar] [CrossRef]
- Hilborn, R; Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainity, Chapman and Hall/CRC: New York, USA, 1992; pp. 394–368. [CrossRef]
- ICES. Report on the Classification of Stock Assessment Methods developed by SISAM. ICES CM 2012/ACOM/SCICOM:01. 15 pp.
- Montgomery, D. C.; Jennings, C. L.; Kulahci, M. Introduction to time series analysis and forecasting, John Wiley: USA, 2008; pp. 302–511.
- Mehanna, S. F.; Fattouh, S. A.; Mehassab, A. F.; Koleib, Z. M. A comparative study of fish production from lake manzalah before and during the cleansing and development operations based on surplus production modeling approach. Egyptian Journal of Aquatic Biology & Fisheries 2022, 26, 613–624. [Google Scholar]
- Taghavimotlagh, S. A.; Daryanabard, G. R.; Vahabnezhad, A. An analysis of the maximum economic yield of kilka fisheries in the southern caspian sea. Iranian Journal of Fisheries Sciences 2022, 21, 785–797. [Google Scholar] [CrossRef]
- Barr, M A E. Catch per unit effort, maximum sustainable yield and exploitation of demersal fish of omani artisanal fishery. ournal of Coastal Life Medicine 2016, 4, 440–443. [Google Scholar] [CrossRef]
- Obegi, B. N.; Sarfo, I.; Morara, G. N.; Boera, P.; Waithaka, E.; Mutie, A. Bio-economic modeling of fshing activities in kenya: The case of lake naivasha ramsar site. Journal of Bioeconomics. 2020. [Google Scholar] [CrossRef]
- Srinath, M. Evaluation of schaefer’s production model. Indian J. Fish 2002, 49, 361–368. [Google Scholar]
- Alrouby, E. T. H.; Abdul-Tawab, Y. E. Analytical study of the current and the future situation of fishery resources in qaroun and al-rayyan lakes in fayoum governorate, egypt. Egypt j. aquat. biol. & fish 2019, 23, 303–320. [Google Scholar]
- Karthikeyan, M.; Naskar, M.; Das, D. K.; Sarkar, U. K.; Vijayaraghavan, R. A modeling approach to determine the harvest potential for sustainable fishery in stocked reservoirs. International Journal of Ecology and Environmental Sciences 2021, 46, 241–246. [Google Scholar]
- Maiyza, S. I.; Mehanna, S. F.; El-karyoney, I. A. An evaluation for the exploitation level of egyptian marine fisheries. Egyptian Journal of Aquatic Biology & Fisheries 2020, 24, 441–452. [Google Scholar]
- Mkenda, A. F.; Former, H. The maximum sustainable yield of artisanal fishery in zanzibar: A cointegration approach. Environmental and Resource Economics 2001, 19, 311–328. [Google Scholar] [CrossRef]
- Rais, A. H.; Wulandari, T. N. M. Production and maximum sustainable yield of fisheries activity in hulu sungai utara regency. AE3S Web of Conferences 147 2020, 1–10. [Google Scholar] [CrossRef]
- Chavez, E. A. Maximum sustainable yield, maximum economic yield and sustainability in fisheries. Journal of Aquaculture & Marine Biology 2020, 9, 15–17. [Google Scholar]
- Clarke, R. P. A bioeconomic analysis of the northwestern hawaiian islands lobster fishery. Marine Resource Economics 1992, 27, 115–140. [Google Scholar] [CrossRef]
- Hasibuan, J. S.; Ramadan, M. R.; Desrita, Manurung, V. R.; Susetya, I. E.; Sabila, P. S.; Dewinta, A. F. Bioeconomic analysis of mackerel resources management (rastrelliger sp.) at malacca strait, serdang bedagai regency, sumatera utara. OP Conf. Ser. Earth Environ. Sci. 2023, 11, 1–8. [Google Scholar] [CrossRef]
- Wijayanto, D.; Sardiyatmo; Setyanto, I. ; Kurohman, F. Bioeconomic analysis of the impact of ‘cantrang’ (danish seine) toward gill net in pati regency, indonesia. AACL Bioflux 2019, 12, 25–33. [Google Scholar]
- Shehu, V.; Spaho, A. B. Birfucation analysis as a useful tool for fishery management. ournal of Natural and Technical Sciences 2015, 20, 17–26. [Google Scholar]
- Gumulira, E.; Forrester, G.; Lazar, N. Bio-economic analysis of engraulicypris sardella (usipa) in south east arm of lake Malawi. International journal of fisheries and aquaculture 2019, 11, 86–96. [Google Scholar]
- Mulumpwa, M.; Jere, W. W. L.; Kakota, T.; Mtethiwa, A.; Kang’ombe, J. Modeling and forecasting of engraulicypris sardella (usipa) yields from mangochi artisanal fisheries of lake malawi using holt exponential smoothing method. Malawi Journal of Science and Technology 12, 12.
- Lazaro, M.; Jere, W. W. L. The status of the commercial chambo (oreochromis species) fishery in malawi: A time series approach. International Journal of Science and Technology 2013, 3, 322–327. [Google Scholar]
- Makwinja, R.; Mengistou, S.; Kaunda, E.; Alemiew, T.; Phiri, T. B.; Kosamu, I. B. M.; Kaonga, C. C. Modeling of lake malombe annual fish landings and catch per unit effort (cpue). Forecasting 2021, 3, 39–55. [Google Scholar] [CrossRef]
- Mulumpwa, M.; Jere, W. W. L.; Mtethiwa, A.; Kakota, T.; Kang’ombe, J. Modeling and forecasting of ecatfish species yield from mangochi artisan fisheries of lake malawi in malawi. African Journal of Food Agriculture, Nutrition and Development,.
- Zaindi, I.; Singini, W.; Mazengera, K. Forecasting copadichromis(utaka) production for lake malawi, nkhatabay fishery- a stochastic model approach. Journal of Fisheries & Livestock Production 2016, 4. [Google Scholar] [CrossRef]
- El-Mahdy, S. M.; Osman, Y. A. A.; Maiyza, S. I.; Mohammad, A. S.; Hassanien, E. M. Fish production and evaluation of the fishery status for shalateen fishing area, red sea, egypt Egyptian Journal of Aquatic Biology & Fisheries, 2019, 27, 439–453.
- Mardhatillar, I.; Damora, A.; Rahmah, A.; Nurfadillah, N.; Muhammad, M. Application of Schaefer model on mackerels fishery in Aceh waters, Indonesia. IOP Conf. Series: Earth and Environmental Science 20219, 348, 1–7. [Google Scholar] [CrossRef]
- Mohsin, M.; Mu, Y.; Memon, A. M.; Kalhoro, M. T.; Shah, S. B. H. Fishery stock assessment of Kiddi shrimp (Parapenaeopsis stylifera) in the Northern Arabian Sea Coast of Pakistan by using surplus production models. Chinese Journal of Oceanology and Limnology 2017, 33, 966–973. [Google Scholar] [CrossRef]
- Government of Malawi. National fisheries and aquaculture policy June 2016, Department of Fisheries: Mangochi, Malawi, 2016.
- Witelski, T.; Bowen, M. Methods of mathematical modeling: Continuous systems and differential equations, Sptinger: Switzerland, 2015; pp. 14–196.
| Method | Benefits | Limitations | References |
|---|---|---|---|
| Analytical Model | They can be used to forecast the effects of effort, fishing gears, or mesh sizes on yield or biomass | These are data rich models, so they are difficult to implement in cases where data availability is a problem | [1,6] |
| Empirical Models | They are simple, quick and cost effective since they use readily available data | Their dependence on previous studies whose results may change; they do not estimate fishing effort | [18] |
| Surplus Production Models | They are simple and they consider stock as homogeneous biomass; they require simple data such as catch and effort data | They assume stock has stabilised at the current rate of fishing; they ignore complexities of age and spatial structure | [1,19] |
| Delay Difference Models | They are simple just like surplus production models but they have additional advantage that they account for both recruit and spawner effect | Where data is scarce, delay difference models offer no advantage to surplus production models | [6] |
| Length and Age-Based Models | They make use of age and length specific information | They require many observations and include many parameters | [20] |
| Country | MSY | MEY | OAY | OSY | Bifurcation | Depletion | ASP | References |
|---|---|---|---|---|---|---|---|---|
| Egypt | Yes | No | No | No | No | No | No | [50] |
| Egypt | Yes | No | No | No | No | No | No | [52] |
| Egypt | Yes | Yes | No | No | No | No | No | [45] |
| Egypt | Yes | No | No | No | No | No | No | [66] |
| Indonesia | Yes | Yes | No | No | No | Yes | Yes | [33] |
| Indonesia | Yes | Yes | Yes | No | No | No | No | [29] |
| Indonesia | Yes | Yes | Yes | No | No | No | No | [58] |
| Indonesia | Yes | Yes | Yes | No | No | No | No | [57] |
| Indonesia | Yes | No | No | No | No | No | Yes | [24] |
| Indonesia | Yes | No | No | No | No | No | No | [67] |
| Oman | Yes | No | No | No | No | No | No | [47] |
| USA | Yes | Yes | Yes | No | No | No | No | [56] |
| USA | Yes | Yes | Yes | Yes | No | No | No | [41] |
| Morocco | Yes | No | No | No | No | No | No | [3] |
| China | Yes | Yes | Yes | No | No | No | No | [31] |
| Ghana | Yes | Yes | No | No | No | No | No | [39] |
| Ghana | Yes | Yes | Yes | Yes | Yes | No | No | [27] |
| Pakistan | Yes | No | No | No | No | No | No | [34] |
| Pakistan | Yes | Yes | No | No | No | No | No | [35] |
| Pakistan | Yes | No | No | No | No | No | No | [25] |
| Pakistan | Yes | No | No | No | No | No | No | [68] |
| Pakistan | Yes | No | No | No | No | No | No | [19] |
| Pakistan | Yes | Yes | Yes | No | No | No | No | [30] |
| Zanzibar | Yes | Yes | No | No | No | No | No | [53] |
| India | Yes | No | No | No | No | No | No | [51] |
| India | Yes | Yes | Yes | No | No | No | No | [38] |
| Iran | Yes | Yes | No | No | No | No | No | [46] |
| Kenya | Yes | Yes | No | No | No | No | No | [48] |
| Malawi | Yes | Yes | No | No | No | No | No | [60] |
| Malawi | Yes | No | No | No | No | No | No | [7] |
| Malawi | Yes | Yes | No | No | No | No | No | [60] |
| Malawi | Yes | Yes | Yes | No | No | No | No | [36] |
| Malawi | Yes | Yes | No | No | No | No | No | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
