Submitted:
08 January 2025
Posted:
10 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Hydrolysate Generation and Proximate Analysis
| Substrate | Enzyme | DH% |
|---|---|---|
| Chlorella sp. | Viscozyme | 25.41 |
| Chlorella sp. | Viscozyme + Alcalase | 48.44 |
| Scenedesmus sp. | Viscozyme | 27.46 |
| Scenedesmus sp. | Viscozyme + Alcalase | 46.35 |
2.2. Techno-Functional Analysis
2.2.1. Protein Solubility
2.2.2. Water Holding Capacity (WHC) and Oil Holding Capacity (OHC)
2.2.3. Emulsion Activity and Heat Stability
2.3. Bioactivity Assessment of 3-kDa Microalgal Permeates
2.3.1. ACE-1 Inhibition
2.3.2. ABTS Radical Scavenging Effect
2.4. MS and In Silico Analysis of 3-kDa Permeate Fractions Generated from Chlorella sp. and Scenedesmus sp. Viscozyme and Alcalase Hydrolysates
3. Discussion
3.1. Hydrolysate Generation
3.2. Techno-Functional Activities
3.2.1. Solubility
3.2.2. Water and Oil Holding Capacities of Microalgal Hydrolysates
3.2.3. Emulsion Activity and Stability
3.3. Bioactivity Assessments
3.3.1. ACE-1 Inhibition
3.3.2. Alpha-Amylase Inhibition
3.3.3. Antioxidant Activities
3.4. MS and In Silico Analysis
3.5. Cyclooxygenase-2 (COX-2) inhibitory activity
4. Materials and Methods
4.1. Biomass
4.2. Chemicals
4.3. Protein Extraction Using Hydrolysis
4.4. Proximate Compositional Analysis
4.5. Mass Spectrometry in Tandem Analysis
4.5.1. Peptide Identification
4.6. Bioactivity Assays
4.6.1. ACE-1 Inhibition
4.6.2. ABTS Radical Scavenging Capacity
4.6.3. α-Amylase Inhibition
4.6.4. Cyclooxygenase inhibitory activity assessment
4.7. Techno-Functional Activities
4.7.1. Solubility
4.7.2. Water Holding (WHC) and Oil Holding Capacity (OHC)
4.7.3. Emulsion Activity
4.8. Statistical analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, K., Watson, A.W., Lonnie, M. et al. Meeting the global protein supply requirements of a growing and ageing population. Eur J Nutr 2024, 63, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Bedsaul-Fryer JR, Monroy-Gomez J, van Zutphen-Küffer KG, Kraemer K. An Introduction to Traditional and Novel Alternative Proteins for Low- and Middle-Income Countries. Curr Dev Nutr. 2023, 8 (Suppl 1), 102014. [CrossRef] [PubMed]
- Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods. 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mosibo, O.K.; Ferrentino, G.; Udenigwe, C.C. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024, 13, 733. [Google Scholar] [CrossRef] [PubMed]
- Wang Y, Tibbetts SM, McGinn PJ. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods. 2021, 10, 3002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Phusunti, N., and Cheirsilp, B. Integrated protein extraction with bio-oil production for microalgal biorefinery. Algal Research 2020, 48. [Google Scholar] [CrossRef]
- Bleakley S, Hayes M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods. 2017, 6, 33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Appel, J., Hueren, V., Boehm, M.,; Gutekunst, K. Cyanobacterial in vivo solar hydrogen production using a photosystem I–hydrogenase (PsaD-HoxYH) fusion complex. Nature Energy 2020, 5, 458–467. [Google Scholar] [CrossRef]
- Soto-Sierra, L.; Stoykova, P.; Nikolov, Z.L. Extraction and Fractionation of Microalgae-Based Protein Products. Algal Res. 2018, 36, 175–192. [Google Scholar] [CrossRef]
- Coelho, D., Lopes, P.A., Cardoso, V. et al. Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Sci Rep 2019, 9, 5382. [Google Scholar] [CrossRef]
- Bauer, L.; Ranglová, K.; Masojídek, J.; Drosg, B.; Meixner, K. Digestate as Sustainable Nutrient Source for Microalgae—Challenges and Prospects. Appl. Sci. 2021, 11, 1056. [Google Scholar] [CrossRef]
- Wang Y, Tibbetts SM, Berrue F, McGinn PJ, MacQuarrie SP, Puttaswamy A, Patelakis S, Schmidt D, Melanson R, MacKenzie SE. A Rat Study to Evaluate the Protein Quality of Three Green Microalgal Species and the Impact of Mechanical Cell Wall Disruption. Foods. 2020, 9, 1531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Blanco-Llamero, C.; García-García, P.; Señoráns, F.J. Combination of Synergic Enzymes and Ultrasounds as an Effective Pretreatment Process to Break Microalgal Cell Wall and Enhance Algal Oil Extraction. Foods 2021, 10, 1928. [Google Scholar] [CrossRef] [PubMed]
- Verni M, Demarinis C, Rizzello CG, Pontonio E. Bioprocessing to Preserve and Improve Microalgae Nutritional and Functional Potential: Novel Insight and Perspectives. Foods. 2023, 12, 983. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, X. , Fu, Y., Song, C. (2021). Proteins. In: Kan, J., Chen, K. (eds) Essentials of Food Chemistry. Springer, Singapore. [CrossRef]
- Kose, A., Oncel,S. S. Properties of microalgal enzymatic protein hydrolysates: Biochemical composition, protein distribution and FTIR characteristics. Biotechnology Reports 2015, 6, 137–143. [Google Scholar] [CrossRef]
- Molina-Peñate, E. , Artola, A., & Sánchez, A. Exploring biorefinery alternatives for biowaste valorization: a techno-economic assessment of enzymatic hydrolysis coupled with anaerobic digestion or solid-state fermentation for high-value bioproducts. Bioengineered 2024, 15. [Google Scholar] [CrossRef]
- Coelho, D., Lopes, P.A., Cardoso, V. et al. Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Sci Rep 2019, 9, 5382. [Google Scholar] [CrossRef]
- Yaşar Durmaz, Mahmut Kilicli, Omer Said Toker, Nevzat Konar, Ibrahim Palabiyik, Faruk Tamtürk, Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research 2020, 47. [CrossRef]
- E. Suarez Garcia, J. J. A. van Leeuwen, C. Safi, L. Sijtsma, L. A. M. van den Broek, M. H. M. Eppink, R. H. Wijffels, and C. van den Berg. Journal of Agricultural and Food Chemistry 2018, 66, 7831–7838. [CrossRef]
- Bertsch, P., Böcker, L., Mathys, A., Fischer,P. Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams. Trends in Food Science & Technology 2021, 108, 326–342. [Google Scholar] [CrossRef]
- Peighambardoust SH, Karami Z, Pateiro M, Lorenzo JM. A Review on Health-Promoting, Biological, and Functional Aspects of Bioactive Peptides in Food Applications. Biomolecules. 2021, 11, 631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Toldrá,F., Mora, L. Chapter One - Peptidomics as a useful tool in the follow-up of food bioactive peptides, Editor(s): Fidel Toldrá, Advances in Food and Nutrition Research. Academic Press 2022, 100, 1–47. [Google Scholar] [CrossRef]
- Mótyán JA, Tóth F, Tőzsér J. Research applications of proteolytic enzymes in molecular biology. Biomolecules. 2013, 3, 923–42. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seok-Chun Ko, Daekyung Kim, You-Jin Jeon. Protective effect of a novel antioxidative peptide purified from a marine Chlorella ellipsoidea protein against free radical-induced oxidative stress, Food and Chemical Toxicology. 2012, 50, 2294–2302. [Google Scholar] [CrossRef]
- Solomon Abebaw Tadesse, Shimelis Admassu Emire, Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon 2020, 6, 8. [CrossRef]
- Alcocer LA, Bryce A, De Padua Brasil D, Lara J, Cortes JM, Quesada D, Rodriguez P. The Pivotal Role of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers in Hypertension Management and Cardiovascular and Renal Protection: A Critical Appraisal and Comparison of International Guidelines. Am J Cardiovasc Drugs. 2023, 23, 663–682. [CrossRef] [PubMed] [PubMed Central]
- Sheih, I.C.; Wu, T.K.; Fang, T.J. Antioxidant Properties of a New Antioxidative Peptide from Algae Protein Waste Hydrolysate in Different Oxidation Systems. Bioresour. Technol. 2009, 100, 3419–3425. [Google Scholar] [CrossRef]
- Suetsuna, K.; Chen, J.-R. Identification of Antihypertensive Peptides from Peptic Digest of Two Microalgae, Chlorella Vulgaris and Spirulina Platensis. Mar. Biotechnol. 2001, 3, 305–309. [Google Scholar] [CrossRef]
- Verspreet J, Soetemans L, Gargan C, Hayes M, Bastiaens L. Nutritional Profiling and Preliminary Bioactivity Screening of Five Micro-Algae Strains Cultivated in Northwest Europe. Foods. 2021, 10, 1516. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yilin Fang, Yihui Cai, Qi Zhang, Roger Ruan, Ting Zhou. Research status and prospects for bioactive compounds of Chlorella species: Composition, extraction, production, and biosynthesis pathways. Process Safety and Environmental Protection 2024, 191(Part A) 355, 345. [Google Scholar] [CrossRef]
- Li, Y.; Aiello, G.; Fassi, E.M.A.; Boschin, G.; Bartolomei, M.; Bollati, C.; Roda, G.; Arnoldi, A.; Grazioso, G.; Lammi, C. Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients 2021, 13, 1624. [Google Scholar] [CrossRef] [PubMed]
- Jiang Q, Chen Q, Zhang T, Liu M, Duan S, Sun X. The Antihypertensive Effects and Potential Molecular Mechanism of Microalgal Angiotensin I-Converting Enzyme Inhibitor-Like Peptides: A Mini Review. Int J Mol Sci. 2021, 22, 4068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hayes, M.; Naik, A.; Mora, L.; Iñarra, B.; Ibarruri, J.; Bald, C.; Cariou, T.; Reid, D.; Gallagher, M.; Dragøy, R.; et al. Generation, Characterisation and Identification of Bioactive Peptides from Mesopelagic Fish Protein Hydrolysates Using In Silico and In Vitro Approaches. Mar. Drugs 2024, 22, 297. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.; Aluko, R.E.; Aurino, E.; Mora, L. Generation of Bioactive Peptides from Porphyridium sp. and Assessment of Their Potential for Use in the Prevention of Hypertension, Inflammation and Pain. Mar. Drugs 2023, 21, 422. [Google Scholar] [CrossRef]
- Hayes, M.; Mora, L.; Lucakova, S. Identification of Bioactive Peptides from Nannochloropsis oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis. Biomolecules 2022, 12, 1806. [Google Scholar] [CrossRef]
- Morena, F.; Cencini, C.; Calzoni, E.; Martino, S.; Emiliani, C. A Novel Workflow for In Silico Prediction of Bioactive Peptides: An Exploration of Solanum lycopersicum By-Products. Biomolecules 2024, 14, 930. [Google Scholar] [CrossRef]
- Fernando, R.; Sun, X.; Rupasinghe, H.P.V. Production of Bioactive Peptides from Microalgae and Their Biological Properties Related to Cardiovascular Disease. Macromol 2024, 4, 582–596. [Google Scholar] [CrossRef]
- Marcella Fernandes de Souza, Marcoaurelio Almenara Rodrigues, Suely Pereira Freitas, Elba Pinto da Silva Bon. Effect of milling and enzymatic hydrolysis in the production of glucose from starch-rich Chlorella sorokiniana biomass, Algal Research 2020, 50. [CrossRef]
- Jose Luis Garcia-Moscoso, Wassim Obeid, Sandeep Kumar, Patrick G. Hatcher, Flash hydrolysis of microalgae (Scenedesmus sp.) for protein extraction and production of biofuels intermediates, The Journal of Supercritical Fluids 2013, 82, 183–190. [Google Scholar] [CrossRef]
- Vogelsang-O'Dwyer M, Sahin AW, Arendt EK, Zannini E. Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods. 2022, 11, 1307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Romero-García, J.M.; González-López, C.V.; Brindley, C.; Fernández-Sevilla, J.M.; Acién-Fernández, F.G. Simulation and Techno-Economical Evaluation of a Microalgal Biofertilizer Production Process. Biology 2022, 11, 1359. [Google Scholar] [CrossRef]
- Tokmakov AA, Kurotani A, Sato KI. Protein pI and Intracellular Localization. Front Mol Biosci. 2021, 8, 775736. [Google Scholar] [CrossRef] [PubMed]
- Heinz-Dieter Isengard. Water content, one of the most important properties of food. Food Control 2001, 12, 395–400. [Google Scholar] [CrossRef]
- Ummul Fadillah, Andi Dirpan, Adiansyah Syarifuddin. Fat replacers in food system: A focus on ingredients, fabrication methods, and applications in food products. Future Foods 2024, 10. [Google Scholar] [CrossRef]
- Liu S, Sun H, Ma G, Zhang T, Wang L, Pei H, Li X, Gao L. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front Nutr. 2022, 9, 973677. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kai Kai Ma, Lutz Grossmann, Alissa A. Nolden, David Julian McClements, Amanda J. Kinchla, Functional and physical properties of commercial pulse proteins compared to soy derived protein. Future Foods 2022, 6. [Google Scholar] [CrossRef]
- Ramírez-Rodrigues, M.M.; Estrada-Beristain, C.; Metri-Ojeda, J.; Pérez-Alva, A.; Baigts-Allende, D.K. Spirulina platensis Protein as Sustainable Ingredient for Nutritional Food Products Development. Sustainability 2021, 13, 6849. [Google Scholar] [CrossRef]
- Karabulut, Gulsah, Aleksandra Purkiewicz, and Gulden Goksen. "Recent developments and challenges in algal protein and peptide extraction strategies, functional and technological properties, bioaccessibility, and commercial applications.". Comprehensive Reviews in Food Science and Food Safety 2024, 23, e13372. [Google Scholar]
- Zayas, J.F. (1997). Oil and Fat Binding Properties of Proteins. In: Functionality of Proteins in Food. Springer, Berlin, Heidelberg. [CrossRef]
- Li Y, Aiello G, Fassi EMA, Boschin G, Bartolomei M, Bollati C, Roda G, Arnoldi A, Grazioso G, Lammi C. Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients. 2021, 13, 1624. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tejano, L. A., Peralta, J. P., Encarnacion Emilia S. Yap, Yu-Wei Chang. Bioactivities of enzymatic protein hydrolysates derived from Chlorella sorokiniana. Food Science and Nutrition 2019. [Google Scholar] [CrossRef]
- Alzahrani, Mona. Proteins and Their Enzymatic Hydrolysates from the Marine Diatom Nitzschia laevis and Screening for Their In Vitro Antioxidant, Antihypertension, Anti-Inflammatory and Antimicrobial Activities. Diss. ResearchSpace@ Auckland, 2018.
- Afify AEMR, El Baroty GS, El Baz FK, Abd El Baky HH, Murad SA. Scenedesmus obliquus: Antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J Genet Eng Biotechnol. 2018, 16, 399–408. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lafarga T, O'Connor P, Hayes M. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides. 2014, 59, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Mooney C, Haslam NJ, Pollastri G, Shields DC Towards the Improved Discovery and Design of Functional Peptides: Common Features of Diverse Classes Permit Generalized Prediction of Bioactivity. PLoS ONE 2012, 7, e45012. [CrossRef]
- Khatun MS, Hasan MM, Kurata H. PreAIP: Computational Prediction of Anti-inflammatory Peptides by Integrating Multiple Complementary Features. Front Genet. 2019, 10, 129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu Z, Zhu Y, Wang W, Zhou X, Chen G, et al. Seven novel umami peptides from Takifugu rubripes and their taste characteristics. Food Chemistry 2020, 330, 127204. [Google Scholar] [CrossRef]
- Xue Chen, Jian Huang, Bifang He. AntiDMPpred: a web service for identifying anti-diabetic peptides.
- Alireza Naseri, Gonçalo S. Marinho, Susan L. Holdt, Josephina M. Bartela, Charlotte Jacobsen. Enzyme-assisted extraction and characterization of protein from red seaweed Palmaria palmata. Algal Research 2020, 47. [Google Scholar] [CrossRef]
- Liu S, Low NH, Nickerson MT. Effect of pH, salt, and biopolymer ratio on the formation of pea protein isolate-gum arabic complexes. J Agric Food Chem. 2009, 57, 1521–6. [Google Scholar] [CrossRef] [PubMed]
- Mosibo, O.K.; Ferrentino, G.; Udenigwe, C.C. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024, 13, 733. [Google Scholar] [CrossRef]
- Ramírez-Rodrigues, M.M.; Estrada-Beristain, C.; Metri-Ojeda, J.; Pérez-Alva, A.; Baigts-Allende, D.K. Spirulina platensis Protein as Sustainable Ingredient for Nutritional Food Products Development. Sustainability 2021, 13, 6849. [Google Scholar] [CrossRef]
- Padial-Domínguez M, Espejo-Carpio FJ, Pérez-Gálvez R, Guadix A, Guadix EM. Optimization of the Emulsifying Properties of Food Protein Hydrolysates for the Production of Fish Oil-in-Water Emulsions. Foods. 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daskaya-Dikmen C, Yucetepe A, Karbancioglu-Guler F, Daskaya H, Ozcelik B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Plants. Nutrients. 2017, 9, 316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sahoo S, Samantaray M, Jena M, Gosu V, Bhuyan PP, Shin D, Pradhan B. In Vitro and in silico studies to explore potent antidiabetic inhibitor against human pancreatic alpha-amylase from the methanolic extract of the green microalga Chlorella vulgaris. J Biomol Struct Dyn. 2024, 42, 8089–8099. [Google Scholar] [CrossRef] [PubMed]
- Keller C, Wei P, Wancewicz B, Cross TL, Rey FE, Li L. Extraction optimization for combined metabolomics, peptidomics, and proteomics analysis of gut microbiota samples. J Mass Spectrom. 2021, 56, e4625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheih IC, Fang TJ, Wu TK, Lin PH. Anticancer and antioxidant activities of the peptide fraction from algae protein waste. J Agric Food Chem. 2010, 58, 1202–7. [Google Scholar] [CrossRef] [PubMed]
- Monique Ellen Torres da Silva, Mithyzi Andrade Leal, Michael de Oliveira Resende, Marcio Arêdes Martins, Jane Sélia dos Reis Coimbra, Scenedesmus obliquus protein concentrate: A sustainable alternative emulsifier for the food industry. Algal Research 2021, 59. [CrossRef]
- Hoyle NT, Merrltt JOHN. Quality of fish protein hydrolysates from herring (Clupea harengus). J Food Sci. 1994, 59, 76–79. [Google Scholar] [CrossRef]
- Jeffrey C. Moore, Jonathan W. DeVries, Markus Lipp, James C. Griffiths and Darrell R. Abernethy: Total Protein Methods and Their Potential Utility to Reduce the Risk of Food Protein Adulteration. Comprehensive Reviews in Food Science and Food Safety 2010, 9, 330–357. [Google Scholar] [CrossRef]
- BEUCHAT, L. R., CHERRY, J. F., and QUINN, M. R. Physicochemical properties of peanut flour as affected by proteolysis. J. Agric. Food Chem. 1975, 23, 617. [Google Scholar]
- M. Bencini, Functional properties of drum-dried chickpea (cicer arietinum L.) flours. Journal of Food Science 1986, 51, 1518–1521. [CrossRef]
- Naczk, M., F. Shahidi and A. Sullivan. “Current Research Developments on Polyphenolics of Rapeseed/Canola: A Review,”. Food Chemistry 1998, 62, 489–502. [Google Scholar] [CrossRef]




| Chlorella sp. fractions | ||||
|---|---|---|---|---|
| Chlorella sp. whole biomass | Chlorella sp. hydrolysate | Chlorella sp. permeate | Chlorella sp. retentate | |
| Protein % | 38.02 | 35.80 | 44.73 | 28.72 |
| Fat % | 13.95 | 13.61 | 0.65 | 12.05 |
| Moisture % | 7.93 | 8.85 | 16.16 | 8.16 |
| Ash % | 4.85 | 5.27 | 10.10 | 10.33 |
| Scenedesmus sp. fractions | ||||
| Scenedesmus sp.whole biomass | Scenedesmus sp. hydrolysate | Scenedesmus sp. permeate | Scenedesmus sp. retentate | |
| Protein % | 37.81 | 36.74 | 41.14 | 26.37 |
| Fat % | 10.16 | 6.32 | 1.07 | 5.58 |
| Moisture % | 12.96 | 12.48 | 16.93 | 31.35 |
| Ash % | 2.03 | 4.53 | 7.50 | 2.08 |
| Sample | ACE-1 inhibition (%) | Antioxidant activity (%) | Relative α-Amylase inhibition (%) |
|---|---|---|---|
| Chlorella sp. 3-kDa Permeate | 88.07 ± 1.69 | 72.54 ± 18.16 | 71.32 ± 12.30 |
| Scenedesmus sp. 3-kDa Permeate | 86.24 ± 2.89 | 76.17 ± 8.92 | 28.78 ± 0.77 |
| Peptide sequence | Protein of origin | Peptide Ranker | BIOPEP-UWM search | PreAIP | Umami-MRNN | Anti-DMP-Pred | Microalgal biomass origin |
|---|---|---|---|---|---|---|---|
| YDYIGNNPAKGGLF (99%) | Photosystem II CP47 reaction center protein OS=Pdinomonas minor OX=3159 GN=pbB PE=3 SV=1; | 0.735 | Novel | 0.428 (medium confidence anti-inflammatory peptide (AIP)) | non-umami | 0.49 (Not an anti-diabetic peptide) | Chlorella sp. mix derived peptide |
| YIGNNPAKGGLF (95%) | Photosystem II CP47 reaction center protein OS=Pdinomonas minor OX=3159 GN=pbB PE=3 SV=1; | 0.806 | Novel | 0.374 (low confidence AIP) | Umami, predicted threshold: 29.685139mmol/L | 0.46 (Not an anti-diabetic peptide) | Chlorella sp. mix derived peptide |
| IEWYGPDRPKFL (99%) | Chlorophyll a-b binding protein, chloroplastic OS=Chlamydomonas reinhardtii OX=3055 GN=LhcII-3 PE=1 V=1 | 0.811 | Novel | 0.627 (High confidence AIP) | non-umami | 0.33 (Not an anti-diabetic peptide) | Scenedesmus sp. mix derived peptide |
| RSPTGEIIFGGETM (99%) | Photosystem II CP47 reaction center protein OS=Pdinomonas minor OX=3159 GN=pbB PE=3 SV=1; | 0.258 | Novel | 0.451 (Medium confidence AIP) | umami, predicted threshold:10.636716 mmol/L | 0.6 (likely to have anti-diabetic properties) | Scenedesmus sp. mix derived peptide |
| TVQIPGGERVPFLF (99%) | Oxygen-evolving enhancer (Fragment) OS=Cyanidioschyzon merolae OX=45157 GN=pbO PE=3 SV=1 | 0.592 | Novel | 0.522 (High confidence AIP) | umami, predicted threshold: 19.447886 mmol/L | 0.57 (likely to have anti-diabetic properties) | Scenedesmus sp. mix derived peptide |
| IEWYGPDRPKFLGPF (99%) | Chloropyll a-b binding protein, chloroplastic OS=Chlamydomonas reinhardtii OX=3055 GN=LhcII-3 PE=1 V=1 | 0.904 | Novel | 0.472 (High confidence AIP) | non-umami | 0.43 (Not an anti-diabetic peptide) | Scenedesmus sp. mix derived peptide |
| Algal mixture name | Composition | (%) | Form delivered |
|---|---|---|---|
| Scenedesmus mixture | Scenedesmus sp. | 80 | Spray-dried |
| Diatomee | 17 | ||
| Chlorella sp. | 3 | ||
| Chlorella mixture | Chlorella sp. | 92.5 | Spray-dried |
| Scenedesmus sp. | 5 | ||
| Chlorococcum | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
