Submitted:
05 January 2025
Posted:
06 January 2025
You are already at the latest version
Abstract
Agricultural waste has garnered increasing attention as a promising and sustainable feedstock for biodiesel production, offering a pathway to reduce reliance on fossil fuels and address environmental challenges. This comprehensive review delves into the potential of utilizing agricultural residues such as crop husks, fruit peels, and other organic by-products for biodiesel synthesis, emphasizing the transformative role of biochar in this process. The review explores advancements in conversion technologies, including pyrolysis and transesterification, which enable the effective transformation of agricultural wastes into biodiesel. Biochar's application as a heterogeneous catalyst significantly enhances the efficiency and sustainability of these processes, offering a cost-effective and environmentally friendly alternative to traditional catalysts. The study also examines various modifications of biochar, such as chemical and physical treatments, which further optimize its catalytic properties and expand its applications in biodiesel synthesis. In addition to technological advancements, this review highlights the socio-economic benefits of leveraging agricultural waste and biochar, such as waste valorization, rural economic development, and contributions to the circular economy. It also addresses challenges like feedstock variability, collection logistics, and the need for robust policy frameworks to support agricultural waste-based biodiesel production. By integrating biochar into biodiesel production systems, this review provides a comprehensive roadmap for harnessing agricultural waste to achieve renewable energy goals.
Keywords:
1. Introduction
2. Historical Development
3. Production of Biochar
3.1. Agricultural Waste
3.2. Characterization of Biochar Produced and Methods Used
4. Biodiesel Production from Biochar
5. Feedstock for Biodiesel Production
- Crop Residues: Straw, stalks, and husks from crops like wheat, rice, and corn are rich in lignocellulosic biomass, which can be processed into biofuels.
- Fruit and Vegetable Waste: Peels, seeds, and pomace from fruits such as oranges, bananas, and tomatoes are rich in lipids and other bioactive compounds suitable for biodiesel production.
- Animal Waste: Fats and oils derived from slaughterhouse by-products provide high lipid content for biodiesel synthesis.
- Non-Edible Oilseeds: Jatropha, Pongamia, and other non-edible seeds offer potential for biodiesel production without affecting food security.
Conversion Technologies
-
Lipid Extraction: Efficient extraction of lipids from agricultural waste is crucial. Methods include:
- ○
- Mechanical Extraction: Simple and cost-effective but may result in lower yields.
- ○
- Chemical Solvent Extraction: Utilizes solvents like hexane to achieve higher lipid recovery but raises concerns of toxicity and cost.
- ○
- Green Extraction Techniques: Innovations like supercritical CO2 and ultrasonic-assisted extraction offer eco-friendly alternatives.
-
Transesterification: The extracted lipids undergo transesterification, where triglycerides react with alcohol (e.g., methanol) in the presence of a catalyst to produce biodiesel. Catalysts include:
- ○
- Homogeneous Catalysts: Widely used but require rigorous purification processes.
- ○
- Heterogeneous Catalysts: Easier to separate and recycle, contributing to cleaner production.
- ○
- Enzymatic Catalysis: Offers high specificity and milder reaction conditions, though costs remain a limitation.
- Pretreatment of Feedstock: Agricultural waste often contains impurities and water content that can inhibit biodiesel production. Pretreatment methods, such as drying, grinding, and chemical treatments, are employed to enhance feedstock quality.
- Biochemical Conversion: Advanced processes, such as microbial fermentation and enzymatic hydrolysis, convert lignocellulosic biomass into biodiesel precursors. This approach is particularly suitable for non-lipid-rich feedstocks.
Environmental and Socio-Economic Impacts
- Waste Management: By diverting agricultural residues from landfills and open burning, this approach reduces air pollution and greenhouse gas emissions.
- Renewable Energy Generation: Biodiesel derived from agricultural waste contributes to the global transition towards renewable energy sources, reducing dependence on fossil fuels.
- Rural Development: Establishing biodiesel production units in rural areas promotes local employment and economic growth by creating value-added products from waste.
- Carbon Footprint Reduction: Life cycle assessments indicate that biodiesel from agricultural waste has a significantly lower carbon footprint compared to petroleum-based fuels.
- Energy Security: Diversifying energy sources enhances national energy security, particularly in regions reliant on energy imports.
Challenges and Limitations
- Feedstock Collection and Logistics: Agricultural waste is often dispersed across large areas, complicating its collection and transportation.
- Technological Barriers: High costs of advanced extraction and conversion technologies hinder widespread adoption.
- Economic Viability: Fluctuations in feedstock availability and market prices for biodiesel affect profitability.
- Policy and Regulatory Support: Lack of supportive policies and incentives limits investment in biodiesel projects.
- Quality Standards: Ensuring consistent quality of biodiesel derived from heterogeneous feedstocks remains a challenge( Borthakur & Sarmah, 2013; Sarmah & Borthakur, 2013).
6. Future Perspectives
7. Conclusions
References
- Kusuma, H.S.; Az-Zahra, K.D.; Saputri, R.W.; Utomo MD, P.; Jaya DE, C.; Amenaghawon, A.N.; Darmokoesoemo, H. Unlocking the potential of agricultural waste as biochar for sustainable biodiesel production: A comprehensive review. Bioresource Technology Reports 2024, 26, 101848. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Taha MM, E.; Moni, S.S.; Alsayegh, A.A. Bibliometric mapping of solid lipid nanoparticles research (2012–2022) using VOSviewer. Medicine in Novel Technology and Devices 2023, 17, 100217. [Google Scholar] [CrossRef]
- Abdoulmoumine, N.; Adhikari, S.; Kulkarni, A.; Chattanathan, S. A review on biomass gasification syngas cleanup. Applied Energy 2015, 155, 294–307. [Google Scholar] [CrossRef]
- Aghel, B. , Behaein, S., & Alobaid, F. CO2 capture from biogas by biomass-based adsorbents: A review. Fuel 2022, 328, 125276. [Google Scholar] [CrossRef]
- Agus, F. , Andrade, J. F., Rattalino Edreira, J. I., Deng, N., Purwantomo, D. K. G., Agustiani, N., Aristya, V. E., Batubara, S. F., Herniwati, Hosang, E. Y., Krisnadi, L. Y., Makka, A., Samijan, Cenacchi, N., Wiebe, K., & Grassini, P. Yield gaps in intensive rice-maize cropping sequences in the humid tropics of Indonesia. Field Crops Research 2019, 237, 12–22. [Google Scholar] [CrossRef]
- Akinfalabi, S.-I.; Rashid, U.; Ngamcharussrivichai, C.; Nehdi, I.A. Synthesis of reusable biobased nano-catalyst from waste sugarcane bagasse for biodiesel production. Environmental Technology & Innovation 2020, 18, 100788. [Google Scholar] [CrossRef]
- Amalina, F.; Razak AS, A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Biochar production techniques utilizing biomass waste-derived materials and environmental applications: A review. Journal of Hazardous Materials Advances 2022, 7, 100134. [Google Scholar] [CrossRef]
- Sarmah, P.; Borthakur, P.P. Comparison of Jatropha biodiesel with pure diesel: An approach for alternative and environmental friendly energy resource. International Journal of Engineering Research & Technology (IJERT).
- Borthakur, P.P.; Medhi, N. Green revolution: Promising feedstock for sustainable biodiesel production. European Chemical Bulletin 2023, 12(10), 2306–2325. [Google Scholar]
- Saikia, M.; Sarmah, P.; Borthakur, P.P. A review of challenges to adoption of biodiesel as a diesel substitute in India. Renewable Energy Research and Applications 2024, 5(2), 221–227. [Google Scholar]
- Anand, A.; Kumar, V.; Kaushal, P. Biochar and its twin benefits: Crop residue management and climate change mitigation in India. Renewable and Sustainable Energy Reviews 2022, 156, 111959. [Google Scholar] [CrossRef]
- Anand, A.; Pathak, S.; Kumar, V.; Kaushal, P. Biochar production from crop residues, its characterization and utilization for electricity generation in India. Journal of Cleaner Production 2022, 368, 133074. [Google Scholar] [CrossRef]
- Avhad, M.R.; Marchetti, J.M. A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews 2015, 50, 696–718. [Google Scholar] [CrossRef]
- Awogbemi, O.; Kallon DV, V. Recent advances in the application of nanomaterials for improved biodiesel, biogas, biohydrogen, and bioethanol production. Fuel 2024, 358, 130261. [Google Scholar] [CrossRef]
- Awogbemi, O. , & Von Kallon, D. V. Application of biochar derived from crops residues for biofuel production. Fuel Communications 2023, 15, 100088. [Google Scholar] [CrossRef]
- Awogbemi, O. , & Von Kallon, D. V. Progress in agricultural waste derived biochar as adsorbents for wastewater treatment. Applied Surface Science Advances 2023, 18, 100518. [Google Scholar] [CrossRef]
- Babadi, A. A. , Rahmati, S., Fakhlaei, R., Barati, B., Wang, S., Doherty, W., & Ostrikov, K. (Ken). Emerging technologies for biodiesel production: Processes, challenges, and opportunities. Biomass and Bioenergy 2022, 163, 106521. [Google Scholar] [CrossRef]
- Babu, S.; Rathore, S.S.; Singh, R.; Kumar, S.; Singh, V.K.; Yadav, S.K.; Yadav, V.; Raj, R.; Yadav, D.; Shekhawat, K.; Wani, O.A. Exploring agricultural waste biomass for energy, food, and feed production and pollution mitigation: A review. Bioresource Technology 2022, 360, 127566. [Google Scholar] [CrossRef] [PubMed]
- Bach, Q.-V.; Chen, W.-H.; Lin, S.-C.; Sheen, H.-K.; Chang, J.-S. Wet torrefaction of microalga Chlorella vulgaris ESP-31 with microwave-assisted heating. Energy Conversion and Management 2017, 141, 163–170. [Google Scholar] [CrossRef]
- Badoei-Dalfard, A.; Karami, Z.; Malekabadi, S. Construction of CLEAs-lipase on magnetic graphene oxide nanocomposite: An efficient nanobiocatalyst for biodiesel production. Bioresource Technology 2019, 278, 473–476. [Google Scholar] [CrossRef]
- Balajii, M.; Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environmental Chemistry Letters 2019, 17(4), 1447–1469. [Google Scholar] [CrossRef]
- Behera, B.; Selvam, S.M.; Dey, B.; Balasubramanian, P. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresource Technology 2020, 310, 123392. [Google Scholar] [CrossRef] [PubMed]
- Benjamin MF, D.; Ventura, J.-R.S.; Sangalang KP, H.; Adorna, J.A.; Belmonte, B.A.; Andiappan, V. Optimal synthesis of Philippine agricultural residue-based integrated biorefinery via the P-graph method under supply and demand constraints. Journal of Cleaner Production 2021, 308, 127348. [Google Scholar] [CrossRef]
- Bergman, E.M. ; L Finding citations to social work literature: The relative benefits of using Web of Science, Scopus, or Google Scholar. The Journal of Academic Librarianship 2012, 38(6), 370–379. [Google Scholar] [CrossRef]
- Bhatia, S.C. Biodiesel. In Advanced Renewable Energy Systems (pp. 573–626). Elsevier. [CrossRef]
- Bhatia2014, S. K. , Gurav, R., Choi, T.-R., Kim, H. J., Yang, S.-Y., Song, H.-S., Park, J. Y., Park, Y.-L., Han, Y.-H., Choi, Y.-K., Kim, S.-H., Yoon, J.-J., & Yang, Y.-H. Conversion of waste cooking oil into biodiesel using heterogeneous catalyst derived from cork biochar. Bioresource Technology 2020, 302, 122872. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J. Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health 2019, 16(5), 832. [Google Scholar] [CrossRef]
- Bian, X.; Ren, Z.; Zeng, L.; Zhao, F.; Yao, Y.; Li, X. Effects of biochar on the compressibility of soil with high water content. Journal of Cleaner Production 2024, 434, 140032. [Google Scholar] [CrossRef]
- Borthakur, P.P.; Sarma, G.; Hazarika, H.; Bhattacharyya, S.; Hazarika, T. Microalgae Asterarcys sp.: A potential source for biodiesel production. Indian Journal of Natural Sciences, 3554. [Google Scholar]
- Bibi, A.; Naz, S.; Uroos, M. Evaluating the effect of ionic liquid on biosorption potential of peanut waste: Experimental and theoretical studies. ACS Omega 2021, 6(36), 22259–22271. [Google Scholar] [CrossRef] [PubMed]
- Boraah, N.; Chakma, S.; Kaushal, P. Attributes of wood biochar as an efficient adsorbent for remediating heavy metals and emerging contaminants from water: A critical review and bibliometric analysis. Journal of Environmental Chemical Engineering 2022, 10(6), 107825. [Google Scholar] [CrossRef]
- Cao, M.; Lu, M.; Yin, H.; Zhu, Q.; Xing, K.; Ji, J. Effect of hemicellulose extraction pretreatment on sulfonated corncob biochar for catalytic biodiesel production. Journal of Environmental Chemical Engineering 2023, 11, 109058. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology 2011, 102(19), 8877–8884. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Huang, M.-Y.; Chang, J.-S.; Chen, C.-Y. Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresource Technology 2014, 169, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, P.P.; Sarmah, P.; Biswakarma, K.; Talukdar, A. An overview of microalgae for the production of biodiesel. International Journal of Mechanical Engineering 2022, 7(1), 2848–2853. [Google Scholar]
- Chen, W.-H.; Huang, M.-Y.; Chang, J.-S.; Chen, C.-Y. Torrefaction operation and optimization of microalgae residue for energy densification and utilization. Applied Energy 2015, 154, 622–630. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Khilji, I.A.; Sirohi, R.; Pandey, A.; Baskar, G.; Satyavolu, J. Maximizing the value of biodiesel industry waste: Exploring recover, recycle, and reuse for sustainable environment. Environmental Technology & Innovation 2023, 32, 103447. [Google Scholar] [CrossRef]
- Cho, S.-H.; Lee, D.-J.; Kim, J.Y.; Choi, Y.-B.; Park, S.; Park, J.; Kim, J.K.; Kim, H.; Jung, S.; Kwon, E.E. Valorization of cattle manure via a thermo-chemical process. Chemical Engineering Journal 2024, 479, 147911. [Google Scholar] [CrossRef]
- Cuadrado-Osorio, P.D.; Ramírez-Mejía, J.M.; Mejía-Avellaneda, L.F.; Mesa, L.; Bautista, E.J. Agro-industrial residues for microbial bioproducts: A key booster for bioeconomy. Bioresource Technology Reports 2022, 20, 101232. [Google Scholar] [CrossRef]
- Balajii, M.; Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environmental Chemistry Letters 2019, 17(4), 1447–1469. [Google Scholar] [CrossRef]
- Behera, B.; Selvam, S.M.; Dey, B.; Balasubramanian, P. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresource Technology 2020, 310, 123392. [Google Scholar] [CrossRef] [PubMed]
- Benjamin MF, D.; Ventura, J.-R.S.; Sangalang KP, H.; Adorna, J.A.; Belmonte, B.A.; Andiappan, V. Optimal synthesis of Philippine agricultural residue-based integrated biorefinery via the P-graph method under supply and demand constraints. Journal of Cleaner Production 2021, 308, 127348. [Google Scholar] [CrossRef]
- Bergman, E.M. ; L Finding citations to social work literature: The relative benefits of using Web of Science, Scopus, or Google Scholar. The Journal of Academic Librarianship 2012, 38(6), 370–379. [Google Scholar] [CrossRef]
- Bhatia, S.C. Biodiesel. In Advanced Renewable Energy Systems (pp. 573–626). Elsevier. [CrossRef]
- Bhatia2014, S. K. , Gurav, R. , Choi, T.-R., Kim, H. J., Yang, S.-Y., Song, H.-S., Park, J. Y., Park, Y.-L., Han, Y.-H., Choi, Y.-K., Kim, S.-H., Yoon, J.-J., & Yang, Y.-H. Conversion of waste cooking oil into biodiesel using heterogeneous catalyst derived from cork biochar. Bioresource Technology 2020, 302, 122872. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J. Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health 2019, 16(5), 832. [Google Scholar] [CrossRef]
- Bian, X.; Ren, Z.; Zeng, L.; Zhao, F.; Yao, Y.; Li, X. Effects of biochar on the compressibility of soil with high water content. Journal of Cleaner Production 2024, 434, 140032. [Google Scholar] [CrossRef]
- Bibi, A.; Naz, S.; Uroos, M. Evaluating the effect of ionic liquid on biosorption potential of peanut waste: Experimental and theoretical studies. ACS Omega 2021, 6(36), 22259–22271. [Google Scholar] [CrossRef] [PubMed]
- Boraah, N.; Chakma, S.; Kaushal, P. Attributes of wood biochar as an efficient adsorbent for remediating heavy metals and emerging contaminants from water: A critical review and bibliometric analysis. Journal of Environmental Chemical Engineering 2022, 10(6), 107825. [Google Scholar] [CrossRef]
- Cao, M.; Lu, M.; Yin, H.; Zhu, Q.; Xing, K.; Ji, J. Effect of hemicellulose extraction pretreatment on sulfonated corncob biochar for catalytic biodiesel production. Journal of Environmental Chemical Engineering 2023, 11, 109058. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology 2011, 102(19), 8877–8884. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Huang, M.-Y.; Chang, J.-S.; Chen, C.-Y. Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresource Technology 2014, 169, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-H.; Huang, M.-Y.; Chang, J.-S.; Chen, C.-Y. Torrefaction operation and optimization of microalgae residue for energy densification and utilization. Applied Energy 2015, 154, 622–630. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Khilji, I.A.; Sirohi, R.; Pandey, A.; Baskar, G.; Satyavolu, J. Maximizing the value of biodiesel industry waste: Exploring recover, recycle, and reuse for sustainable environment. Environmental Technology & Innovation 2023, 32, 103447. [Google Scholar] [CrossRef]
- Cho, S.-H.; Lee, D.-J.; Kim, J.Y.; Choi, Y.-B.; Park, S.; Park, J.; Kim, J.K.; Kim, H.; Jung, S.; Kwon, E.E. Valorization of cattle manure via a thermo-chemical process. Chemical Engineering Journal 2024, 479, 147911. [Google Scholar] [CrossRef]
- Cuadrado-Osorio, P.D.; Ramírez-Mejía, J.M.; Mejía-Avellaneda, L.F.; Mesa, L.; Bautista, E.J. Agro-industrial residues for microbial bioproducts: A key booster for bioeconomy. Bioresource Technology Reports 2022, 20, 101232. [Google Scholar] [CrossRef]
- Dahman, Y.; Syed, K.; Begum, S.; Roy, P.; Mohtasebi, B. Biofuels. In Biomass2019, Biopolymer-based Materials, and Bioenergy (pp. 277–325). Elsevier. [CrossRef]
- Daimary, N.; Eldiehy KS, H.; Boruah, P.; Deka, D.; Bora, U.; Kakati, B.K. Potato peels as a sustainable source for biochar, bio-oil, and a green heterogeneous catalyst for biodiesel production. Journal of Environmental Chemical Engineering 2022, 10. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; West, A.H.; Ellis, N. Biochar-based solid acid catalyst for biodiesel production. Applied Catalysis A: General. [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; de Melo IC, N.A.; Melo LC, A.; Magriotis, Z.M.; Sánchez-Monedero, M.A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLOS ONE 2017, 12(5), e0176884. [Google Scholar] [CrossRef]
- Dong, T.; Gao, D.; Miao, C.; Yu, X.; Degan, C.; Garcia-Pérez, M.; Rasco, B.; Sablani, S.S.; Chen, S. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. Energy Conversion and Management 2015, 105, 1389–1396. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural waste: Review of the evolution, approaches, and perspectives on alternative uses. Global Ecology and Conservation 2020, 22, e00902. [Google Scholar] [CrossRef]
- Enaime, G.; Baçaoui, A.; Yaacoubi, A.; Lübken, M. Biochar for wastewater treatment—conversion technologies and applications. Applied Sciences 2020, 10(10), 3492. [Google Scholar] [CrossRef]
- Fernández, J.V.; Faria, D.N.; Santoro, M.C.; Mantovaneli, R.; Cipriano, D.F.; Brito, G.M.; Carneiro MT, W.D.; Schettino, M.A.; Gonzalez, J.L.; Freitas JC, C. Use of unmodified coffee husk biochar and ashes as heterogeneous catalysts in biodiesel synthesis. Bioenergy Research 2023, 16(6), 1746–1757. [Google Scholar] [CrossRef]
- Freudenmann, D.; Wolf, S.; Wolff, M.; Feldmann, C. Ionic liquids: New perspectives for inorganic synthesis? Angewandte Chemie International Edition, 50, 1050. [Google Scholar] [CrossRef]
- Fu2011, T. , Ke, J. H., Zhou, S., & Xie, G. H. Estimation of the quantity and availability of forestry residue for bioenergy production in China. Resources Conservation and Recycling 2020, 162, 104993. [Google Scholar] [CrossRef]
- G; G; S; K; R; YK; Bhatia, S. K.; S, *!!! REPLACE !!!*, AK, *!!! REPLACE !!!*, M, *!!! REPLACE !!!*, R, *!!! REPLACE !!!*, Kumar, G., Pugazhendhi, A., Chi NT, L., Eds.; J; RB Valorization of agricultural residues: Different biorefinery routes. Journal of Environmental Chemical Engineering 2021, 9(4), 105435. [Google Scholar] [CrossRef]
- Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X.; Lee, A.F.; Wilson, K.; Rehan, M. A magnetically separable SO4/Fe-Al-TiO2 solid acid catalyst for biodiesel production from waste cooking oil. Applied Catalysis B: Environmental 2018, 234, 268–278. [Google Scholar] [CrossRef]
- Geng, X.; Lv, S.; Yang, J.; Cui, S.; Zhao, Z. Carboxyl-functionalized biochar derived from walnut shells with enhanced aqueous adsorption of sulfonamide antibiotics. Journal of Environmental Management 2021, 280, 111749. [Google Scholar] [CrossRef] [PubMed]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.-W.; Verniquet, A.; Broeze, J.; Schaer, B.; Batista, A.P.; Sebok, A. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Reviews in Environmental Science and Technology. [CrossRef]
- Borthakur, P.P.; Sarmah, P. Performance analysis of blends of Jatropha biodiesel. International Journal of Scientific & Engineering Research, 2013; 4. [Google Scholar]
- González, M.E.; Cea, M.; Reyes, D.; Romero-Hermoso, L.; Hidalgo, P.; Meier, S.; Benito, N.; Navia, R. Functionalization of biochar derived from lignocellulosic biomass using microwave technology for catalytic application in biodiesel production. Energy Conversion and Management 2017, 137, 165–173. [Google Scholar] [CrossRef]
- Guler, A.T.; Waaijer CJ, F.; Mohammed, Y.; Palmblad, M. Automating bibliometric analyses using Taverna scientific workflows: A tutorial on integrating web services. Journal of Informetrics 2016, 10(4), 830–841. [Google Scholar] [CrossRef]
- Guliyev, H.; Mustafayev, E. Predicting the changes in the WTI crude oil price dynamics using machine learning models. Resources Policy 2022, 77, 102664. [Google Scholar] [CrossRef]
- Harisankar, S.; Francis Prashanth, P.; Nallasivam, J.; Vishnu Mohan, R.; Vinu, R. Effects of aqueous phase recirculation on product yields and quality from hydrothermal liquefaction of rice straw. Bioresource Technology 2021, 342, 125951. [Google Scholar] [CrossRef]
- Hebbar HR, H.; Math, M.C.; Yatish, K.V. Optimization and kinetic study of CaO nanoparticles catalyzed biodiesel production from Bombax ceiba oil. Energy 2018, 143, 25–34. [Google Scholar] [CrossRef]
- Hu, B.; Liu, J.; Xie, W.; Li, Y.; Lu, Q. Biofuels production using pyrolysis techniques. In Advances in Biofuels Production2024, Optimization, and Applications (pp. 103–125). Elsevier. [CrossRef]
- Jain, N.; Sharma, M. Evaluation of acute dermal toxicity of Cymbopogon martinii leaves essential oil in Swiss albino mice. Journal of Essential Oil-Bearing Plants. [CrossRef]
- Jayaraju, R.M.; Gaddam, K.; Ravindiran, G.; Palani, S.; Paulraj, M.P.; Achuthan, A.; Saravanan, P.; Muniasamy, S.K. Biochar from waste biomass as a biocatalyst for biodiesel production: An overview. Applied Nanoscience 2022, 12, 3665–3676. [Google Scholar] [CrossRef]
- Jung, J.-M.; Oh, J.-I.; Baek, K.; Lee, J.; Kwon, E.E. Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst. Energy Conversion and Management 2018, 165, 628–633. [Google Scholar] [CrossRef]
- Karim, A.A.; Kumar, M.; Singh, E.; Kumar, A.; Kumar, S.; Ray, A.; Dhal, N.K. Enrichment of primary macronutrients in biochar for sustainable agriculture: A review. Critical Reviews in Environmental Science and Technology 2022, 52(12), 1449–1490. [Google Scholar] [CrossRef]
- Keenum, A.; Shubrook, J. How to peer review a scientific or scholarly article. Osteopathic Family Physician 2012, 4(4), 176–179. [Google Scholar] [CrossRef]
- Khan, S. A. , Rashmi, Hussain, M. Z., Prasad, S., & Banerjee, U. C. Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 2361. [Google Scholar] [CrossRef]
- Khan, N.; Chowdhary, P.; Ahmad, A.; Shekher Giri, B.; Chaturvedi, P. Hydrothermal liquefaction of rice husk and cow dung in Mixed-Bed-Rotating Pyrolyzer and application of biochar for dye removal. Bioresource Technology 2020, 309, 123294. [Google Scholar] [CrossRef] [PubMed]
- Khedulkar, A.P.; Pandit, B.; Dang, V.D.; Doong, R. Agricultural waste to real worth biochar as a sustainable material for supercapacitor. Science of the Total Environment 2023, 869, 161441. [Google Scholar] [CrossRef] [PubMed]
- Knothe, G. Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science 2010, 36(3), 364–373. [Google Scholar] [CrossRef]
- Korkut, I.; Bayramoglu, M. Selection of catalyst and reaction conditions for ultrasound-assisted biodiesel production from canola oil. Renewable Energy 2018, 116, 543–551. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environmental Research 2022, 206, 112285. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y. Bibliometric analysis of global environmental assessment research in a 20-year period. Environmental Impact Assessment Review 2015, 50, 158–166. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Imran, A.; Aslam, M.U.; Mehmood, U. Analyzing the contribution of renewable energy and natural resources for sustainability in G-20 countries: How gross capital formation impacts ecological footprints. Heliyon 2023, 9, e18882. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zeng, M.; Qi, C. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization. Carbon 2010, 48, 1844–1848. [Google Scholar] [CrossRef]
- Lin, J.; Xu, Z.; Zhang, Q.; Cao, Y.; Mašek, O.; Lei, H.; Tsang DC, W. Enhanced adsorption of aromatic VOCs on hydrophobic porous biochar produced via microwave rapid pyrolysis. Bioresource Technology 2024, 393, 130085. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jiang, J.; Yin, M.; Zheng, Y.; Wang, C.; Yan, L. Promoting performance of Anammox by iron-loaded sludge biochar with hydrothermal carbonization (HTC-Fe-BC) addition. Process Safety and Environmental Protection 2023, 170, 596–607. [Google Scholar] [CrossRef]
- Lyu, H.; Lim, J.Y.; Zhang, Q.; Senadheera, S.S.; Zhang, C.; Huang, Q.; Ok, Y.S. Conversion of organic solid waste into energy and functional materials using biochar catalyst: Bibliometric analysis, research progress, and directions. Applied Catalysis B: Environmental 2024, 340, 123223. [Google Scholar] [CrossRef]
- Madeira, J.V.; Contesini, F.J.; Calzado, F.; Rubio, M.V.; Zubieta, M.P.; Lopes, D.B.; de Melo, R.R. Agro-industrial residues and microbial enzymes. In Biotechnology of Microbial Enzymes (pp. 475–511). Elsevier. [CrossRef]
- Mansir2017, N. , Teo, S. H., Rashid, U., & Taufiq-Yap, Y. H. Efficient waste Gallus domesticus shell-derived calcium-based catalyst for biodiesel production. Fuel 2018, 211, 67–75. [Google Scholar] [CrossRef]
- Markscheffel, B.; Schröter, F. Comparison of two science mapping tools based on software technical evaluation and bibliometric case studies. Collnet Journal of Scientometrics and Information Management 2021, 15, 365–396. [Google Scholar] [CrossRef]
- McAllister, J.T.; Lennertz, L.; Atencio Mojica, Z. Mapping a discipline: A guide to using VOSviewer for bibliometric and visual analysis. Science & Technology Libraries 2022, 41, 319–348. [Google Scholar] [CrossRef]
- Megía, P.J.; Vizcaíno, A.J.; Calles, J.A.; Carrero, A. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review. Energy & Fuels 2021, 35, 16403–16415. [Google Scholar] [CrossRef]
- Meho, L.I. Using Scopus’s CiteScore for assessing the quality of computer science conferences. Journal of Informetrics 2019, 13, 419–433. [Google Scholar] [CrossRef]
- Melo VM, E.; Ferreira, G.F.; Fregolente, L.V. Sustainable catalysts for biodiesel production: The potential of CaO supported on sugarcane bagasse biochar. Renewable and Sustainable Energy Reviews 2024, 189, 114042. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Evangelopoulos, P.; Sieradzka, M.; Zajemska, M.; Magdziarz, A. Pyrolysis of agricultural waste biomass towards production of gas fuel and high-quality char: Experimental and numerical investigations. Fuel 2021, 296, 120611. [Google Scholar] [CrossRef]
- Nagendran, R. Agricultural waste and pollution. In Waste (pp. 341–355). Elsevier. [CrossRef]
- Nidheesh2011, P. V. , Gopinath, A., Ranjith, N., Praveen Akre, A., Sreedharan, V., & Suresh Kumar, M. Potential role of biochar in advanced oxidation processes: A sustainable approach. Chemical Engineering Journal 2021, 405, 126582. [Google Scholar] [CrossRef]
- Nielsen, K.S.; Nicholas, K.A.; Creutzig, F.; Dietz, T.; Stern, P.C. The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nature Energy 2021, 6, 1011–1016. [Google Scholar] [CrossRef]
- Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural waste concept, generation, utilization and management. Nigerian Journal of Technology 2016, 35, 957. [Google Scholar] [CrossRef]
- Ottani, F.; Morselli, N.; De Luca, A.; Puglia, M.; Pedrazzi, S.; Allesina, G. The conductivity dilemma: How biochar grain’s chemical composition and morphology hinder the direct measurement of its electrical conductivity. Measurement 2023, 222, 113662. [Google Scholar] [CrossRef]
- Ouyang, H.; Safaeipour, N.; Othman, R.S.; Otadi, M.; Sheibani, R.; Kargaran, F.; Van Le, Q.; Khonakdar, H.A.; Li, C. Agricultural waste-derived (nano)materials for water and wastewater treatment: Current challenges and future perspectives. Journal of Cleaner Production 2023, 421, 138524. [Google Scholar] [CrossRef]
- Parida, S.; Singh, M.; Pradhan, S. Biomass wastes: A potential catalyst source for biodiesel production. Bioresource Technology Reports 2022, 18, 101081. [Google Scholar] [CrossRef]
- Patel, M.R.; Panwar, N.L. Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resources 2023, 19, 200173. [Google Scholar] [CrossRef]
- Periyasamy, S.; Asefa Adego, A.; Kumar, P.S.; Desta, G.G.; Zelalem, T.; Karthik, V.; Isabel, J.B.; Jayakumar, M.; Sundramurthy, V.P.; Rangasamy, G. Influencing factors and environmental feasibility analysis of agricultural waste preprocessing routes towards biofuel production – A review. Biomass and Bioenergy 2024, 180, 107001. [Google Scholar] [CrossRef]
- Phiri, R.; Mavinkere Rangappa, S.; Siengchin, S. Agro-waste for renewable and sustainable green production: A review. Journal of Cleaner Production 2024, 434, 139989. [Google Scholar] [CrossRef]
- Potnuri, R.; Surya, D.V.; Rao, C.S.; Yadav, A.; Sridevi, V.; Remya, N. A review on analysis of biochar produced from microwave-assisted pyrolysis of agricultural waste biomass. Journal of Analytical and Applied Pyrolysis 2023, 173, 106094. [Google Scholar] [CrossRef]
- Pourhashem, G.; Hung, S.Y.; Medlock, K.B.; Masiello, C.A. Policy support for biochar: Review and recommendations. GCB Bioenergy 2019, 11(4), 364–380. [Google Scholar] [CrossRef]
- Price, D.D. ; S A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science 1976, 27(5), 292–306. [Google Scholar] [CrossRef]
- Propper, C.R.; Sedlock, J.L.; Smedley, R.E.; Frith, O.; Shuman-Goodier, M.E.; Grajal-Puche, A.; Stuart, A.M.; Singleton, G.R. Balancing food security, vertebrate biodiversity, and healthy rice agroecosystems in Southeast Asia. Crop and Environment. [CrossRef]
- Pydimalla2023, M. , Husaini, S., Kadire, A., & Kumar Verma, R. Sustainable biodiesel: A comprehensive review on feedstock, production methods, applications, challenges, and opportunities. Materials Today: Proceedings 2023, 92, 458–464. [Google Scholar] [CrossRef]
- Quah, R.V.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Abdullah, E.C.; Abdullah, M.O. Magnetic biochar derived from waste palm kernel shell for biodiesel production via sulfonation. Waste Management 2020, 118, 626–636. [Google Scholar] [CrossRef]
- Quesada, H.B.; de Araújo, T.P.; Cusioli, L.F.; de Barros MA, S.D.; Gomes, R.G.; Bergamasco, R. Evaluation of novel activated carbons from chichá-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture. Journal of Environmental Chemical Engineering 2021, 9, 104914. [Google Scholar] [CrossRef]
- Rajendran, N.; Kang, D.; Han, J.; Gurunathan, B. Process optimization, economic and environmental analysis of biodiesel production from food waste using a citrus fruit peel biochar catalyst. Journal of Cleaner Production 2022, 365. [Google Scholar] [CrossRef]
- Reshad, A.S.; Panjiara, D.; Tiwari, P.; Goud, V.V. Two-step process for production of methyl ester from rubber seed oil using barium hydroxide octahydrate catalyst: Process optimization. Journal of Cleaner Production 2017, 142, 3490–3499. [Google Scholar] [CrossRef]
- Rogovski, P.; Cadamuro, R.D.; Marques Souza, D.S.; Savi, B.P.; Razzzolini MT, P.; de Souza Lauretto, M.; Sato MI, Z.; Nardocci, A.C.; Júnior SL, A.; Treichel, H.; Fongaro, G. Animal residues use and application for sustainable agriculture on one health approach. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 131–158). Elsevier. [CrossRef]
- Rubini2022, L. , Pollio, C., Barbieri, E., & Cattaruzzo, S. Changing structures in transnational research networks: An analysis of the impact of COVID-19 on China’s scientific collaborations. Structural Change and Economic Dynamics 2024, 69, 281–297. [Google Scholar] [CrossRef]
- Sakina, A.; Nazir, N.; Sultan, P.; Hassan, Q.P. Bioconversion of agricultural residues and waste to value-added products. In Value-Addition in Agri-Food Industry Waste Through Enzyme Technology (pp. 355–364). Elsevier. 2023. [CrossRef]
- Salam, K.A.; Velasquez-Orta, S.B.; Harvey, A.P. A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product: A review. Renewable and Sustainable Energy Reviews 2016, 65, 1179–1198. [Google Scholar] [CrossRef]
- Salleh, Z.M.; Yahya, N.Y.; Nasarudin MA, S.; Herman, D.N. Transesterification of used frying oil by activated banana peels waste catalyst for biodiesel production. Materials Today: Proceedings 2022, 57, 1235–1240. [Google Scholar] [CrossRef]
- Shah, M.A.; Khan, N.S.; Kumar, V.; Qurashi, A. Pyrolysis of walnut shell residues in a fixed bed reactor: Effects of process parameters, chemical and functional properties of bio-oil. Journal of Environmental Chemical Engineering 2021, 9, 105564. [Google Scholar] [CrossRef]
- Shelare, S.D.; Belkhode, P.N.; Nikam, K.C.; Jathar, L.D.; Shahapurkar, K.; Soudagar ME, M.; Veza, I.; Khan TM, Y.; Kalam, M.A.; Nizami, A.-S.; Rehan, M. Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, Internet of Things, artificial intelligence, and machine learning technology in biodiesel production. Energy 2023, 282, 128874. [Google Scholar] [CrossRef]
- Siddique, R. Rice husk ash. In Waste Materials and By-Products in Concrete (pp. 235–264). Springer. [CrossRef]
- Sikarwar2008, V. S. , Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. Progress in biofuel production from gasification. Progress in Energy and Combustion Science 2017, 61, 189–248. [Google Scholar] [CrossRef]
- Siluk JC, M.; de Carvalho, P.S.; Thomasi, V.; Pappis CA de, O.; Schaefer, J.L. Cloud-based energy management systems: Terminologies, concepts, and definitions. Energy Research & Social Science 2023, 106, 103313. [Google Scholar] [CrossRef]
- Silva, J.V.; Pede, V.O.; Radanielson, A.M.; Kodama, W.; Duarte, A.; de Guia, A.H.; Malabayabas AJ, B.; Pustika, A.B.; Argosubekti, N.; Vithoonjit, D.; Hieu PT, M.; Pame AR, P.; Singleton, G.R.; Stuart, A.M. Revisiting yield gaps and the scope for sustainable intensification for irrigated lowland rice in Southeast Asia. Agricultural Systems 2022, 198, 103383. [Google Scholar] [CrossRef]
- Singh, Y.; Sharma, S.; Kumar, U.; Sihag, P.; Balyan, P.; Singh, K.P.; Dhankher, O.P. Strategies for economic utilization of rice straw residues into value-added by-products and prevention of environmental pollution. Science of the Total Environment 2024, 906, Article 167714. [Google Scholar] [CrossRef]
- Smith, S.A.; Duncan, A.A. Systematic and scoping reviews: A comparison and overview. Seminars in Vascular Surgery 2022, 35, 464–469. [Google Scholar] [CrossRef]
- Su, M.; Peng, H.; Li, S. A visualized bibliometric analysis of mapping research trends of machine learning in engineering (MLE). Expert Systems with Applications 2021, 186, 115728. [Google Scholar] [CrossRef]
- Suárez, L.; Benavente-Ferraces, I.; Plaza, C.; de Pascual-Teresa, S.; Suárez-Ruiz, I.; Centeno, T.A. Hydrothermal carbonization as a sustainable strategy for integral valorization of apple waste. Bioresource Technology 2020, 309, 123395. [Google Scholar] [CrossRef]
- Thakur, A.K.; Kumar, R.; Shukla, P.; Sharma, P.; Kulabhi, A. Biochar from agricultural biomass: Current status and future scope. Materials Today: Proceedings. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
