Preprint
Article

This version is not peer-reviewed.

Noncommutative Maccone-Pati Uncertainty Principles

Submitted:

03 January 2025

Posted:

07 January 2025

You are already at the latest version

Abstract

Let $\mathcal{E}$ be a Hilbert C*-module over a unital C*-algebra $\mathcal{A}$. Let $A: \mathcal{D}(A) \subseteq \mathcal{E} \to \mathcal{E}$ and $B: \mathcal{D}(B)\subseteq \mathcal{E}\to \mathcal{E}$ be possibly unbounded self-adjoint morphisms. Then for all $x \in \mathcal{D}(AB)\cap \mathcal{D}(BA)$ with $\langle x, x \rangle =1$, we show that \begin{align*} (1) \quad\quad\quad d_x(A)^2+d_x(B)^2&\geq \mp \langle \{A,B\}x, x \rangle +\langle (A\pm B)x, y \rangle\langle y, (A\pm B)x \rangle\pm \{\langle Ax, x \rangle, \langle Bx, x \rangle\}, \\ &\quad \forall y \in \mathcal{E} \text{ satisfying } \|y\|\leq 1 \text{ and } \langle x,y \rangle =0 \end{align*} \begin{align*} (2) \quad \quad \quad d_x(A)^2+d_x(B)^2&\geq \mp i\langle [A,B]x, x \rangle +\langle (A\pm iB)x, y \rangle\langle y, (A\pm iB)x \rangle \mp i[\langle Ax, x \rangle, \langle Bx, x \rangle], \\ &\quad \forall y \in \mathcal{E} \text{ satisfying } \|y\|\leq 1 \text{ and } \langle x,y \rangle =0. \end{align*} where \begin{align*} & d_x(A)\coloneqq \sqrt{\langle Ax, Ax \rangle -\langle Ax, x \rangle^2},\quad [A,B] \coloneqq AB-BA, \\ & [\langle Ax, x \rangle,\langle Bx, x \rangle]\coloneqq \langle Ax, x \rangle\langle Bx, x \rangle -\langle Bx, x \rangle\langle Ax, x \rangle. \end{align*} We call Inequalities (1) and (2) as noncommutative Maccone-Pati uncertainty principles. They reduce to uncertainty principles derived by Maccone and Pati [\textit{Phys. Rev. Lett., 2014}] whenever $\mathcal{A}=\mathbb{C}$.

Keywords: 
;  

1. Introduction

Let H be a complex Hilbert space and A be a possibly unbounded self-adjoint linear operator defined on domain D ( A ) H . For h D ( A ) with h = 1 , define the uncertainty of A at the point h as
Δ h ( A ) A h A h , h h = A h 2 A h , h 2 .
In 1929, Robertson [1] derived the following mathematical form of the uncertainty principle of Heisenberg derived in 1927 [2]. Recall that for two linear operators A : D ( A ) H H and B : D ( B ) H H , we define the commutator [ A , B ] A B B A and the anti-commutator { A , B } A B + B A .
Theorem 1.
[1,2,3,4] (Heisenberg-Robertson Uncertainty Principle) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint linear operators. Then for all h D ( A B ) D ( B A ) with h = 1 , we have
1 2 Δ h ( A ) 2 + Δ h ( B ) 2 1 4 Δ h ( A ) + Δ h ( B ) 2 Δ h ( A ) Δ h ( B ) 1 2 | [ A , B ] h , h | .
In 1930, Schrodinger improved Inequality (1) [5].
Theorem 2.
[5,6] (Heisenberg-Robertson-Schrodinger Uncertainty Principle) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint linear operators. Then for all h D ( A B ) D ( B A ) with h = 1 , we have
Δ h ( A ) Δ h ( B ) | A h , B h A h , h B h , h | = | [ A , B ] h , h | 2 + | { A , B } h , h 2 A h , h B h , h | 2 2 = ( { A , B } h , h 2 A h , h B h , h ) 2 [ A , B ] h , h 2 2 .
In 2014, Maccone and Pati derived the following uncertainty principles which work for orthogonal vectors [7].
Theorem 3.
[7] (Maccone-Pati Uncertainty Principles) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint linear operators. Then for all h D ( A B ) D ( B A ) with h = 1 , we have
(i)
Δ h ( A ) 2 + Δ h ( B ) 2 | ( A + B ) h , k | 2 { A , B } h , h + 2 A h , h B h , h , k H satisfying k = 1 and h , k = 0 .
(ii)
Δ h ( A ) 2 + Δ h ( B ) 2 | ( A B ) h , k | 2 + { A , B } h , h 2 A h , h B h , h , k H satisfying k = 1 and h , k = 0 .
(iii)
Δ h ( A ) 2 + Δ h ( B ) 2 | ( A + B ) h , k | 2 + | ( A B ) h , k | 2 2 , k H satisfying k = 1 and h , k = 0 .
(iv)
Δ h ( A ) 2 + Δ h ( B ) 2 i [ A , B ] h , h + | ( A + i B ) h , k | 2 , k H satisfying k = 1 and h , k = 0 .
(v)
Δ h ( A ) 2 + Δ h ( B ) 2 i [ A , B ] h , h + | ( A i B ) h , k | 2 , k H satisfying k = 1 and h , k = 0 .
(vi)
Δ h ( A ) 2 + Δ h ( B ) 2 | ( A + i B ) h , k | 2 + | ( A i B ) h , k | 2 2 , k H satisfying k = 1 and h , k = 0 .
(vii)
Δ h ( A ) Δ h ( B ) i [ A , B ] h , h 2 A Δ h ( A ) + i B Δ h ( B ) h , k 2 , k H satisfying k = 1 and h , k = 0 .
(viii)
Δ h ( A ) Δ h ( B ) i [ A , B ] h , h 2 A Δ h ( A ) i B Δ h ( B ) h , k 2 , k H satisfying k = 1 and h , k = 0 .
(ix)
Δ h ( A ) Δ h ( B ) 2 A h , h B h , h { A , B } h , h 2 A Δ h ( A ) + B Δ h ( B ) h , k 2 , k H satisfying k = 1 and h , k = 0 .
(x)
Δ h ( A ) Δ h ( B ) 2 A h , h B h , h + { A , B } h , h 2 A Δ h ( A ) B Δ h ( B ) h , k 2 , k H satisfying k = 1 and h , k = 0 .
Recently we derived noncommutative version of Theorem 2 in [8]. We therefore ask: What is noncommutative analogues of Theorems 3? For this, we need the notion of noncommutative Hilbert spaces known as Hilbert C*-modules which are first introduced by Kaplansky [9] for modules over commutative C*-algebras and later developed for modules over arbitrary C*-algebras by Paschke [10] and Rieffel [11].
Definition 1.
[9,10,11] Let A be a unital C*-algebra. A left module E over A is said to be a (left)Hilbert C*-moduleif there exists a map · , · : E × E A such that the following conditions hold.
(i)
x , x 0 , x E . If x E satisfies x , x = 0 , then x = 0 .
(ii)
a x + y , z = a x , z + y , z , x , y , z E , a A .
(iii)
x , y = y , x * , x , y E .
(iv)
E is complete w.r.t. the norm x x , x , x E .
In the paper, use the following noncommutative Cauchy-Schwarz inequality.
Theorem 4.
[10,11] Let E be a Hilbert C*-module. Then
x , y y , x y , y x , x , x , y E .
We derive noncommutative analogues of Theorem 3 in Theorem 5.

2. Noncommutative Maccone-Pati Uncertainty Principles

Let E be a Hilbert C*-module over a unital C*-algebra A and A be a possibly unbounded self-adjoint morphism defined on domain D ( A ) E . For x D ( A ) with x , x = 1 , we define the noncommutative uncertainty of A at the point x as
Δ x ( A ) A x A x , x x = A x , A x A x , x 2 .
We define
d x ( A ) A x , A x A x , x 2 = A x A x , x x , A x A x , x x .
Then d x ( A ) A and
Δ x ( A ) = d x ( A ) .
Given two elements a , b A , we define [ a , b ] a b b a and { a , b } a b + b a . Similarly, for two morphisms A : D ( A ) E E and B : D ( B ) E E , we define [ A , B ] A B B A and { A , B } A B + B A .
Theorem 5.(Noncommutative Maccone-Pati Uncertainty Principles) Let E be a Hilbert C*-module over a unital C*-algebra A . Let A : D ( A ) E E and B : D ( B ) E E be self-adjoint morphisms. Then for all x D ( A B ) D ( B A ) with x , x = 1 , we have
(i)
d x ( A ) 2 + d x ( B ) 2 { A , B } x , x + ( A + B ) x , y y , ( A + B ) x + { A x , x , B x , x } , y E satisfying y 1 and x , y = 0 .
(ii)
Δ x ( A ) 2 + Δ x ( B ) 2 { A , B } x , x + ( A + B ) x , y y , ( A + B ) x + { A x , x , B x , x } , y E satisfying y 1 and x , y = 0 .
(iii)
d x ( A ) 2 + d x ( B ) 2 { A , B } x , x + ( A B ) x , y y , ( A B ) x { A x , x , B x , x } , y E satisfying y 1 and x , y = 0 .
(iv)
Δ x ( A ) 2 + Δ x ( B ) 2 { A , B } x , x + ( A B ) x , y y , ( A B ) x { A x , x , B x , x } , y E satisfying y 1 and x , y = 0 .
(v)
d x ( A ) 2 + d x ( B ) 2 ( A + B ) x , y y , ( A + B ) x + ( A B ) x , y y , ( A B ) x 2 , y E satisfying y 1 and x , y = 0 .
(vi)
Δ x ( A ) 2 + Δ x ( B ) 2 ( A + B ) x , y y , ( A + B ) x + ( A B ) x , y y , ( A B ) x 2 , y E satisfying y 1 and x , y = 0 .
(vii)
d x ( A ) 2 + d x ( B ) 2 i [ A , B ] x , x + ( A + i B ) x , y y , ( A + i B ) x i [ A x , x , B x , x ] , y E satisfying y 1 and x , y = 0 .
(viii)
Δ x ( A ) 2 + Δ x ( B ) 2 i [ A , B ] x , x + ( A + i B ) x , y y , ( A + i B ) x i [ A x , x , B x , x ] , y E satisfying y 1 and x , y = 0 .
(ix)
d x ( A ) 2 + d x ( B ) 2 i [ A , B ] x , x + ( A i B ) x , y y , ( A i B ) x + i [ A x , x , B x , x ] , y E satisfying y 1 and x , y = 0 .
(x)
Δ x ( A ) 2 + Δ x ( B ) 2 i [ A , B ] x , x + ( A i B ) x , y y , ( A i B ) x + i [ A x , x , B x , x ] , y E satisfying y 1 and x , y = 0 .
(xi)
d x ( A ) 2 + d x ( B ) 2 ( A + i B ) x , y y , ( A + i B ) x + ( A i B ) x , y y , ( A i B ) x 2 , y E satisfying y 1 and x , y = 0 .
(xii)
Δ x ( A ) 2 + Δ x ( B ) 2 ( A + i B ) x , y y , ( A + i B ) x + ( A i B ) x , y y , ( A i B ) x 2 , y E satisfying y 1 and x , y = 0 .
Proof. 
Let x D ( A B ) D ( B A ) with x , x = 1 . Let y E be such that y 1 and x , y = 0 .
(1)
( A + B ) x , y y , ( A + B ) x = A x A x , x x + B x B x , x x , y y , A x A x , x x + B x B x , x x y , y ( A x A x , x x ) + ( B x B x , x x ) , ( A x A x , x x ) + ( B x B x , x x ) A x A x , x x , A x A x , x x + B x B x , x x , B x B x , x x + B x B x , x x , A x A x , x x + A x A x , x x , B x B x , x x = d x ( A ) 2 + d x ( B ) 2 + B x , A x B x , x A x , x + A x , B x A x , x B x , x = d x ( A ) 2 + d x ( B ) 2 + { A , B } x , x { A x , x , B x , x } .
Therefore
d x ( A ) 2 + d x ( B ) 2 { A , B } x , x + ( A + B ) x , y y , ( A + B ) x + { A x , x , B x , x } .
(ii)
Take norm on (i).
(iii)
Similar to (i).
(iv)
Take norm on (iii).
(v)
( A + B ) x , y y , ( A + B ) x + ( A B ) x , y y , ( A B ) x = 2 A x , y y , A x + 2 B x , y y , B x = 2 A x A x , x x , y y , A x A x , x x + 2 B x B x , x x , y y , B x B x , x x 2 y , y A x A x , x x , A x A x , x x + 2 y , y B x B x , x x , B x B x , x x 2 d x ( A ) 2 + 2 d x ( B ) 2 .
(vi)
Take norm on (v).
(vii)
( A + i B ) x , y y , ( A + i B ) x = A x + i B x , y y , A x + i B x = A x A x , x x + i ( B x B x , x x ) , y y , A x A x , x x + i ( B x B x , x x ) y , y ( A x A x , x x ) + i ( B x B x , x x ) , ( A x A x , x x ) + i ( B x B x , x x ) A x A x , x x , A x A x , x x + B x B x , x x , B x B x , x x + i B x B x , x x , A x A x , x x i A x A x , x x , B x B x , x x = d x ( A ) 2 + d x ( B ) 2 + i ( B x , A x B x , x A x , x ) i ( A x , B x A x , x B x , x ) = d x ( A ) 2 + d x ( B ) 2 + i [ A , B ] x , x + i [ A x , x , B x , x ] .
Therefore d x ( A ) 2 + d x ( B ) 2 i [ A , B ] x , x + ( A + i B ) x , y y , ( A + i B ) x i [ A x , x , B x , x ] .
(viii)
Take norm on (vii).
(ix)
Similar to (vii).
(x)
Take norm on (ix).
(xi)
Add (vii) and (ix).
(xii)
Add (viii) and (ix), then take norm.
Corollary 1.
Let E be a Hilbert C*-module over a unital commutative C*-algebra A . Let A : D ( A ) E and B : D ( B ) E be self-adjoint morphisms. Then for all x D ( A B ) D ( B A ) with x , x = 1 , we have
(1)
If A is commutative, then
d x ( A ) 2 + d x ( B ) 2 i [ A , B ] x , x + ( A + i B ) x , y y , ( A + i B ) x , y E satisfying y 1 and x , y = 0 .
(2)
If A is commutative, then
Δ x ( A ) 2 + Δ x ( B ) 2 i [ A , B ] x , x + ( A + i B ) x , y y , ( A + i B ) x , y E satisfying y 1 and x , y = 0 .
We also have following uncertainty principles.
Theorem 6.(Noncommutative Maccone-Pati Uncertainty Principles) Let E be a Hilbert C*-module over a unital C*-algebra A . Let A : D ( A ) E and B : D ( B ) E be self-adjoint morphisms. Then for all x D ( A B ) D ( B A ) with x , x = 1 , we have
(i)
Δ x ( A ) 2 + Δ x ( B ) 2 y , ( A + B ) x ( A + B ) x , y { A , B } x , x { A x , x , B x , x } , y E satisfying y 1 and x , y = 0 .
(ii)
Δ x ( A ) 2 + Δ x ( B ) 2 y , ( A B ) x ( A B ) x , y { A , B } x , x { A x , x , B x , x } y E satisfying y 1 and x , y = 0 .
(iii)
Δ x ( A ) 2 + Δ x ( B ) 2 y , ( A + B ) x ( A + B ) x , y + ( A B ) x , y y , ( A B ) x 2 , y E satisfying y 1 and x , y = 0 .
(iv)
Δ x ( A ) 2 + Δ x ( B ) 2 y , ( A + i B ) x ( A + i B ) x , y [ A , B ] x , x + [ A x , x , B x , x ] , y E satisfying y 1 and x , y = 0 .
(v)
Δ x ( A ) 2 + Δ x ( B ) 2 y , ( A i B ) x ( A i B ) x , y [ A , B ] x , x + [ A x , x , B x , x ] , y E satisfying y 1 and x , y = 0 .
Proof. 
Let x D ( A B ) D ( B A ) with x , x = 1 . Let y E be such that y 1 and x , y = 0 .
(i)
y , ( A + B ) x ( A + B ) x , y = y , A x A x , x x + ( B x B x , x x ) A x A x , x x + ( B x B x , x x ) , y ( A x A x , x x ) + ( B x B x , x x ) , ( A x A x , x x ) + ( B x B x , x x ) y , y ( A x A x , x x ) + ( B x B x , x x ) , ( A x A x , x x ) + ( B x B x , x x ) y , y A x A x , x x , A x A x , x x + B x B x , x x , B x B x , x x + B x B x , x x , A x A x , x x + A x A x , x x , B x B x , x x = d x ( A ) 2 + d x ( B ) 2 + ( B x , A x B x , x A x , x ) + A x , B x A x , x B x , x d x ( A ) 2 + d x ( B ) 2 + { A , B } x , x { A x , x , B x , x } .
Therefore Δ x ( A ) 2 + Δ x ( B ) 2 d x ( A ) 2 + d x ( B ) 2 y , ( A + B ) x ( A + B ) x , y { A , B } x , x { A x , x , B x , x } .
(ii)
Similar to (i).
(iii)
y , ( A + B ) x ( A + B ) x , y + y , ( A B ) x ( A B ) x , y = 2 y , A x A x , y + 2 y , B x B x , y = 2 y , A x A x , x x A x A x , x x , y + 2 y , B x B x , x x B x B x , x x , y 2 A x A x , x x , A x A x , x x y , y + 2 B x B x , x x , B x B x , x x y , y 2 Δ x ( A ) 2 + 2 Δ x ( B ) 2 .
(iv)
y , ( A + i B ) x ( A + i B ) x , y = y , A x + i B x A x + i B x , y = y , A x A x , x x + i ( B x B x , x x ) A x A x , x x + i ( B x B x , x x ) , y ( A x A x , x x ) + i ( B x B x , x x ) , ( A x A x , x x ) + i ( B x B x , x x ) y , y A x A x , x x , A x A x , x x + B x B x , x x , B x B x , x x + i B x B x , x x , A x A x , x x i A x A x , x x , B x B x , x x = d x ( A ) 2 + d x ( B ) 2 + i ( B x , A x B x , x A x , x ) i ( A x , B x A x , x B x , x ) = d x ( A ) 2 + d x ( B ) 2 + ( B x , A x B x , x A x , x ) ( A x , B x A x , x B x , x ) = d x ( A ) 2 + d x ( B ) 2 + [ A , B ] x , x + [ A x , x , B x , x ] .
Therefore
Δ x ( A ) 2 + Δ x ( B ) 2 d x ( A ) 2 + d x ( B ) 2 y , ( A + i B ) x ( A + i B ) x , y [ A , B ] x , x + [ A x , x , B x , x ] .
(v)
Similar to (iv).
Theorem 7.
Let E be a Hilbert C*-module over a unital commutative C*-algebra A . Let A : D ( A ) E and B : D ( B ) E be self-adjoint morphisms. Then for all x D ( A B ) D ( B A ) with x , x = 1 , we have
(i)
If d x ( A ) , d x ( B ) are invertible, then
d x ( A ) d x ( B ) i [ A , B ] x , x 2 A d x ( A ) + i B d x ( B ) x , y y , A d x ( A ) + i B d x ( B ) x , y E satisfying y 1 and x , y = 0 .
(ii)
Δ x ( A ) Δ x ( B ) i [ A , B ] x , x 2 A Δ x ( A ) + i B Δ x ( B ) x , y y , A Δ x ( A ) + i B Δ x ( B ) x , y E satisfying y 1 and x , y = 0 .
(iii)
If d x ( A ) , d x ( B ) are invertible, then
d x ( A ) d x ( B ) i [ A , B ] x , x 2 A d x ( A ) i B d x ( B ) x , y y , A d x ( A ) i B d x ( B ) x , y E satisfying y 1 and x , y = 0 .
(iv)
Δ x ( A ) Δ x ( B ) i [ A , B ] x , x 2 A Δ x ( A ) i B Δ x ( B ) x , y y , A Δ x ( A ) i B Δ x ( B ) x , y E satisfying y 1 and x , y = 0 .
(v)
If d x ( A ) , d x ( B ) are invertible, then
d x ( A ) d x ( B ) 2 A x , x B x , x { A , B } x , x 2 A d x ( A ) + B d x ( B ) x , y y , A d x ( A ) + B d x ( B ) x , y E satisfying y 1 and x , y = 0 .
(vi)
Δ x ( A ) Δ x ( B ) 2 A x , x B x , x { A , B } x , x 2 A Δ x ( A ) + B Δ x ( B ) x , y y , A Δ x ( A ) + B Δ x ( B ) x , y E satisfying y 1 and x , y = 0 .
(vii)
If d x ( A ) , d x ( B ) are invertible, then
d x ( A ) d x ( B ) 2 A x , x B x , x + { A , B } x , x 2 A d x ( A ) B d x ( B ) x , y y , A d x ( A ) B d x ( B ) x , y E satisfying y 1 and x , y = 0 .
(viii)
Δ x ( A ) Δ x ( B ) 2 A x , x B x , x + { A , B } x , x 2 A Δ x ( A ) B Δ x ( B ) x , y y , A Δ x ( A ) B Δ x ( B ) x , y E satisfying y 1 and x , y = 0 .
Proof. 
Let x D ( A B ) D ( B A ) with x , x = 1 . Let y E be such that y 1 and x , y = 0 .
(i)
Since A is commutative and d x ( A ) , d x ( B ) are invertible,
A d x ( A ) + i B d x ( B ) x , y y , A d x ( A ) + i B d x ( B ) x = A x A x , x x d x ( A ) + i ( B x B x , x x ) d x ( B ) , y y , A x A x , x x d x ( A ) + i ( B x B x , x x ) d x ( B ) y , y A x A x , x x d x ( A ) + i ( B x B x , x x ) d x ( B ) , A x A x , x x d x ( A ) + i ( B x B x , x x ) d x ( B ) A x A x , x x d x ( A ) , A x A x , x x d x ( A ) + B x B x , x x d x ( B ) , B x B x , x x d x ( B ) + i B x B x , x x d x ( B ) , A x A x , x x d x ( A ) i A x A x , x x d x ( A ) , B x B x , x x d x ( B ) = 1 + 1 + i B x , A x i B x , x A x , x d x ( A ) d x ( B ) + i A x , B x + i A x , x B x , x d x ( A ) d x ( B ) = 2 + i [ A , B ] x , x d x ( A ) d x ( B ) .
Therefore
i [ A , B ] x , x d x ( A ) d x ( B ) 2 A d x ( A ) + i B d x ( B ) x , y y , A d x ( A ) + i B d x ( B ) x i [ A , B ] x , x 2 A d x ( A ) + i B d x ( B ) x , y y , A d x ( A ) + i B d x ( B ) x d x ( A ) d x ( B ) .
(ii)
Since A is commutative,
A Δ x ( A ) + i B Δ x ( B ) x , y y , A Δ x ( A ) + i B Δ x ( B ) x = A x A x , x x Δ x ( A ) + i ( B x B x , x x ) Δ x ( B ) , y y , A x A x , x x Δ x ( A ) + i ( B x B x , x x ) Δ x ( B ) y , y A x A x , x x Δ x ( A ) + i ( B x B x , x x ) Δ x ( B ) , A x A x , x x Δ x ( A ) + i ( B x B x , x x ) Δ x ( B ) A x A x , x x Δ x ( A ) , A x A x , x x Δ x ( A ) + B x B x , x x Δ x ( B ) , B x B x , x x Δ x ( B ) + i B x B x , x x Δ x ( B ) , A x A x , x x Δ x ( A ) i A x A x , x x Δ x ( A ) , B x B x , x x Δ x ( B ) = 1 + 1 + i B x , A x i B x , x A x , x Δ x ( A ) Δ x ( B ) + i A x , B x + i A x , x B x , x Δ x ( A ) Δ x ( B ) = 2 + i [ A , B ] x , x Δ x ( A ) Δ x ( B ) .
Therefore
i [ A , B ] x , x Δ x ( A ) Δ x ( B ) 2 A Δ x ( A ) + i B Δ x ( B ) x , y y , A Δ x ( A ) + i B Δ x ( B ) x i [ A , B ] x , x 2 A Δ x ( A ) + i B Δ x ( B ) x , y y , A Δ x ( A ) + i B Δ x ( B ) x Δ x ( A ) Δ x ( B ) .
(iii)
Similar to (i).
(iv)
Similar to (ii).
(v)
Since A is commutative and d x ( A ) , d x ( B ) are invertible,
A d x ( A ) + B d x ( B ) x , y y , A d x ( A ) + B d x ( B ) x = A x A x , x x d x ( A ) + B x B x , x x d x ( B ) , y y , A x A x , x x d x ( A ) + B x B x , x x d x ( B ) y , y A x A x , x x d x ( A ) + B x B x , x x d x ( B ) , A x A x , x x d x ( A ) + B x B x , x x d x ( B ) A x A x , x x d x ( A ) , A x A x , x x d x ( A ) + B x B x , x x d x ( B ) , B x B x , x x d x ( B ) + B x B x , x x d x ( B ) , A x A x , x x d x ( A ) + A x A x , x x d x ( A ) , B x B x , x x d x ( B ) = 1 + 1 + B x , A x B x , x A x , x d x ( A ) d x ( B ) + A x , B x A x , x B x , x d x ( A ) d x ( B ) = 2 + 2 A x , x B x , x + { A , B } x , x d x ( A ) d x ( B ) .
Therefore
2 A x , x B x , x + { A , B } x , x d x ( A ) d x ( B ) 2 A d x ( A ) + B d x ( B ) x , y y , A d x ( A ) + B d x ( B ) x 2 A x , x B x , x { A , B } x , x 2 A d x ( A ) + B d x ( B ) x , y y , A d x ( A ) + B d x ( B ) x d x ( A ) d x ( B ) .
(vi)
Since A is commutative,
A Δ x ( A ) + B Δ x ( B ) x , y y , A Δ x ( A ) + B Δ x ( B ) x = A x A x , x x Δ x ( A ) + B x B x , x x Δ x ( B ) , y y , A x A x , x x Δ x ( A ) + B x B x , x x Δ x ( B ) y , y A x A x , x x Δ x ( A ) + B x B x , x x Δ x ( B ) , A x A x , x x Δ x ( A ) + B x B x , x x Δ x ( B ) A x A x , x x Δ x ( A ) , A x A x , x x Δ x ( A ) + B x B x , x x Δ x ( B ) , B x B x , x x Δ x ( B ) + B x B x , x x Δ x ( B ) , A x A x , x x Δ x ( A ) + A x A x , x x Δ x ( A ) , B x B x , x x Δ x ( B ) = 1 + 1 + B x , A x B x , x A x , x Δ x ( A ) Δ x ( B ) + A x , B x A x , x B x , x Δ x ( A ) Δ x ( B ) = 2 + 2 A x , x B x , x + { A , B } x , x Δ x ( A ) Δ x ( B ) .
Therefore
2 A x , x B x , x + { A , B } x , x Δ x ( A ) Δ x ( B ) 2 A Δ x ( A ) + B Δ x ( B ) x , y y , A Δ x ( A ) + B Δ x ( B ) x 2 A x , x B x , x { A , B } x , x 2 A Δ x ( A ) + B Δ x ( B ) x , y y , A Δ x ( A ) + B Δ x ( B ) x Δ x ( A ) Δ x ( B ) .
(vii)
Similar to (v).
(viii)
Similar to (vi).

References

  1. Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
  2. Heisenberg, W. The physical content of quantum kinematics and mechanics. In Quantum Theory and Measurement; Princeton University Press, Princeton, NJ, 1983; pp. 62–84.
  3. von Neumann, J. Mathematical foundations of quantum mechanics; Princeton University Press, Princeton, NJ, 2018; pp. xviii+304. [CrossRef]
  4. Debnath, L.; Mikusiński, P. Introduction to Hilbert spaces with applications; Academic Press, Inc., San Diego, CA, 1999; pp. xx+551.
  5. Schrödinger, E. About Heisenberg uncertainty relation. Bulgar. J. Phys. 1999, 26, 193–203. [Google Scholar]
  6. Bertlmann, R.A.; Friis, N. Modern Quantum Theory: From Quantum Mechanics to Entanglement and Quantum Information; Oxford University Press, 2023; pp. xv+1012.
  7. Maccone, L.; Pati, A.K. Stronger Uncertainty Relations for All Incompatible Observables. Phys. Rev. Lett. 2014, 113, 260401. [Google Scholar] [CrossRef] [PubMed]
  8. Krishna, K.M. Noncommutative Heisenberg-Robertson-Schrodinger Uncertainty Principles. preprints:202501.0062.v1, 2 January, 2 January. [CrossRef]
  9. Kaplansky, I. Modules over operator algebras. Amer. J. Math. 1953, 75, 839–858. [Google Scholar] [CrossRef]
  10. Paschke, W.L. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 1973, 182, 443–468. [Google Scholar] [CrossRef]
  11. Rieffel, M.A. Induced representations of C*-algebras. Advances in Math. 1974, 13, 176–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated