Submitted:
03 January 2025
Posted:
07 January 2025
You are already at the latest version
Abstract
Let $\mathcal{E}$ be a Hilbert C*-module over a unital C*-algebra $\mathcal{A}$. Let $A: \mathcal{D}(A) \subseteq \mathcal{E} \to \mathcal{E}$ and $B: \mathcal{D}(B)\subseteq \mathcal{E}\to \mathcal{E}$ be possibly unbounded self-adjoint morphisms. Then for all $x \in \mathcal{D}(AB)\cap \mathcal{D}(BA)$ with $\langle x, x \rangle =1$, we show that \begin{align*} (1) \quad\quad\quad d_x(A)^2+d_x(B)^2&\geq \mp \langle \{A,B\}x, x \rangle +\langle (A\pm B)x, y \rangle\langle y, (A\pm B)x \rangle\pm \{\langle Ax, x \rangle, \langle Bx, x \rangle\}, \\ &\quad \forall y \in \mathcal{E} \text{ satisfying } \|y\|\leq 1 \text{ and } \langle x,y \rangle =0 \end{align*} \begin{align*} (2) \quad \quad \quad d_x(A)^2+d_x(B)^2&\geq \mp i\langle [A,B]x, x \rangle +\langle (A\pm iB)x, y \rangle\langle y, (A\pm iB)x \rangle \mp i[\langle Ax, x \rangle, \langle Bx, x \rangle], \\ &\quad \forall y \in \mathcal{E} \text{ satisfying } \|y\|\leq 1 \text{ and } \langle x,y \rangle =0. \end{align*} where \begin{align*} & d_x(A)\coloneqq \sqrt{\langle Ax, Ax \rangle -\langle Ax, x \rangle^2},\quad [A,B] \coloneqq AB-BA, \\ & [\langle Ax, x \rangle,\langle Bx, x \rangle]\coloneqq \langle Ax, x \rangle\langle Bx, x \rangle -\langle Bx, x \rangle\langle Ax, x \rangle. \end{align*} We call Inequalities (1) and (2) as noncommutative Maccone-Pati uncertainty principles. They reduce to uncertainty principles derived by Maccone and Pati [\textit{Phys. Rev. Lett., 2014}] whenever $\mathcal{A}=\mathbb{C}$.
Keywords:
MSC: 46L08
1. Introduction
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vii)
- (viii)
- (ix)
- (x)
- (i)
- , . If satisfies , then .
- (ii)
- , , .
- (iii)
- , .
- (iv)
- is complete w.r.t. the norm , .
2. Noncommutative Maccone-Pati Uncertainty Principles
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vii)
- (viii)
- (ix)
- (x)
- (xi)
- (xii)
- (1)
-
Therefore
- (ii)
- Take norm on (i).
- (iii)
- Similar to (i).
- (iv)
- Take norm on (iii).
- (v)
- (vi)
- Take norm on (v).
- (vii)
-
Therefore
- (viii)
- Take norm on (vii).
- (ix)
- Similar to (vii).
- (x)
- Take norm on (ix).
- (xi)
- Add (vii) and (ix).
- (xii)
- Add (viii) and (ix), then take norm.
- (1)
- If is commutative, then
- (2)
- If is commutative, then
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (i)
-
Therefore
- (ii)
- Similar to (i).
- (iii)
- (iv)
-
Therefore
- (v)
- Similar to (iv).
- (i)
- If , are invertible, then
- (ii)
- (iii)
- If , are invertible, then
- (iv)
- (v)
- If , are invertible, then
- (vi)
- (vii)
- If , are invertible, then
- (viii)
- (i)
-
Since is commutative and , are invertible,Therefore
- (ii)
-
Since is commutative,Therefore
- (iii)
- Similar to (i).
- (iv)
- Similar to (ii).
- (v)
-
Since is commutative and , are invertible,Therefore
- (vi)
-
Since is commutative,Therefore
- (vii)
- Similar to (v).
- (viii)
- Similar to (vi).
References
- Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Heisenberg, W. The physical content of quantum kinematics and mechanics. In Quantum Theory and Measurement; Princeton University Press, Princeton, NJ, 1983; pp. 62–84.
- von Neumann, J. Mathematical foundations of quantum mechanics; Princeton University Press, Princeton, NJ, 2018; pp. xviii+304. [CrossRef]
- Debnath, L.; Mikusiński, P. Introduction to Hilbert spaces with applications; Academic Press, Inc., San Diego, CA, 1999; pp. xx+551.
- Schrödinger, E. About Heisenberg uncertainty relation. Bulgar. J. Phys. 1999, 26, 193–203. [Google Scholar]
- Bertlmann, R.A.; Friis, N. Modern Quantum Theory: From Quantum Mechanics to Entanglement and Quantum Information; Oxford University Press, 2023; pp. xv+1012.
- Maccone, L.; Pati, A.K. Stronger Uncertainty Relations for All Incompatible Observables. Phys. Rev. Lett. 2014, 113, 260401. [Google Scholar] [CrossRef] [PubMed]
- Krishna, K.M. Noncommutative Heisenberg-Robertson-Schrodinger Uncertainty Principles. preprints:202501.0062.v1, 2 January, 2 January. [CrossRef]
- Kaplansky, I. Modules over operator algebras. Amer. J. Math. 1953, 75, 839–858. [Google Scholar] [CrossRef]
- Paschke, W.L. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 1973, 182, 443–468. [Google Scholar] [CrossRef]
- Rieffel, M.A. Induced representations of C*-algebras. Advances in Math. 1974, 13, 176–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).