Preprint
Article

This version is not peer-reviewed.

K-g-Fusion Frames on Cartesian Products of Two Hilbert C-Modules

A peer-reviewed article of this preprint also exists.

Submitted:

04 October 2025

Posted:

06 October 2025

You are already at the latest version

Abstract
In this paper, we introduce and investigate the concept of K-g-fusion frames in the Cartesian product of two Hilbert C ∗ -modules over the same unital C ∗ -algebra. Our main result establishes that the Cartesian product of two K-gfusion frames remains a K-g-fusion frame for the direct-sum module. we give explicit formulae for the associated synthesis, analysis and frame operators and prove natural relations (direct-sum decomposition of the frame operator). Furthermore, we prove a perturbation theorem showing that small perturbations of the component families, measured in the operator or norm sense, still yield a K-g-fusion frame for the product module, with explicit new frame bounds obtained.
Keywords: 
;  ;  ;  ;  

1. Introduction

The concept of frames, first introduced by Duffin and Schaeffer [3], provides stable yet redundant representations of vectors in Hilbert spaces. Since its inception, frame theory has become a fundamental tool with wide-ranging applications in harmonic analysis, wavelet theory, signal processing, sampling theory, and operator theory see [1].
Several extensions of frame theory have been proposed to address increasingly sophisticated settings, including g-frames [11], and fusion frames [2], among others [6,9,10]. Each of these generalizations enhances the flexibility of frame representations while preserving their fundamental stability properties. In this context, the notion of K-g-fusion frames, which unifies the features of K-frames, g-frames, and fusion frames, offers a powerful framework for studying operator-related decompositions in Hilbert spaces and beyond.
A natural direction of research has been the extension of frame theory to Hilbert C * -modules, initiated by Frank and Larson [4]. In contrast to Hilbert spaces, Hilbert C * -modules present significant challenges, arising from the absence of projections onto arbitrary closed submodules and the presence of a C * -algebra-valued inner product. Despite these difficulties, frame concepts have been successfully adapted, leading to a variety of results in this setting, see [12,13,14].
The aim of this paper is to advance the theory of K-g-fusion frames on Cartesian products of Hilbert C * -modules. Such products naturally emerge in operator algebras, module decompositions, and block-matrix methods, and hence provide a rich framework for our study.
The paper is organized as follows. Section 2 reviews the fundamental notions of Hilbert C * -modules and adjointable operators, and introduces the concept of K-g-fusion frames together with their operator-theoretic features. Section 3 contains the main result concerning Cartesian products of K-g-fusion frames. In Section 4, we establish perturbation results, while the final section is devoted to concluding remarks and illustrative examples.

2. Preliminaries

We briefly recall the basic definitions and facts about Hilbert C * -modules needed in the sequel. Standard references are [5,7].
Definition 1.  
Let A be a unital C * -algebra. A left Hilbert C * -module over A is a left A -module H equipped with a map
· , · : H × H A
called the A -valued inner product, satisfying:
  • a x + y , z = a x , z + y , z for all a A , x , y , z H ;
  • x , y = y , x * for all x , y H ;
  • x , x 0 in A , and x , x = 0 x = 0 .
The associated norm is defined by x : = x , x 1 / 2 , and completeness with respect to this norm is assumed.
For Hilbert A -modules H , K , we denote by End A * ( H , K ) the set of adjointable operators from H into K , i.e., those operators T : H K for which there exists an adjoin T * : K H satisfying
T x , y = x , T * y for all x H , y K .
If K = H , then we simply write End A * ( H ) instead of End A * ( H , H ) . An operator T End A * ( H ) is called positive, written T 0 , if
T x , x 0 for all x H .
The partial order on self-adjoint operators is determined by this cone.
For a closed submodule W H , an orthogonal projection  P W End A * ( H ) satisfies
P W 2 = P W = P W * and Ran ( P W ) = W .
Unlike the Hilbert space case, not every closed submodule is complemented in H .
In this work we restrict attention to orthogonally complemented submodules.
In what follows, all sums indexed by a countable set I are assumed to converge in norm in A whenever convergence is asserted.
These preliminaries allow us to introduce K-g-fusion frames in Hilbert C * -modules in the next.
Given two Hilbert A -modules H 1 and H 2 , their external direct sum (or product) is defined as
H 1 H 2 : = { ( x 1 , x 2 ) : x 1 H 1 , x 2 H 2 } ,
with the natural left A -module action
a · ( x 1 , x 2 ) : = ( a x 1 , a x 2 ) , a A ,
and A -valued inner product
( x 1 , x 2 ) , ( y 1 , y 2 ) : = x 1 , y 1 H 1 + x 2 , y 2 H 2 .
With this structure, H 1 H 2 is a Hilbert A -module.
Moreover, if V H 1 and W H 2 are orthogonally complemented submodules, then their direct sum V W is an orthogonally complemented submodule of H 1 H 2 , with projection operator
P V W = P V P W .
This observation will be essential in constructing product families of frames and proving stability under perturbations.
Definition 2.  
Let H and K be countably generated Hilbert A -modules. Suppose that:
  • { v i } i I is a family of positive invertible elements from the center of A ;
  • { W i } i I is a family of orthogonally complemented closed submodules of H ;
  • { H i } i I is a family of closed submodules of K ;
  • for each i I , Λ i End A * ( H , H i ) ;
  • K End A * ( H ) .
We say that Λ = W i , Λ i , v i i I is aK-g-fusion framefor H with respect to { H i } i I if there exist scalars 0 < A B < such that
A K * f , K * f i I v i 2 Λ i P W i f , Λ i P W i f B f , f , f H .
The constants A and B are called thelowerandupper boundsof the K-g-fusion frame. In addition:
  • If the inequalities hold with K = I H , then Λ is ag-fusion frame, i.e.
    A f , f i I v i 2 Λ i P W i f , Λ i P W i f B f , f , f H .
  • If, in addition, K = I H and Λ i = P W i for all i I , then Λ reduces to afusion framefor H .
Now, for a K-g-fusion frame Λ = ( W i , Λ i , v i ) i I of H with respect to { H i } i I ,
  • The analysis operator
    T Λ * : H 2 { H i } i I ,
    is defined by
    T Λ * f = v i Λ i P W i f i I , f H .
  • The synthesis operator
    T Λ : 2 { H i } i I H ,
    is the adjoint of T Λ * and is given by
    T Λ ( f i ) i I = i I v i P W i Λ i * f i , ( f i ) i I 2 { H i } i I .
  • The frame operator
    S Λ : H H
    is defined by
    S Λ f = T Λ T Λ * f = i I v i 2 P W i Λ i * Λ i P W i f , f H .

3. Product K-g-Fusion Frames and Main Theorem

Let A be a unital C * -algebra and let H 1 , H 2 be Hilbert A -modules. For each i I let W i H 1 and V i H 2 be orthogonally complemented closed submodules with projections P W i End A * ( H 1 ) and P V i End A * ( H 2 ) . Let H 1 , i , H 2 , i be Hilbert A -modules and let Λ i End A * ( W i , H 1 , i ) , Γ i End A * ( V i , H 2 , i ) be adjointable maps. Assume that ( W i , Λ i , v i ) i I is a K 1 -g-fusion frame for H 1 with bounds A 1 , B 1 > 0 and that ( V i , Γ i , v i ) i I is a K 2 -g-fusion frame for H 2 with bounds A 2 , B 2 > 0 , where K i End A * ( H i ) ( i = 1 , 2 ). Define, for each i I ,
Θ i : H 1 H 2 H 1 , i H 2 , i , Θ i ( x , y ) = Λ i P W i x , Γ i P V i y .
Then we have the following theorem:
Theorem 1.  
Assume that ( W i , Λ i , v i ) i I is a K 1 -g-fusion frame for H 1 with bounds A 1 , B 1 > 0 and that ( V i , Γ i , v i ) i I is a K 2 -g-fusion frame for H 2 with bounds A 2 , B 2 > 0 , then the family { ( W i V i , Θ i , v i ) } i I is a ( K 1 K 2 ) -g-fusion frame for H 1 H 2 with bounds A = min { A 1 , A 2 } and B = max { B 1 , B 2 } . Furthermore, if T ( 1 ) and T ( 2 ) are respectively the synthesis operators of ( W i , Λ i , v i ) i I and ( V i , Γ i , v i ) i I and S ( 1 ) and S ( 2 ) their frame operators, then the synthesis operator T of the product satisfies T = T ( 1 ) T ( 2 ) , and the frame operator satisfies S = S ( 1 ) S ( 2 ) .
Proof. 
Since ( W i , Λ i , v i ) i ì is a K 1 -g-fusion frame for H 1 , it is in particular a Bessel family. Thus, there exists a scalar B 1 > 0 such that for all x H 1
i I v i 2 Λ i P W i x , Λ i P W i x B 1 x , x ,
where the series converges in norm in A . Similarly, for ( V i , Γ i , v i ) there is B 2 > 0 with analogous norm-convergent series
i I v i 2 Γ i P V i y , Γ i P V i y B 2 y , y ,
for all y H 2 . Therefore for any ( x , y ) H 1 H 2 ,
i I v i 2 Θ i ( x , y ) , Θ i ( x , y ) = i I v i 2 Λ i P W i x , Λ i P W i x + Γ i P V i y , Γ i P V i y = i I v i 2 Λ i P W i x , Λ i P W i x + i I v i 2 Γ i P V i y , Γ i P V i y ,
each summand being norm convergent in A ; hence the whole sum converges in norm. Moreover
i I v i 2 Θ i ( x , y ) , Θ i ( x , y ) B 1 x , x + B 2 y , y max { B 1 , B 2 } ( x , y ) , ( x , y )
shows the desired uniform Bessel bound on the product.
By the K 1 -g-fusion inequality on H 1 we have the A -valued inequality
A 1 K 1 * x , K 1 * x i I v i 2 Λ i P W i x , Λ i P W i x B 1 x , x ,
and similarly for H 2 :
A 2 K 2 * y , K 2 * y i I v i 2 Γ i P V i y , Γ i P V i y B 2 y , y .
We can see that these two A -valued inequalities yields
A 1 K 1 * x , K 1 * x + A 2 K 2 * y , K 2 * y i I v i 2 Θ i ( x , y ) , Θ i ( x , y ) B 1 x , x + B 2 y , y .
Since A 1 , A 2 are positive scalars,
A 1 K 1 * x , K 1 * x + A 2 K 2 * y , K 2 * y min { A 1 , A 2 } K 1 * x , K 1 * x + K 2 * y , K 2 * y ,
and likewise
B 1 x , x + B 2 y , y max { B 1 , B 2 } x , x + y , y .
Observing that ( K 1 K 2 ) * ( x , y ) = ( K 1 * x , K 2 * y ) and that ( x , y ) , ( x , y ) = x , x + y , y , we obtain the claimed inequalities with A = min { A 1 , A 2 } and B = max { B 1 , B 2 } , that is
A ( K 1 K 2 ) * ( x , y ) , ( K 1 K 2 ) * ( x , y ) i I v i 2 Θ i ( x , y ) , Θ i ( x , y ) B ( x , y ) , ( x , y ) .
Now, compute the adjoint Θ i * : H 1 , i H 2 , i H 1 H 2 . For ( u , v ) H 1 , i H 2 , i and ( x , y ) H 1 H 2 one has
Θ i ( x , y ) , ( u , v ) = Λ i P W i x , u H 1 , i + Γ i P V i y , v H 2 , i = ( x , y ) , ( P W i Λ i * u , P V i Γ i * v ) ,
hence
Θ i * ( u , v ) = P W i Λ i * u , P V i Γ i * v .
Therefore the operator Θ i * Θ i acts on ( x , y ) by
Θ i * Θ i ( x , y ) = P W i Λ i * Λ i P W i x , P V i Γ i * Γ i P V i y .
Multiplying by the scalar weight v i 2 and summing over i gives the frame operator on the product:
S ( x , y ) = i I v i 2 Θ i * Θ i ( x , y ) = i I v i 2 P W i Λ i * Λ i P W i x , i I v i 2 P V i Γ i * Γ i P V i y .
The right-hand side is precisely ( S ( 1 ) x , S ( 2 ) y ) where
S ( 1 ) = i v i 2 P W i Λ i * Λ i P W i a n d S ( 2 ) = i v i 2 P V i Γ i * Γ i P V i
are the frame operators of the component families. Thus S = S ( 1 ) S ( 2 ) . In particular S is positive and the operator inequalities A K 1 K 1 * K 2 K 2 * S B I H 1 H 2 hold in End A * ( H 1 H 2 ) . This completes the proof. □
Example 1.  
Let A = C 2 with coordinate-wise operations and the usual involution. Consider the left A -modules H 1 = H 2 = A 6 . Any element of H 1 or H 2 , can be written as x = ( x 1 , , x 6 ) , where x m = ( a m , b m ) A = C 2 , for m = 1 , . . . , 6 . The A -valued inner product is given by
x , y = m = 1 6 a m c m ¯ , m = 1 6 b m d m ¯ ,
for y = ( y 1 , , y 6 ) with y m = ( c m , d m ) . In particular,
x , x = m = 1 6 | a m | 2 , m = 1 6 | b m | 2 .
Define two diagonal adjointable operators K 1 and K 2 on H 1 and H 2 respectively by:
K 1 ( x 1 , , x 6 ) = ( x 1 , 2 x 2 , x 3 , 2 x 4 , x 5 , 2 x 6 ) ,
K 2 ( y 1 , , y 6 ) = ( y 1 , 3 y 2 , y 3 , 3 y 4 , y 5 , 3 y 6 ) .
Both are self-adjoint, so K i * = K i End A ( H i ) for i = 1 , 2 .
Denote e 1 = ( 1 , 0 , 0 , 0 , 0 , 0 ) , ... , e 6 = ( 0 , 0 , 0 , 0 , 0 , 1 ) the canonical elements of H j , j = 1 , 2 . For the Hilbert C * -module H 1 define
W 1 = span A { e 1 , e 2 } , W 2 = span A { e 3 , e 4 } , W 3 = span A { e 5 , e 6 } ,
and let
Λ i : W i A 2 , Λ i ( x 2 i 1 , x 2 i ) = ( x 2 i 1 , x 2 i ) .
For H 2 choose the submodules:
V 1 = span A { e 1 , e 3 } , V 2 = span A { e 2 , e 5 } , V 3 = span A { e 4 , e 6 } ,
and define
Γ i : V i A 2 , Γ i ( x j , x k ) = ( x j , x k ) .
All weights v i , i = 1 , 2 , 3 are choosing equal to 1.
Now observe that for all x H 1 and all y H 2 we have
1 4 K 1 * x , K 1 * x i = 1 3 Λ i P W i x , Λ i P W i x = x , x , 1 9 K 2 * y , K 2 * y i = 1 3 Γ i P V i y , Γ i P V i y = y , y .
So ( V i , Γ i ) is a K 2 -g-fusion frame with bounds A 2 = 1 9 , B 2 = 1 .
The product family
{ ( W i V i , Θ i , 1 ) } i = 1 3 , Θ i ( x , y ) = ( Λ i P W i x , Γ i P V i y ) ,
is a ( K 1 K 2 ) -g-fusion frame for H 1 H 2 with bounds
A = min { A 1 , A 2 } = 1 9 , B = max { B 1 , B 2 } = 1 .
That is, for all ( x , y ) H 1 H 2 ,
1 9 ( K 1 K 2 ) * ( x , y ) , ( K 1 K 2 ) * ( x , y ) i = 1 3 Θ i ( x , y ) , Θ i ( x , y ) ( x , y ) , ( x , y ) .

4. Perturbation Theorem

Let K i End A * ( H i ) ( i = 1 , 2 ), and assume that { ( W i , Λ i , v i ) } i I is a K 1 -g-fusion frame for H 1 with frame bounds 0 < A 1 B 1 < , and that { ( V i , Γ i , v i ) } i I is a K 2 -g-fusion frame for H 2 with frame bounds 0 < A 2 B 2 < . Denote their product frame by F = { ( W i V i , Θ i , v i ) } i I on H = H 1 H 2 , by taking the common weights v i ( i I ). The following theorem gives a perturbation result saying that if each component family is a K-g-fusion frame and each component perturbation is small, then the perturbed product family is again a K-g-fusion frame on the direct sum H 1 H 2 .
Theorem 2.  
Let F = { ( W i , V i , Λ i , Γ i , v i ) } i I be a perturbed family with the same weights v i , where W i H 1 and V i H 2 are orthogonally complemented submodules, and Λ i , Γ i are adjointable operators. Assume there exist scalars r 1 , r 2 > 0 such that, for all x 1 H 1 and x 2 H 2 ,
i I v i 2 ( Λ i P W i Λ i P W i ) x 1 , ( Λ i P W i Λ i P W i ) x 1 r 1 K 1 * x 1 , K 1 * x 1 , i I v i 2 ( Γ i P V i Γ i P V i ) x 2 , ( Γ i P V i Γ i P V i ) x 2 r 2 K 2 * x 2 , K 2 * x 2 .
If A 1 > r 1 and A 2 > r 2 , then the perturbed product frame F is a ( K 1 K 2 ) -g-fusion frame for H with frame bounds A : = min { ( A 1 r 1 ) 2 , ( A 2 r 2 ) 2 } and B : = max { 2 B 1 + 2 r 1 K 1 * 2 , 2 B 2 + 2 r 2 K 2 * 2 } .
Proof. 
For x 1 H 1 note that Λ i P W i x 1 = Λ i P W i x 1 + Λ i P W i Λ i P W i x 1 . For x 2 H 2 set similarly Γ i P V i x 2 = Γ i P V i x 2 + Γ i P V i Γ i P V i x 2 .
First, from the two g-fusion frame inequalities (1) and Theorem 1 we obtain immediately, with A = min { A 1 , A 2 } and B = max { B 1 , B 2 } , that the product family F is a ( K 1 K 2 ) -g-fusion frame with bounds A , B . Thus satisfies
A ( K 1 K 2 ) * ( x 1 , x 2 ) , ( K 1 K 2 ) * ( x 1 , x 2 ) i I v i 2 Θ i ( x 1 , x 2 ) , Θ i ( x 1 , x 2 ) = i I v i 2 Λ i P W i x 1 , Λ i P W i x 1 + Γ i P V i x 2 , Γ i P V i x 2 B ( x 1 , x 2 ) , ( x 1 , x 2 ) .
Now, fix x 1 H 1 . Consider the perturbed left-component sum
S 1 ( x 1 ) : = i I v i 2 Λ i P W i x 1 , Λ i P W i x 1 = i I v i 2 Λ i P W i x 1 + Λ i P W i Λ i P W i x 1 , Λ i P W i x 1 + Λ i P W i Λ i P W i x 1 .
For the sake of readability, we denote X and Y the elements of the Hilbert C * -module 2 ( I , A ) defined by
X : = ( v i Λ i P W i x 1 ) i I , Y : = ( v i Λ i P W i Λ i P W i x 1 ) i I .
Thus
S 1 ( x 1 ) = X , X 2 ( I , A ) + Y , Y 2 ( I , A ) + X , Y 2 ( I , A ) + X , Y 2 ( I , A ) * .
This follows from the computations:
X , Y 2 ( I , A ) + X , Y 2 ( I , A ) * = i I v i 2 Λ i P W i x 1 , Λ i P W i Λ i P W i x 1 + Λ i P W i Λ i P W i x 1 , Λ i P W i x 1
X , X 2 ( I , A ) = i I v i 2 Λ i P W i x 1 , Λ i P W i x 1
Y , Y 2 ( I , A ) = i I v i 2 Λ i P W i Λ i P W i x 1 , Λ i P W i Λ i P W i x 1 ,
Now, since X + Y , X + Y 2 ( I , A ) and X Y , X Y 2 ( I , A ) are non negative in A , we have
r 1 A 1 X , X 2 ( I , A ) A 1 r 1 Y , Y 2 ( I , A ) X , Y 2 ( I , A ) + X , Y 2 ( I , A ) * X , X 2 ( I , A ) + Y , Y 2 ( I , A )
Since S 1 ( x 1 ) = X + Y , X + Y 2 ( I , A ) we deduce from (3) and (2) that
S 1 ( x 1 ) 2 X , X 2 ( I , A ) + 2 Y , Y 2 ( I , A ) 2 B 1 x 1 , x 1 + 2 r 1 K 1 * 2 x 1 , x 1 = ( 2 B 1 + 2 r 1 K 1 * 2 ) x 1 , x 1
For the other inequality, using (1), (2), (3) and the hypothesis r 1 A 1 < 1 , we obtain that
S 1 ( x 1 ) X , X 2 ( I , A ) + Y , Y 2 ( I , A ) r 1 A 1 X , X 2 ( I , A ) A 1 r 1 Y , Y 2 ( I , A ) = ( 1 r 1 A 1 ) X , X 2 ( I , A ) ( A 1 r 1 1 ) ) Y , Y 2 ( I , A ) ( A 1 ( 1 r 1 A 1 ) K 1 * x 1 , K 1 * x 1 r 1 ( A 1 r 1 1 ) ) K 1 * x 1 , K 1 * x 1 ( A 1 ( 1 r 1 A 1 ) + r 1 ( 1 A 1 r 1 ) ) K 1 * x 1 , K 1 * x 1 = ( A 1 r 1 ) 2 K 1 * x 1 , K 1 * x 1
The same argument applied to the second component yields
( A 2 r 2 ) 2 K 2 * x 2 , K 2 * x 2 S 2 ( x 2 ) ( 2 B 2 + 2 r 2 K 2 * 2 ) x 2 , x 2 .
Finally, For ( x 1 , x 2 ) H 1 H 2 we have
S ( x 1 , x 2 ) : = i v i 2 Θ i ( x 1 , x 2 ) , Θ i ( x 1 , x 2 ) = S 1 ( x 1 ) + S 2 ( x 2 ) .
Thus combining the componentwise upper bounds yields
S ( x 1 , x 2 ) ( 2 B 1 + 2 r 1 K 1 * 2 ) x 1 , x 1 + ( 2 B 2 + 2 r 2 K 2 * 2 ) x 2 , x 2 B ( x 1 , x 2 ) , ( x 1 , x 2 ) ,
with B = max { ( 2 B 1 + 2 r 1 K 1 * 2 ) , ( 2 B 2 + 2 r 2 K 2 * 2 ) } .
Similarly combining the lower bounds we get
S ( x 1 , x 2 ) ( A 1 r 1 ) 2 K 1 * x 1 , K 1 * x 1 + ( A 2 r 2 ) 2 K 2 * x 2 , K 2 * x 2 A ( K 1 K 2 ) * ( x 1 , x 2 ) , ( K 1 K 2 ) * ( x 1 , x 2 ) ,
with A = min { ( A 1 r 1 ) 2 , ( A 2 r 2 ) 2 } . This yields the claimed two-sided A -order inequalities and completes the proof that F is a ( K 1 K 2 ) -g-fusion frame with bounds A , B . □

Acknowledgments

The authors are thankful to the area editor and referees for giving valuable comments and suggestions.

References

  1. P. G. Casazza, The art of frame theory. Taiwan. J. Math. 2000, 4, 129–201. [Google Scholar] [CrossRef]
  2. P. G. Casazza, G. P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing. Appl. Comput. Harmon. Anal. 2008, 25, 114–132. [Google Scholar] [CrossRef]
  3. R. J. Duffin, A. C. Schaeffer, A class of nonharmonic fourier series. Trans. Am. Math. Soc. 1952, 72, 341–366. [Google Scholar] [CrossRef]
  4. M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras. J. Oper. Theory 2002, 48, 273–314. [Google Scholar]
  5. I. Kaplansky, Modules Over Operator Algebras. Am. J. Math. 1953, 75, 839–858. [Google Scholar] [CrossRef]
  6. A. Karara, M. Rossafi, A. Touri, K-biframes in Hilbert spaces. J Anal 2024. [Google Scholar] [CrossRef]
  7. V. M. Manuilov, E. V. V. M. Manuilov, E. V. Troitsky, Hilbert C*-modules, Translations of Mathematical Monographs, Vol. 226, AMS, Providence, Rhode Island, 2005.
  8. F. D. Nhari, R. Echarghaoui, M. Rossafi, K-g-Fusion Frames in Hilbert C*-Modules. Int. J. Anal. Appl. 2021, 19, 836–857. [Google Scholar] [CrossRef]
  9. M. Rossafi, FD. Nhari, C. Park, S. Kabbaj, Continuous g-frames with C*-Valued Bounds and Their Properties. Complex Anal. Oper. Theory 2022, 16, 44. [Google Scholar] [CrossRef]
  10. M. Rossafi, F. D. Nhari, Controlled K-g-Fusion Frames in Hilbert C*-Modules. Int. J. Anal. Appl. 2022, 20, 1. [CrossRef]
  11. W. Sun, G-frames and g-Riesz bases. J. Math. Anal. Appl. 2006, 322, 437–452. [Google Scholar] [CrossRef]
  12. S. Touaiher, R. El Jazzar and M. Rossafi, Properties and characterizations of controlled Kg-fusion frames within Hilbert C*-modules, Int. J. Anal. Appl. 2025, 23, 111.
  13. A. Touri, H. Labrigui, M. Rossafi, S. Kabbaj, Perturbation and Stability of Continuous Operator Frames in Hilbert C*-Modules. J. Math. 2021, 2021, 5576534. [Google Scholar] [CrossRef]
  14. A. Touri, H. Labrigui, M. Rossafi, New Properties of Dual Continuous K-g-Frames in Hilbert Spaces. Int. J. Math. Math. Sci. 2021, 2021, 6671600. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated