Submitted:
01 January 2025
Posted:
02 January 2025
You are already at the latest version
Abstract
Let $\mathcal{E}$ be a Hilbert C*-module over a unital C*-algebra $\mathcal{A}$. Let $A: \mathcal{D}(A) \subseteq \mathcal{E} \to \mathcal{E}$ and $B: \mathcal{D}(B)\subseteq \mathcal{E}\to \mathcal{E}$ be possibly unbounded self-adjoint morphisms. Then for all $x \in \mathcal{D}(AB)\cap \mathcal{D}(BA)$ with $\langle x, x \rangle =1$, we show that \begin{align*} (1) \quad \Delta _x(B)^2d_x(A)^2+\Delta _x(A)^2d_x(B)^2\geq \frac{(\langle \{A,B\}x, x \rangle -\{\langle Ax, x \rangle,\langle Bx, x \rangle\})^2-(\langle [A,B]x, x \rangle +[\langle Ax, x \rangle,\langle Bx, x \rangle])^2}{2} \end{align*} and \begin{align*} (2) \quad \Delta _x(A)\Delta _x(B)\geq \frac{\sqrt{\|(\langle \{A,B\}x, x \rangle -\{\langle Ax, x \rangle,\langle Bx, x \rangle\})^2-(\langle [A,B]x, x \rangle +[\langle Ax, x \rangle,\langle Bx, x \rangle])^2\|}}{2}, \end{align*} where \begin{align*} &\Delta _x(A)\coloneqq \|Ax-\langle Ax, x \rangle x \|, \quad d_x(A)\coloneqq \sqrt{\langle Ax, Ax \rangle -\langle Ax, x \rangle^2},\\ &[A,B] \coloneqq AB-BA, \quad \{A,B\}\coloneqq AB+BA, \\ & \{\langle Ax, x \rangle,\langle Bx, x \rangle\}\coloneqq \langle Ax, x \rangle\langle Bx, x \rangle +\langle Bx, x \rangle\langle Ax, x \rangle, \\ & [\langle Ax, x \rangle,\langle Bx, x \rangle]\coloneqq \langle Ax, x \rangle\langle Bx, x \rangle -\langle Bx, x \rangle\langle Ax, x \rangle. \end{align*} We call Inequalities (1) and (2) as noncommutative Heisenberg-Robertson-Schrodinger uncertainty principles. They reduce to the Heisenberg-Robertson-Schrodinger uncertainty principle (derived by Schrodinger in 1930) whenever $\mathcal{A}=\mathbb{C}$.
Keywords:
MSC: 46L08
1. Introduction
- (i)
- , . If satisfies , then .
- (ii)
- , .
- (iii)
- , , .
- (iv)
- , .
- (v)
- is complete w.r.t. the norm , .
2. Noncommutative Heisenberg-Robertson-Schrodinger Uncertainty Principles
- (i)
- (ii)
- (iii)
- (iv)
- (v)
- (vi)
- (vii)
- (viii)
- If is commutative, then
- (ix)
- If is commutative, then
- (i)
-
Using noncommutative Cauchy-Schwarz inequality,We now note thatNow we see that
- (ii)
- Follows from (i) by noting that square root respects the order of positive elements.
- (iii)
- Similar to (i).
- (iv)
- Follows from (iii).
- (v)
- We get by taking norm on (i) (norm respects the order of positive elements).
- (vi)
-
DefineThenandNow adding (i) and (iii) gives
- (vii)
- We get by taking norm on (vi).
- (viii)
- Follows from (vi). Note that
- (ix)
- Follows from (vii).
- (i)
- (ii)
- (iii)
- If is commutative, then
- (iv)
- If is commutative, then
References
- Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Heisenberg, W. The physical content of quantum kinematics and mechanics. In Quantum Theory and Measurement; Princeton University Press, Princeton, NJ, 1983; pp. 62–84.
- von Neumann, J. Mathematical foundations of quantum mechanics; Princeton University Press, Princeton, NJ, 2018; pp. xviii+304. [CrossRef]
- Debnath, L.; Mikusiński, P. Introduction to Hilbert spaces with applications; Academic Press, Inc., San Diego, CA, 1999; pp. xx+551.
- Schrödinger, E. About Heisenberg uncertainty relation. Bulgar. J. Phys. 1999, 26, 193–203. [Google Scholar]
- Bertlmann, R.A.; Friis, N. Modern Quantum Theory: From Quantum Mechanics to Entanglement and Quantum Information; Oxford University Press, 2023; pp. xv+1012.
- Kaplansky, I. Modules over operator algebras. Amer. J. Math. 1953, 75, 839–858. [Google Scholar] [CrossRef]
- Paschke, W.L. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 1973, 182, 443–468. [Google Scholar] [CrossRef]
- Rieffel, M.A. Induced representations of C*-algebras. Advances in Math. 1974, 13, 176–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).