Preprint
Article

This version is not peer-reviewed.

Noncommutative Heisenberg-Robertson-Schrodinger Uncertainty Principles

Submitted:

01 January 2025

Posted:

02 January 2025

You are already at the latest version

Abstract

Let $\mathcal{E}$ be a Hilbert C*-module over a unital C*-algebra $\mathcal{A}$. Let $A: \mathcal{D}(A) \subseteq \mathcal{E} \to \mathcal{E}$ and $B: \mathcal{D}(B)\subseteq \mathcal{E}\to \mathcal{E}$ be possibly unbounded self-adjoint morphisms. Then for all $x \in \mathcal{D}(AB)\cap \mathcal{D}(BA)$ with $\langle x, x \rangle =1$, we show that \begin{align*} (1) \quad \Delta _x(B)^2d_x(A)^2+\Delta _x(A)^2d_x(B)^2\geq \frac{(\langle \{A,B\}x, x \rangle -\{\langle Ax, x \rangle,\langle Bx, x \rangle\})^2-(\langle [A,B]x, x \rangle +[\langle Ax, x \rangle,\langle Bx, x \rangle])^2}{2} \end{align*} and \begin{align*} (2) \quad \Delta _x(A)\Delta _x(B)\geq \frac{\sqrt{\|(\langle \{A,B\}x, x \rangle -\{\langle Ax, x \rangle,\langle Bx, x \rangle\})^2-(\langle [A,B]x, x \rangle +[\langle Ax, x \rangle,\langle Bx, x \rangle])^2\|}}{2}, \end{align*} where \begin{align*} &\Delta _x(A)\coloneqq \|Ax-\langle Ax, x \rangle x \|, \quad d_x(A)\coloneqq \sqrt{\langle Ax, Ax \rangle -\langle Ax, x \rangle^2},\\ &[A,B] \coloneqq AB-BA, \quad \{A,B\}\coloneqq AB+BA, \\ & \{\langle Ax, x \rangle,\langle Bx, x \rangle\}\coloneqq \langle Ax, x \rangle\langle Bx, x \rangle +\langle Bx, x \rangle\langle Ax, x \rangle, \\ & [\langle Ax, x \rangle,\langle Bx, x \rangle]\coloneqq \langle Ax, x \rangle\langle Bx, x \rangle -\langle Bx, x \rangle\langle Ax, x \rangle. \end{align*} We call Inequalities (1) and (2) as noncommutative Heisenberg-Robertson-Schrodinger uncertainty principles. They reduce to the Heisenberg-Robertson-Schrodinger uncertainty principle (derived by Schrodinger in 1930) whenever $\mathcal{A}=\mathbb{C}$.

Keywords: 
;  

1. Introduction

Let H be a complex Hilbert space and A be a possibly unbounded self-adjoint operator defined on the domain D ( A ) H . For h D ( A ) with h = 1 , define the uncertainty of A at the point h as
Δ h ( A ) A h A h , h h = A h 2 A h , h 2 .
In 1929, Robertson [1] derived the following mathematical form of the uncertainty principle (also known as uncertainty relation) by Heisenberg in 1927 [2]. Recall that for two linear operators A : D ( A ) H H and B : D ( B ) H H , we define the commutator [ A , B ] A B B A and the anti-commutator { A , B } A B + B A .
Theorem 1. 
[1,2,3,4] (Heisenberg-Robertson Uncertainty Principle) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint operators. Then for all h D ( A B ) D ( B A ) with h = 1 , we have
1 2 Δ h ( A ) 2 + Δ h ( B ) 2 1 4 Δ h ( A ) + Δ h ( B ) 2 Δ h ( A ) Δ h ( B ) 1 2 | [ A , B ] h , h | .
In 1930, Schrodinger improved Inequality (1) [5].
Theorem 2. 
[5,6] (Heisenberg-Robertson-Schrodinger Uncertainty Principle) Let A : D ( A ) H H and B : D ( B ) H H be self-adjoint operators. Then for all h D ( A B ) D ( B A ) with h = 1 , we have
Δ h ( A ) Δ h ( B ) | A h , B h A h , h B h , h | = | { A , B } h , h 2 A h , h B h , h | 2 + | [ A , B ] h , h | 2 2 = ( { A , B } h , h 2 A h , h B h , h ) 2 [ A , B ] h , h 2 2 .
We are fundamentally concerned with the question: What is the noncommutative analogues of Theorem 2? We then naturally look to the notion of Hilbert C*-modules which are first introduced by Kaplansky [7] for modules over commutative C*-algebras and later developed for modules over arbitrary C*-algebras by Paschke [8] and Rieffel [9].
Definition 1. 
[7,8,9] Let A be a unital C*-algebra. A left module E over A is said to be a (left) Hilbert C*-module if there exists a map · , · : E × E A such that the following hold.
(i) 
x , x 0 , x E . If x E satisfies x , x = 0 , then x = 0 .
(ii) 
x + y , z = x , z + y , z , x , y , z E .
(iii) 
a x , y = a x , y , x , y E , a A .
(iv) 
x , y = y , x * , x , y E .
(v) 
E is complete w.r.t. the norm x x , x , x E .
We are going to use the following noncommutative Cauchy-Schwarz inequality.
Theorem 3. 
[8,9] Let E be a Hilbert C*-module. Then
x , y y , x y , y x , x , x , y E .
We derive noncommutative analogues of Theorem 2 in Theorem 4.

2. Noncommutative Heisenberg-Robertson-Schrodinger Uncertainty Principles

Let E be a Hilbert C*-module over a unital C*-algebra A and A be a possibly unbounded self-adjoint morphism defined on domain D ( A ) E . For x D ( A ) with x , x = 1 , we define the noncommutative norm-uncertainty of A at the point x as
Δ x ( A ) A x A x , x x = A x , A x A x , x 2 .
We define the noncommutative modular-uncertainty of A at the point x as
d x ( A ) A x , A x A x , x 2 = A x A x , x x , A x A x , x x .
Then d x ( A ) A and
Δ x ( A ) = d x ( A ) .
Given two elements a , b A , we define [ a , b ] a b b a and { a , b } a b + b a . Similarly, for two morphisms A : D ( A ) E E and B : D ( B ) E E , we define [ A , B ] A B B A and { A , B } A B + B A .
Theorem 4. 
(Noncommutative Heisenberg-Robertson-Schrodinger Uncertainty Principles) Let E be a Hilbert C*-module over a unital C*-algebra A . Let A : D ( A ) E E and B : D ( B ) E E be self-adjoint morphisms. Then for all x D ( A B ) D ( B A ) with x , x = 1 , we have
(i) 
Δ x ( B ) 2 d x ( A ) 2 ( A x , B x A x , x B x , x ) ( B x , A x B x , x A x , x ) ( [ A , B ] x , x + [ A x , x , B x , x ] ) 2 4 = ( [ A , B ] x , x + [ A x , x , B x , x ] ) ( x , [ A , B ] x + [ A x , x , B x , x ] ) 4 .
(ii) 
Δ x ( B ) d x ( A ) ( A x , B x A x , x B x , x ) ( B x , A x B x , x A x , x ) ( [ A , B ] x , x + [ A x , x , B x , x ] ) ( x , [ A , B ] x + [ A x , x , B x , x ] ) 2 .
(iii) 
Δ x ( A ) 2 d x ( B ) 2 ( B x , A x B x , x A x , x ) ( A x , B x A x , x B x , x ) ( [ B , A ] x , x + [ B x , x , A x , x ] ) 2 4 = ( [ B , A ] x , x + [ B x , x , A x , x ] ) ( x , [ B , A ] x + [ B x , x , A x , x ] ) 4 .
(iv) 
Δ x ( A ) d x ( B ) ( B x , A x B x , x A x , x ) ( A x , B x A x , x B x , x ) ( [ B , A ] x , x + [ B x , x , A x , x ] ) ( x , [ B , A ] x + [ B x , x , A x , x ] ) 2 .
(v) 
Δ x ( A ) Δ x ( B ) A x , B x A x , x B x , x ( [ A , B ] x , x + [ A x , x , B x , x ] ) ( x , [ A , B ] x + [ A x , x , B x , x ] ) 2 = [ A , B ] x , x + [ A x , x , B x , x ] 2 .
(vi) 
Δ x ( B ) 2 d x ( A ) 2 + Δ x ( A ) 2 d x ( B ) 2 ( { A , B } x , x { A x , x , B x , x } ) 2 ( [ A , B ] x , x + [ A x , x , B x , x ] ) 2 2 = ( { A , B } x , x { A x , x , B x , x } ) 2 + ( [ A , B ] x , x + [ A x , x , B x , x ] ) ( x , [ A , B ] x + [ A x , x , B x , x ] ) 2 .
(vii) 
Δ x ( A ) Δ x ( B ) ( { A , B } x , x { A x , x , B x , x } ) 2 ( [ A , B ] x , x + [ A x , x , B x , x ] ) 2 2 = ( { A , B } x , x { A x , x , B x , x } ) 2 + ( [ A , B ] x , x + [ A x , x , B x , x ] ) ( x , [ A , B ] x + [ A x , x , B x , x ] ) 2 .
(viii) 
If A is commutative, then
Δ x ( B ) 2 d x ( A ) 2 + Δ x ( A ) 2 d x ( B ) 2 ( { A , B } x , x 2 A x , x B x , x ) 2 [ A , B ] x , x 2 2 = ( { A , B } x , x 2 A x , x B x , x ) 2 + [ A , B ] x , x x , [ A , B ] x 2 .
(ix) 
If A is commutative, then
Δ x ( A ) Δ x ( B ) ( { A , B } x , x 2 A x , x B x , x ) 2 [ A , B ] x , x 2 2 = ( { A , B } x , x 2 A x , x B x , x ) 2 + [ A , B ] x , x x , [ A , B ] x 2 .
Proof. 
Let x D ( A B ) D ( B A ) be such that x , x = 1 .
(i)
Using noncommutative Cauchy-Schwarz inequality,
( A x , B x A x , x B x , x ) ( B x , A x B x , x A x , x ) = A x A x , x x , B x B x , x x B x B x , x x , A x A x , x x B x B x , x x , B x B x , x x A x A x , x x , A x A x , x x = B x B x , x x 2 ( A x , A x A x , x 2 ) = Δ x ( B ) 2 d x ( A ) 2 .
We now note that
( A x , B x A x , x B x , x ) ( B x , A x B x , x A x , x ) ( Im ( A x , B x A x , x B x , x ) ) 2 = A x , B x A x , x B x , x B x , A x B x , x A x , x 2 i 2 = ( [ A , B ] x , x + [ A x , x , B x , x ] ) 2 4 .
Now we see that
( [ A , B ] x , x + [ A x , x , B x , x ] ) 2 = ( [ A , B ] x , x + [ A x , x , B x , x ] ) ( x , [ A , B ] x + [ A x , x , B x , x ] ) .
(ii)
Follows from (i) by noting that square root respects the order of positive elements.
(iii)
Similar to (i).
(iv)
Follows from (iii).
(v)
We get by taking norm on (i) (norm respects the order of positive elements).
(vi)
Define
z A x A x , x x , w B x B x , x x .
Then
z , w + w , z = A x A x , x x , B x B x , x x + B x B x , x x , A x A x , x x = B A x , x A x , x B x , x + A B x , x B x , x A x , x = { A , B } x , x { A x , x , B x , x }
and
z , w w , z = A x A x , x x , B x B x , x x B x B x , x x , A x A x , x x = B A x , x A x , x B x , x A B x , x + B x , x A x , x = [ A , B ] x , x [ A x , x , B x , x ] .
Now adding (i) and (iii) gives
Δ x ( B ) 2 d x ( A ) 2 + Δ x ( A ) 2 d x ( B ) 2 z , w w , z + w , z z , w = ( z , w + w , z ) 2 ( z , w w , z ) 2 2 = ( { A , B } x , x { A x , x , B x , x } ) 2 ( [ A , B ] x , x + [ A x , x , B x , x ] ) 2 2 .
(vii)
We get by taking norm on (vi).
(viii)
Follows from (vi). Note that
[ A , B ] x , x 2 = [ A , B ] x , x x , [ A , B ] x .
(ix)
Follows from (vii).
Corollary 1. 
(Noncommutative Heisenberg-Robertson Uncertainty Principles) Let E be a Hilbert C*-module over a unital C*-algebra A . Let A : D ( A ) E E and B : D ( B ) E E be self-adjoint morphisms. Then for all x D ( A B ) D ( B A ) with x , x = 1 , we have
(i) 
Δ x ( B ) 2 d x ( A ) 2 + Δ x ( A ) 2 d x ( B ) 2 ( [ A , B ] x , x + [ A x , x , B x , x ] ) ( x , [ A , B ] x + [ A x , x , B x , x ] ) 2 .
(ii) 
Δ x ( A ) Δ x ( B ) [ A , B ] x , x + [ A x , x , B x , x ] 2 .
(iii) 
If A is commutative, then
Δ x ( B ) 2 d x ( A ) 2 + Δ x ( A ) 2 d x ( B ) 2 [ A , B ] x , x x , [ A , B ] x 2 .
(iv) 
If A is commutative, then
Δ x ( A ) Δ x ( B ) [ A , B ] x , x 2 .

References

  1. Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
  2. Heisenberg, W. The physical content of quantum kinematics and mechanics. In Quantum Theory and Measurement; Princeton University Press, Princeton, NJ, 1983; pp. 62–84.
  3. von Neumann, J. Mathematical foundations of quantum mechanics; Princeton University Press, Princeton, NJ, 2018; pp. xviii+304. [CrossRef]
  4. Debnath, L.; Mikusiński, P. Introduction to Hilbert spaces with applications; Academic Press, Inc., San Diego, CA, 1999; pp. xx+551.
  5. Schrödinger, E. About Heisenberg uncertainty relation. Bulgar. J. Phys. 1999, 26, 193–203. [Google Scholar]
  6. Bertlmann, R.A.; Friis, N. Modern Quantum Theory: From Quantum Mechanics to Entanglement and Quantum Information; Oxford University Press, 2023; pp. xv+1012.
  7. Kaplansky, I. Modules over operator algebras. Amer. J. Math. 1953, 75, 839–858. [Google Scholar] [CrossRef]
  8. Paschke, W.L. Inner product modules over B*-algebras. Trans. Amer. Math. Soc. 1973, 182, 443–468. [Google Scholar] [CrossRef]
  9. Rieffel, M.A. Induced representations of C*-algebras. Advances in Math. 1974, 13, 176–257. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated