Submitted:
31 December 2024
Posted:
03 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Classification of Leaky-Wave Antennas
3. Fabry–Perot Cavity Antennas
3.1. Theoretical Background
3.2. Evaluation of the Dispersion Curves
- Dielectric multilayers consisting of alternating quarter-wavelength-thick slabs of high and low permittivity to realize a distributed Bragg reflector [73];
- Homogenized metasurfaces which are realized through subwavelength (with period ) periodic planar arrangements of metal scatterers [74].
3.3. Evaluation of the Equivalent Surface Impedance of a Partially Reflecting Sheet
3.4. Feeding Schemes and Matching Networks
3.5. Full-Wave Validation of the Theoretical Model
4. Radially Periodic Leaky-Wave Antennas
4.1. A Simple Technique for the Bloch Analysis
4.2. Full-Wave Validation of the Theoretical Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| 1-D | One Dimension |
| 2-D | Two Dimension |
| 3-D | Three Dimension |
| BBL | Bessel-Beam Launcher |
| FBW | Fractional Bandwidth |
| FoM | Figure of Merit |
| FPCA | Fabry–Perot Cavity Antenna |
| GDS | Grounded Dielectric Slab |
| HED | Horizontal Electric Dipole |
| HMD | Horizontal Magnetic Dipole |
| HPBW | Half-Power Beamwidth |
| LWA | Leaky-Wave Antenna |
| MoM | Method of Moments |
| PEC | Perfect Electric Conductor |
| PMC | Perfect Magnetic Conductor |
| PPW | Parallel-Plate Waveguide |
| PRS | Partially Reflecting Sheet |
| TEN | Transverse Equivalent Network |
| VED | Vertical Electric Dipole |
| VMD | Vertical Magnetic Dipole |
References
- Jackson, D.R.; Caloz, C.; Itoh, T. Leaky-wave antennas. Proc. IEEE 2012, 100, 2194–2206. [Google Scholar] [CrossRef]
- Monticone, F.; Alù, A. Leaky-Wave Theory, Techniques, and Applications: From Microwaves to Visible Frequencies. Proc. IEEE 2015, 103, 793–821. [Google Scholar] [CrossRef]
- Oliner, A.A.; Jackson, D.R.; Volakis, J. Leaky-wave antennas. Antenna engineering handbook 2007, 4, 12. [Google Scholar]
- Marcuvitz, N. On field representations in terms of leaky modes or eigenmodes. IRE Trans. Antennas Propag. 1956, 4, 192–194. [Google Scholar] [CrossRef]
- Tamir, T.; Oliner, A.A. Guided complex waves. Part 1: Fields at an interface. Proc. IEE 1963, 110, 310–324. [Google Scholar] [CrossRef]
- Tamir, T.; Oliner, A.A. Guided complex waves. Part 2: Relation to radiation patterns. Proc. IEE 1963, 110, 325–334. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design; Wiley, 2015.
- Galli, A.; Baccarelli, P.; Burghignoli, P. Leaky-Wave Antennas. Wiley Encyclopedia of Electrical and Electronics Engineering 2016, pp. 1–20.
- Wang, M.; Ma, H.F.; Zhang, H.C.; Tang, W.X.; Zhang, X.R.; Cui, T.J. Frequency-Fixed Beam-Scanning Leaky-Wave Antenna Using Electronically Controllable Corrugated Microstrip Line. IEEE Trans. Antennas Propag. 2018, 66, 4449–4457. [Google Scholar] [CrossRef]
- Kodera, T.; Caloz, C. Uniform Ferrite-Loaded Open Waveguide Structure With CRLH Response and Its Application to a Novel Backfire-to-Endfire Leaky-Wave Antenna. IEEE Trans. Microw. Theory Techn. 2009, 57, 784–795. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Z.; Li, Y.; Wang, S.; Feng, Z. 60-GHz Air Substrate Leaky-Wave Antenna Based on MEMS Micromachining Technology. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 1656–1662. [Google Scholar] [CrossRef]
- Buzzin, A.; Asquini, R.; Caputo, D.; de Cesare, G. Sensitive and Compact Evanescent-Waveguide Optical Detector for Sugar Sensing in Commercial Beverages. Sensors 2023, 23. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Burghignoli, P.; Baccarelli, P.; Galli, A. Graphene Fabry–Perot Cavity Leaky-Wave Antennas: Plasmonic Versus Nonplasmonic Solutions. IEEE Trans. Antennas Propag. 2017, 65, 1651–1660. [Google Scholar] [CrossRef]
- Wang, X.C.; Zhao, W.S.; Hu, J.; Yin, W.Y. Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface. IEEE Trans. Nanotechnol. 2015, 14, 62–69. [Google Scholar] [CrossRef]
- Jiang, D.; Li, X.; Fu, Z.; Ran, P.; Wang, G.; Zheng, Z.; Zhang, T.; Wang, W.Q. Liquid Crystal-Based Wideband Reconfigurable Leaky Wave X-Band Antenna. IEEE Access 2019, 7, 127320–127326. [Google Scholar] [CrossRef]
- Almutawa, A.T.; Hosseini, A.; Jackson, D.R.; Capolino, F. Leaky-wave analysis of wideband planar Fabry–Pérot cavity antennas formed by a thick PRS. IEEE Trans. Antennas Propag. 2019, 67, 5163–5175. [Google Scholar] [CrossRef]
- Al-Tarifi, M.A.; Anagnostou, D.E.; Amert, A.K.; Whites, K.W. Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates. IEEE Trans. Antennas Propag. 2013, 61, 1898–1908. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P. Achieving a Large Gain-Bandwidth Product From a Compact Antenna. IEEE Trans. Antennas Propag. 2017, 65, 3437–3446. [Google Scholar] [CrossRef]
- Baba, A.A.; Hashmi, R.M.; Esselle, K.P.; Weily, A.R. Compact High-Gain Antenna With Simple All-Dielectric Partially Reflecting Surface. IEEE Trans. Antennas Propag. 2018, 66, 4343–4348. [Google Scholar] [CrossRef]
- Karmokar, D.K.; Esselle, K.P.; Hay, S.G. Fixed-Frequency Beam Steering of Microstrip Leaky-Wave Antennas Using Binary Switches. IEEE Trans. Antennas Propag. 2016, 64, 2146–2154. [Google Scholar] [CrossRef]
- Javanbakht, N.; Syrett, B.; Amaya, R.E.; Shaker, J. A Review of Reconfigurable Leaky-Wave Antennas. IEEE Access 2021, 9, 94224–94238. [Google Scholar] [CrossRef]
- Negri, E.; Fuscaldo, W.; Burghignoli, P.; Galli, A. Reconfigurable THz leaky-wave antennas based on innovative metal–graphene metasurfaces. J. Phys. D: Appl. Phys. 2024.
- Gomez-Tornero, J.; Martinez, A.; Rebenaque, D.; Gugliemi, M.; Alvarez-Melcon, A. Design of tapered leaky-wave antennas in hybrid waveguide-planar technology for millimeter waveband applications. IEEE Trans. Antennas Propag. 2005, 53, 2563–2577. [Google Scholar] [CrossRef]
- Gomez-Tornero, J.L. Analysis and Design of Conformal Tapered Leaky-Wave Antennas. IEEE Antennas Wirel. Propag. Letters 2011, 10, 1068–1071. [Google Scholar] [CrossRef]
- Fong, B.; Colburn, J.S.; Ottusch, J.J.; Visher, J.; Sievenpiper, D. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 2010, 58, 3212–3221. [Google Scholar] [CrossRef]
- Minatti, G.; Caminita, F.; Casaletti, M.; Maci, S. Spiral leaky-wave antennas based on modulated surface impedance. IEEE Trans. Antennas Propag. 2011, 59, 4436–4444. [Google Scholar] [CrossRef]
- Minatti, G.; Faenzi, M.; Martini, E.; Caminita, F.; De Vita, P.; González-Ovejero, D.; Sabbadini, M.; Maci, S. Modulated metasurface antennas for space: Synthesis, analysis and realizations. IEEE Trans. Antennas Propag. 2014, 63, 1288–1300. [Google Scholar] [CrossRef]
- Faenzi, M.; Caminita, F.; Martini, E.; De Vita, P.; Minatti, G.; Sabbadini, M.; Maci, S. Realization and measurement of broadside beam modulated metasurface antennas. IEEE Antennas Wirel. Propag. Letters 2015, 15, 610–613. [Google Scholar] [CrossRef]
- Giusti, F.; Maci, S.; Martini, E. Complete Open-Stopband Suppression Using Sinusoidally Modulated Anisotropic Metasurfaces. IEEE Trans. Antennas Propag. 2023, 71, 8537–8547. [Google Scholar] [CrossRef]
- Ettorre, M.; Pavone, S.C.; Casaletti, M.; Albani, M.; Mazzinghi, A.; Freni, A. Near-field focusing by non-diffracting Bessel beams. In Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications; Springer: Cham, Switzerland, 2018; pp. 243–288. [Google Scholar]
- Negri, E.; Fuscaldo, W.; González-Ovejero, D.; Burghignoli, P.; Galli, A. TE-Polarized Leaky-Wave Beam Launchers: Generation of Bessel and Bessel–-Gauss Beams. Appl. Phys. Letters 2024, 125, 181703. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Valerio, G.; Galli, A.; Sauleau, R.; Grbic, A.; Ettorre, M. Higher-order leaky-mode Bessel-beam launcher. IEEE Trans. Antennas Propag. 2016, 64, 904–913. [Google Scholar] [CrossRef]
- Negri, E.; Fuscaldo, W.; Burghignoli, P.; Galli, A. Leaky-Wave Analysis of TM-, TE-, and Hybrid-Polarized Aperture-Fed Bessel-Beam Launchers for Wireless Power Transfer Links. IEEE Trans. Antennas Propag. 2023, 71, 1424–1436. [Google Scholar] [CrossRef]
- Hansen, W.W. Radiating electromagnetic wave guide. US Patent 2,402, 622 1946. [Google Scholar]
- Goldstone, L.; Oliner, A.A. Leaky-wave antennas I: Rectangular waveguides. IRE Trans. Antennas Propag. 1959, 7, 307–319. [Google Scholar] [CrossRef]
- Goldstone, L.; Oliner, A.A. Leaky wave antennas II: Circular waveguides. IRE Trans. Antennas Propag. 1961, 9, 280–290. [Google Scholar] [CrossRef]
- Hines, J.N.; Rumsey, V.H.; Walter, C.H. Traveling-wave slot antennas. Proc. IRE 1953, 41, 1624–1631. [Google Scholar] [CrossRef]
- Collin, R.E.; Zucker, F.J. Antenna Theory; Number pt. 7, No. 1, McGraw-Hill, 1969.
- Rezaee, S.; Memarian, M. Analytical Study of Open-Stopband Suppression in Leaky-Wave Antennas. IEEE Antennas Wirel. Propag. Letters 2020, 19, 363–367. [Google Scholar] [CrossRef]
- Otto, S.; Al-Bassam, A.; Rennings, A.; Solbach, K.; Caloz, C. Transversal Asymmetry in Periodic Leaky-Wave Antennas for Bloch Impedance and Radiation Efficiency Equalization Through Broadside. IEEE Trans. Antennas Propag. 2014, 62, 5037–5054. [Google Scholar] [CrossRef]
- Otto, S.; Al-Bassam, A.; Rennings, A.; Solbach, K.; Caloz, C. Radiation Efficiency of Longitudinally Symmetric and Asymmetric Periodic Leaky-Wave Antennas. IEEE Antennas Wirel. Propag. Letters 2012, 11, 612–615. [Google Scholar] [CrossRef]
- Ip, A.; Jackson, D.R. Radiation from cylindrical leaky waves. IEEE Trans. Antennas Propag. 1990, 38, 482–488. [Google Scholar] [CrossRef]
- Madji, M.; Negri, E.; Fuscaldo, W.; Comite, D.; Galli, A.; Burghignoli, P. The Leaky-Wave Perspective for Array-Fed Fabry-Perot Cavity and Bull’s-Eye Antennas. Appl. Sci. 2024, 14. [Google Scholar] [CrossRef]
- Madji, M.; Negri, E.; Fuscaldo, W.; Comite, D.; Galli, A.; Burghignoli, P. Two-Dimensional Scanning of Circularly Polarized Beams via Array-Fed Fabry–Perot Cavity Antennas. Appl. Sci. 2024, 14. [Google Scholar] [CrossRef]
- Xie, P.; Wang, G.; Li, H.; Liang, J.; Gao, X. Circularly Polarized Fabry-Perot Antenna Employing a Receiver–Transmitter Polarization Conversion Metasurface. IEEE Trans. Antennas Propag. 2019, 68, 3213–3218. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, L.; Li, J.; Wang, Y.; Wen, G. Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna. Appl. Phys. Lett. 2016, 109. [Google Scholar] [CrossRef]
- Burghignoli, P.; Fuscaldo, W.; Galli, A. Fabry–Perot Cavity Antennas: The Leaky-Wave Perspective. IEEE Antennas Propag. Mag. 2021, 63, 116–145. [Google Scholar] [CrossRef]
- Podilchak, S.K.; Baccarelli, P.; Burghignoli, P.; Freundorfer, A.P.; Antar, Y.M.M. Analysis and Design of Annular Microstrip-Based Planar Periodic Leaky-Wave Antennas. IEEE Trans. Antennas Propag. 2014, 62, 2978–2991. [Google Scholar] [CrossRef]
- Sengupta, S.; Jackson, D.R.; Long, S.A. Modal Analysis and Propagation Characteristics of Leaky Waves on a 2-D Periodic Leaky-Wave Antenna. IEEE Trans. Microw. Theory Techn. 2018, 66, 1181–1191. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Galli, A.; Jackson, D.R. Optimization of 1-D Unidirectional Leaky-Wave Antennas Based on Partially Reflecting Sheets. IEEE Trans. Antennas Propag. 2022, 70, 7853–7868. [Google Scholar] [CrossRef]
- Ettorre, M.; Grbic, A. Generation of propagating Bessel beams using leaky-wave modes. IEEE Trans. Antennas Propag. 2012, 60, 3605–3613. [Google Scholar] [CrossRef]
- Ettorre, M.; Rudolph, S.M.; Grbic, A. Generation of propagating Bessel beams using leaky-wave modes: experimental validation. IEEE Trans. Antennas Propag. 2012, 60, 2645–2653. [Google Scholar] [CrossRef]
- Lu, P.; Bréard, A.; Huillery, J.; Yang, X.S.; Voyer, D. Feeding coils design for TE-polarized Bessel antenna to generate rotationally symmetric magnetic field distribution. IEEE Antennas Wireless Propag. Lett. 2018, 17, 2424–2428. [Google Scholar] [CrossRef]
- Lu, P.; Voyer, D.; Bréard, A.; Huillery, J.; Allard, B.; Lin-Shi, X.; Yang, X.S. Design of TE-polarized Bessel antenna in microwave range using leaky-wave modes. IEEE Trans. Antennas Propag. 2017, 66, 32–41. [Google Scholar] [CrossRef]
- Negri, E.; Fuscaldo, W.; Tofani, S.; Burghignoli, P.; Galli, A. An efficient and accurate semi-analytical matching technique for waveguide-fed antennas. Sci. Rep. 2024, 14, 3892. [Google Scholar] [CrossRef]
- Feresidis, A.; Vardaxoglou, J. High gain planar antenna using optimised partially reflective surfaces. IEE Proc. Microwaves, Antennas Propag 2001, 148, 345–350. [Google Scholar] [CrossRef]
- Scattone, F.; Ettorre, M.; Sauleau, R.; Nguyen, N.T.; Fonseca, N.J. Optimization procedure for planar leaky-wave antennas with flat-topped radiation patterns. IEEE Trans. Antennas Propag. 2015, 63, 5854–5859. [Google Scholar] [CrossRef]
- Guo, Y.X.; Chia, M.; Chen, Z.N.; Luk, K.M. Wide-band L-probe fed circular patch antenna for conical-pattern radiation. IEEE Trans. Antennas Propag. 2004, 52, 1115–1116. [Google Scholar] [CrossRef]
- Mateo-Segura, C.; Feresidis, A.P.; Goussetis, G. Bandwidth Enhancement of 2-D Leaky-Wave Antennas With Double-Layer Periodic Surfaces. IEEE Trans. Antennas Propag. 2013, 62, 586–593. [Google Scholar] [CrossRef]
- Von Trentini, G. Partially reflecting sheet arrays. IRE Trans. Antennas Propag. 1956, 4, 666–671. [Google Scholar] [CrossRef]
- Jackson, D.R.; Burghignoli, P.; Lovat, G.; Capolino, F.; Chen, J.; Wilton, D.R.; Oliner, A.A. The Fundamental Physics of Directive Beaming at Microwave and Optical Frequencies and the Role of Leaky Waves. Proc. IEEE 2011, 99, 1780–1805. [Google Scholar] [CrossRef]
- Zhao, T.; Jackson, D.; Williams, J.; Oliner, A. General formulas for 2-D leaky-wave antennas. IEEE Trans. Antennas Propag. 2005, 53, 3525–3533. [Google Scholar] [CrossRef]
- Fuscaldo, W. Rigorous evaluation of losses in uniform leaky-wave antennas. IEEE Trans. Antennas Propag. 2020, 68, 643–655. [Google Scholar] [CrossRef]
- Luukkonen, O.; Simovski, C.; Granet, G.; Goussetis, G.; Lioubtchenko, D.; Raisanen, A.V.; Tretyakov, S.A. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans. Antennas Propag. 2008, 56, 1624–1632. [Google Scholar] [CrossRef]
- Tretyakov, S. Analytical Modeling in Applied Electromagnetics; Artech House: Norwood, MA, USA, 2003. [Google Scholar]
- Lovat, G.; Burghignoli, P.; Jackson, D.R. Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas. IEEE Trans. Antennas Propag. 2006, 54, 1442–1452. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Burghignoli, P.; Galli, A. The transition between reactive and radiative regimes for leaky modes in planar waveguides based on homogenized partially reflecting surfaces. IEEE Trans. Microw. Theory Techn. 2020, 68, 5259–5269. [Google Scholar] [CrossRef]
- Balanis, C.A. Advanced Engineering Electromagnetics; Wiley & Sons: New York, NY: Wiley, 2012. [Google Scholar]
- Sorrentino, R.; Mongiardo, M. Transverse Resonance Techniques; John Wiley & Sons, Ltd: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Felsen, L.B.; Marcuvitz, N. Radiation and Scattering of Waves; Vol. 31, John Wiley & Sons, 1994.
- Jackson, D.R.; Oliner, A.A. A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans. Antennas Propag. 1988, 36, 905–910. [Google Scholar] [CrossRef]
- Jackson, D.R.; Alexopoulos, N.G. Gain enhancement methods for printed circuit antennas. IEEE Trans. Antennas Propag. 1985, 33, 976–987. [Google Scholar] [CrossRef]
- Jackson, D.R.; Oliner, A.A.; Ip, A. Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure. IEEE Trans. Antennas Propag. 1993, 41, 344–348. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Tofani, S.; Zografopoulos, D.C.; Baccarelli, P.; Burghignoli, P.; Beccherelli, R.; Galli, A. Systematic design of THz leaky-wave antennas based on homogenized metasurfaces. IEEE Trans. Antennas Propag. 2018, 66, 1169–1178. [Google Scholar] [CrossRef]
- Fuscaldo, W.; Burghignoli, P.; Galli, A. Genealogy of Leaky, Surface, and Plasmonic Modes in Partially Open Waveguides. Phys. Rev. Appl. 2022, 17, 034–038. [Google Scholar] [CrossRef]
- Galdi, V.; Pinto, I.M. A simple algorithm for accurate location of leaky-wave poles for grounded inhomogeneous dielectric slabs. Microw. Opt. Techn. Lett. 2000, 24, 135–140. [Google Scholar] [CrossRef]
- CST products Dassault Systèmes, France, 2021.
- Ansys Corporation, Ansys HFSS Version 16.0, 1984-2016.
- Comite, D.; Fuscaldo, W.; Podilchak, S.K.; Hílario-Re, P.D.; Gómez-Guillamón Buendía, V.; Burghignoli, P.; Baccarelli, P.; Galli, A. Radially Periodic Leaky-Wave Antenna for Bessel Beam Generation Over a Wide-Frequency Range. IEEE Trans. Antennas Propag. 2018, 66, 2828–2843. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering: Theory and Techniques; John Wiley & sons, 2021.
- Konstantinidis, K.; Feresidis, A.P.; Hall, P.S. Dual-slot feeding technique for broadband Fabry–Perot cavity antennas. IET Microw., Antennas Propag. 2015, 9, 861–866. [Google Scholar] [CrossRef]
- Foster, R.M. A reactance theorem. Bell Sys. Techn. J. 1924, 3, 259–267. [Google Scholar] [CrossRef]
- Baccarelli, P.; Burghignoli, P.; Di Nallo, C.; Frezza, F.; Galli, A.; Lampariello, P.; Ruggieri, G. Full-wave analysis of printed leaky-wave phased arrays. Int. J. RF Microw. Comput.-Aided Eng. 2002, 12, 272–287. [Google Scholar] [CrossRef]
- Giusti, F.; Chen, Q.; Mesa, F.; Albani, M.; Quevedo-Teruel, O. Efficient Bloch analysis of general periodic structures with a linearized multimodal transfer-matrix approach. IEEE Trans. Antennas Propag. 2022, 70, 5555–5562. [Google Scholar] [CrossRef]
- Valerio, G.; Paulotto, S.; Baccarelli, P.; Burghignoli, P.; Galli, A. Accurate Bloch analysis of 1-D periodic lines through the simulation of truncated structures. IEEE Trans. Antennas Propag. 2011, 59, 2188–2195. [Google Scholar] [CrossRef]
- Mesa, F.; Valerio, G.; Rodríguez-Berral, R.; Quevedo-Teruel, O. Simulation-Assisted Efficient Computation of the Dispersion Diagram of Periodic Structures: A comprehensive overview with applications to filters, leaky-wave antennas and metasurfaces. IEEE Antennas Propag. Mag. 2021, 63, 33–45. [Google Scholar] [CrossRef]
- Apaydin, N.; Zhang, L.; Sertel, K.; Volakis, J.L. Experimental Validation of Frozen Modes Guided on Printed Coupled Transmission Lines. IEEE Trans. Microw. Theory Techn. 2012, 60, 1513–1519. [Google Scholar] [CrossRef]
- Negri, E.; Giusti, F.; Fuscaldo, W.; Burghignoli, P.; Martini, E.; Galli, A. Generation of a Long-Nondiffractive-Range Leaky-Wave Bessel Beam through an Open-Stopband Mitigation Technique. In Proceedings of the International Symposium on Antennas and Propagation (ISAP) 2024, Accepted for Pubblication; 2024; pp. 1–2. [Google Scholar]
- Liu, J.; Zhou, W.; Long, Y. A Simple Technique for Open-Stopband Suppression in Periodic Leaky-Wave Antennas Using Two Nonidentical Elements Per Unit Cell. IEEE Trans. Antennas Propag. 2018, 66, 2741–2751. [Google Scholar] [CrossRef]
- Al-Bassam, A.; Otto, S.; Heberling, D.; Caloz, C. Broadside Dual-Channel Orthogonal-Polarization Radiation Using a Double-Asymmetric Periodic Leaky-Wave Antenna. IEEE Trans. Antennas Propag. 2017, 65, 2855–2864. [Google Scholar] [CrossRef]










Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
