Submitted:
31 December 2024
Posted:
03 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Location and Climatic Conditions
2.2. Description of Selected Buildings ans Classrooms
2.3. Thermal Comfort Questionnaire
2.4. Application of Questionnaires and Indoor Thermal Measurements
2.5. Adaptive Model and Comfort Parameters
2.6. Description of Case Studies on the Spatial Distribution of Students and Other Associated Factors
3. Results
3.1. Study Sample Characterisation
3.2. Outdoor and Indoor Environmental Conditions
3.3. Subjective Thermal Responses
3.3.1. Thermal Sensation, Comfort and Preference Votes
| University | Classroom code | Operation mode | Top (°C) | TSV (SD) | TCV (SD) | TPV (SD) |
|---|---|---|---|---|---|---|
| ESE | ESE01 | NV | 25.51 | 0.75 (±0.68) | 2.63 (±0.50) | -0.63 (±0.50) |
| ESE02 | NV | 26.41 | 1.15 (±0.76) | 3.31 (±0.82) | -0.84 (±0.37) | |
| ESE03 | NV | 26.69 | 1.19 (±0.93) | 3.24 (±0.99) | -0.76 (±0.44) | |
| ESE04 | AC | 22.94 | -0.33 (±0.52) | 2.67 (±0.52) | 0.17 (±0.41) | |
| ESE05 | NV | 25.33 | 0.95 (±0.82) | 3.00 (±0.88) | -0.69 (±0.47) | |
| ESE06 | NV | 25.58 | 1.00 (±0.67) | 3.10 (±0.87) | -0.80 (±0.42) | |
| ESE07 | NV | 26.25 | 1.50 (±0.88) | 3.45 (±0.98) | -0.75 (±0.44) | |
| ESE08 | NV | 25.41 | 1.00 (±0.82) | 3.00 (±0.82) | -0.62 (±0.51) | |
| ESE09 | AC | 24.60 | -0.59 (±0.87) | 2.35 (±0.49) | 0.23 (±0.44) | |
| ESE10 | AC | 24.80 | -0.55 (±0.53) | 2.56 (±0.53) | 0.56 (±0.53) | |
| ESE11 | AC | 25.17 | -0.71 (±0.83) | 2.57 (±0.76) | 0.21 (±0.43) | |
| ESS | ESS01 | AC | 24.62 | -0.20 (±0.69) | 2.40 (±0.60) | 0.15 (±0.49) |
| ESS02 | AC | 24.31 | -0.15 (±0.80) | 2.77 (±0.93) | -0.15 (±0.69) | |
| ESS03 | NV | 31.33 | 2.70 (±0.73) | 4.70 (±0.73) | -0.95 (±0.22) | |
| ESS04 | NV | 29.62 | 1.73 (±1.01) | 3.70 (±1.06) | -0.80 (±0.41) |
3.4. Comfort Temperature
3.4.1. Linear Regression Method
| Operation mode | Equation | Tn (°C) | 90% | 80% | R² | p-value |
|---|---|---|---|---|---|---|
| AC | TSV=0.2729·Top-7.0719 | 25.80 | ±1.60 | ±3.20 | 0.2762 | <0.001 |
| NV | TSV=0.2864·Top-6.2608 | 22.00 | ±2.00 | ±4.00 | 0.4754 |
3.4.2. Griffiths Method
3.5. Adaptive Thermal Comfort Model
3.5.1. Comparison with International Standards
3.6. Impact of Thermal Discomfort on Educational Behaviour and Communicative Actions
3.7. A Case Study on the Spatial Distribution of Students and Associated Factors
5. Conclusions
- In NV classrooms, indoor temperatures were maintained in the range of 25-32°C. It was observed that thermal comfort conditions can be achieved if the outside temperature does not exceed 28°C, provided that appropriate strategies such as cross-ventilation, good distribution of openings and adequate clothing are designed. However, when the outside temperature reaches higher values, thermal discomfort increases significantly.
- In classrooms with AC, indoor temperatures ranged from 22-26°C, maintaining mostly ‘Neutral’ to ‘Slightly cool’ thermal sensations. However, cold areas were identified near air vents and warm areas near windows exposed to the sun, highlighting the importance of a design that minimises the thermal gradient.
- Occupants' habits play a crucial role in thermal comfort. Choosing appropriate clothing for the environment and adopting adaptive behaviours (such as adjusting windows or positioning oneself strategically) can mitigate discomfort.
- Differences in clothing levels between men and women reflect the importance of considering cultural and social characteristics when assessing thermal comfort. Promoting climate-appropriate clothing habits can improve the well-being of occupants.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tola, A.; Veleshnja, J.; Meunier, P.L.; Bisha, G. Impact of shade on outdoor thermal comfort, in the case of a Mediterranean Promenade. J. Phys. Conf. Ser. 2023, 2600, 092023. [Google Scholar] [CrossRef]
- American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE) ANSI/ASHRAE Standard 55-2023: Thermal Environmental Conditions for Human Occupancy; 2023;
- Sánchez-García, D.; Bienvenido-Huertas, D. Energy Implications of Thermal Comfort in Buildings Considering Climate Change. Appl. Sci. 2023, 13, 10708. [Google Scholar] [CrossRef]
- de Dear, R.J.; Akimoto, T.; Arens, E.A.; Brager, G.; Candido, C.; Cheong, K.W.D.; Li, B.; Nishihara, N.; Sekhar, S.C.; Tanabe, S.; et al. Progress in thermal comfort research over the last twenty years. Indoor Air 2013, 23, 442–461. [Google Scholar] [CrossRef] [PubMed]
- Henna, K.; Saifudeen, A.; Mani, M. Resilience of vernacular and modernising dwellings in three climatic zones to climate change. Sci. Rep. 2021, 11, 9172. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018 51 2018, 5, 1–12. [Google Scholar] [CrossRef]
- Berkouk, D.; Bouzir, T.; Mazouz, S.; Boucherit, S.; Mokhtari, N. Studying the influence of shading devices on indoor thermal comfort in desert and Mediterranean climates. IOP Conf. Ser. Earth Environ. Sci. 2022, 992, 012004. [Google Scholar] [CrossRef]
- Manzano-Agugliaro, F.; Montoya, F.G.; Sabio-Ortega, A.; García-Cruz, A. Review of bioclimatic architecture strategies for achieving thermal comfort. Renew. Sustain. Energy Rev. 2015, 49, 736–755. [Google Scholar] [CrossRef]
- Du, C.; Li, B.; Yu, W.; Liu, H.; Yao, R. Energy flexibility for heating and cooling based on seasonal occupant thermal adaptation in mixed-mode residential buildings. Energy 2019, 189, 116339. [Google Scholar] [CrossRef]
- Niza, I.L.; da Luz, I.M.; Broday, E.E. Thermal Comfort Assessment in University Classrooms: A Discriminant Analysis for Categorizing Individuals According to Gender and Thermal Preferences. Atmosphere (Basel). 2023, 14, 1325. [Google Scholar] [CrossRef]
- Bluyssen, P.M.; Zhang, D.; Kurvers, S.; Overtoom, M.; Ortiz-Sanchez, M. Self-reported health and comfort of school children in 54 classrooms of 21 Dutch school buildings. Build. Environ. 2018, 138, 106–123. [Google Scholar] [CrossRef]
- Miranda, M.T.; Romero, P.; Valero-Amaro, V.; Arranz, J.I.; Montero, I. Ventilation conditions and their influence on thermal comfort in examination classrooms in times of COVID-19. A case study in a Spanish area with Mediterranean climate. Int. J. Hyg. Environ. Health 2022, 240, 113910. [Google Scholar] [CrossRef] [PubMed]
- Albertin, R.; Pernigotto, G.; Gasparella, A. A Monte Carlo Assessment of the Effect of Different Ventilation Strategies to Mitigate the COVID-19 Contagion Risk in Educational Buildings. Indoor Air 2023, 2023, 1–24. [Google Scholar] [CrossRef]
- Ding, E.; Zhang, D.; Hamida, A.; García-Sánchez, C.; Jonker, L.; de Boer, A.R.; Bruijning, P.C.J.L.; Linde, K.J.; Wouters, I.M.; Bluyssen, P.M. Ventilation and thermal conditions in secondary schools in the Netherlands: Effects of COVID-19 pandemic control and prevention measures. Build. Environ. 2023, 229, 109922. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.M.S.F.; de Freitas, V.P. Indoor environmental quality of classrooms in Southern European climate. Energy Build. 2014, 81, 127–140. [Google Scholar] [CrossRef]
- Figueroa-Lopez, A.; Oregi, X.; Almeida, M.; Hernández-Minguillón, R.J. Evaluation of hygrothermal comfort in educational centres by monitoring three case studies with different ventilation systems in Vitoria, Spain. J. Build. Eng. 2023, 65, 105591. [Google Scholar] [CrossRef]
- Domínguez-Amarillo, S.; Fernández-Agüera, J.; González, M.M.; Cuerdo-Vilches, T. Overheating in Schools: Factors Determining Children’s Perceptions of Overall Comfort Indoors. Sustainability 2020, 12, 5772. [Google Scholar] [CrossRef]
- Romero, P.; Valero-Amaro, V.; Isidoro, R.; Miranda, M.T. Analysis of determining factors in the thermal comfort of university students. A comparative study between Spain and Portugal. Energy Build. 2024, 308, 114022. [Google Scholar] [CrossRef]
- Çağlak, S.; Türkeş, M. Spatial Distribution and Future Projections of Thermal Comfort Conditions during the Hot Period of the Year in Diyarbakır City, Southeastern Turkey. Sustainability 2023, 15, 10473. [Google Scholar] [CrossRef]
- O’ Donovan, A.; Murphy, M.D.; O’Sullivan, P.D. Passive control strategies for cooling a non-residential nearly zero energy office: Simulated comfort resilience now and in the future. Energy Build. 2021, 231, 110607. [Google Scholar] [CrossRef]
- Lamsal, P.; Bajracharya, S.B.; Rijal, H.B. Adaptive thermal comfort for energy saving office building design- A literature review. E3S Web Conf. 2023, 396, 01083. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z. Extended predicted mean vote of thermal adaptations reinforced around thermal neutrality. Indoor Air 2021, 31, 1227–1227. [Google Scholar] [CrossRef] [PubMed]
- Nico, M.A.; Liuzzi, S.; Stefanizzi, P. Evaluation of thermal comfort in university classrooms through objective approach and subjective preference analysis. Appl. Ergon. 2015, 48, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Jowkar, M.; Rijal, H.B.; Brusey, J.; Montazami, A.; Carlucci, S.; Lansdown, T.C. Comfort temperature and preferred adaptive behaviour in various classroom types in the UK higher learning environments. Energy Build. 2020, 211, 109814. [Google Scholar] [CrossRef]
- Custódio, D.A.; Ghisi, E.; Rupp, R.F. Thermal comfort in university classrooms in humid subtropical climate: Field study during all seasons. Build. Environ. 2024, 258, 111644. [Google Scholar] [CrossRef]
- Dias Pereira, L.; Raimondo, D.; Corgnati, S.P.; Gameiro da Silva, M. Assessment of indoor air quality and thermal comfort in Portuguese secondary classrooms: Methodology and results. Build. Environ. 2014, 81, 69–80. [Google Scholar] [CrossRef]
- Miao, S.; Gangolells, M.; Tejedor, B. A Comprehensive Assessment of Indoor Air Quality and Thermal Comfort in Educational Buildings in the Mediterranean Climate. Indoor Air 2023, 2023, 1–25. [Google Scholar] [CrossRef]
- Subhashini, S.; Kesavaperumal, T.; Noguchi, M. An adaptive thermal comfort model for naturally ventilated classrooms of technical institutions in Madurai. Open House Int. 2021, 46, 682–696. [Google Scholar] [CrossRef]
- Buonocore, C.; De Vecchi, R.; Scalco, V.; Lamberts, R. Thermal preference and comfort assessment in air-conditioned and naturally-ventilated university classrooms under hot and humid conditions in Brazil. Energy Build. 2020, 211, 109783. [Google Scholar] [CrossRef]
- Romero-Lara, M.J.; Comino, F.; Ruiz de Adana, M. Seasonal Analysis Comparison of Three Air-Cooling Systems in Terms of Thermal Comfort, Air Quality and Energy Consumption for School Buildings in Mediterranean Climates. Energies 2021, 14, 4436. [Google Scholar] [CrossRef]
- Shaari, N.A.; Zaki, S.A.; Mat Ali, M.S.; Abd Razak, A. Investigation of the PMV and TSV Models of Thermal Comfort in Air-Conditioned University Classrooms in Malaysia. Appl. Mech. Mater. 2016, 819, 207–211. [Google Scholar] [CrossRef]
- Marino, C.; Minichiello, F.; Ronga, P. Thermal-Hygrometric and Energy Performance Analysis of HVAC Systems for Educational Buildings in Southern Europe. Int. J. Heat Technol. 2016, 34, S573–S580. [Google Scholar] [CrossRef]
- Aparicio-Ruiz, P.; Barbadilla-Martín, E.; Guadix, J.; Muñuzuri, J. A field study on adaptive thermal comfort in Spanish primary classrooms during summer season. Build. Environ. 2021, 203, 108089. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO) ISO 7730:2005. Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria; 2005.
- McCartney, K.J.; Fergus Nicol, J. Developing an adaptive control algorithm for Europe. Energy Build. 2002, 34, 623–635. [Google Scholar] [CrossRef]
- Rodríguez, C.M.; Coronado, M.C.; Medina, J.M. Thermal comfort in educational buildings: The Classroom-Comfort-Data method applied to schools in Bogotá, Colombia. Build. Environ. 2021, 194, 107682. [Google Scholar] [CrossRef]
- Rodriguez, C.M.; Coronado, M.C.; Medina, J.M. Classroom-comfort-data: A method to collect comprehensive information on thermal comfort in school classrooms. MethodsX 2019, 6, 2698–2719. [Google Scholar] [CrossRef] [PubMed]
- Guevara, G.; Soriano, G.; Mino-Rodriguez, I. Thermal comfort in university classrooms: An experimental study in the tropics. Build. Environ. 2021, 187, 107430. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO) ISO 7726:1998. Ergonomics of the thermal environment - Instruments for measuring physical quantities; 1998.
- López-Pérez, L.A.; Flores-Prieto, J.J.; Ríos-Rojas, C. Adaptive thermal comfort model for educational buildings in a hot-humid climate. Build. Environ. 2019, 150, 181–194. [Google Scholar] [CrossRef]
- American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE) ASHRAE Handbook: Fundamentals; American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE), 2013.
- Nicol, F.; Humphreys, M. Derivation of the adaptive equations for thermal comfort in free-running buildings in European standard EN15251. Build. Environ. 2010, 45, 11–17. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ramgopal, M. Thermal comfort in undergraduate laboratories — A field study in Kharagpur, India. Build. Environ. 2014, 71, 223–232. [Google Scholar] [CrossRef]
- Nicol, F.; Humphreys, M.; Roaf, S. Adaptive thermal comfort: principles and practice; Routledge, 2012.
- Zaki, S.A.; Damiati, S.A.; Rijal, H.B.; Hagishima, A.; Abd Razak, A. Adaptive thermal comfort in university classrooms in Malaysia and Japan. Build. Environ. 2017, 122, 294–306. [Google Scholar] [CrossRef]
- Talukdar, M.S.J.; Talukdar, T.H.; Singh, M.K.; Baten, M.A.; Hossen, M.S. Status of thermal comfort in naturally ventilated university classrooms of Bangladesh in hot and humid summer season. J. Build. Eng. 2020, 32, 101700. [Google Scholar] [CrossRef]
- Mustapa, M.S.; Zaki, S.A.; Rijal, H.B.; Hagishima, A.; Ali, M.S.M. Thermal comfort and occupant adaptive behaviour in Japanese university buildings with free running and cooling mode offices during summer. Build. Environ. 2016, 105, 332–342. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO) EN 16798-1:2020. Energy performance of buildings - Ventilation for buildings - Part 1: Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acou; 2020.
- Llanos-Jiménez, J.; Suárez, R.; Alonso, A.; Sendra, J.J. Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic. Indoor Air 2024, 2024. [Google Scholar] [CrossRef]
- Korsavi, S.S.; Montazami, A. Children’s thermal comfort and adaptive behaviours; UK primary schools during non-heating and heating seasons. Energy Build. 2020, 214, 109857. [Google Scholar] [CrossRef]
- Teli, D.; Jentsch, M.F.; James, P.A.B. Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy Build. 2012, 53, 166–182. [Google Scholar] [CrossRef]
- Romero, P.; Miranda, M.T.; Montero, I.; Sepúlveda, F.J.; Valero-Amaro, V. Critical Review of the Literature on Thermal Comfort in Educational Buildings: Study of the Influence of the COVID-19 Pandemic. Indoor Air 2023, 2023, 1–36. [Google Scholar] [CrossRef]
- Fabozzi, M.; Dama, A. Field study on thermal comfort in naturally ventilated and air-conditioned university classrooms. Indoor Built Environ. 2020, 29, 851–859. [Google Scholar] [CrossRef]
- Zomorodian, Z.S.; Tahsildoost, M.; Hafezi, M. Thermal comfort in educational buildings: A review article. Renew. Sustain. Energy Rev. 2016, 59, 895–906. [Google Scholar] [CrossRef]
- Peng, Y.; Antanuri, N.; Lau, S.-K.; Jebelli, B.; Jusuf, S.K.; Miller, C.; Teo, Y.T.; Chua, Y.X.; Chong, A. Experimental assessment of thermal and acoustics interactions on occupant comfort in mixed-mode buildings. Build. Environ. 2023, 238, 110342. [Google Scholar] [CrossRef]
- Torriani, G.; Lamberti, G.; Fantozzi, F.; Babich, F. Exploring the impact of perceived control on thermal comfort and indoor air quality perception in schools. J. Build. Eng. 2023, 63, 105419. [Google Scholar] [CrossRef]
- Teli, D.; James, P.A.B.; Jentsch, M.F. Thermal comfort in naturally ventilated primary school classrooms. Build. Res. Inf. Inf. 2013, 41, 301–316. [Google Scholar] [CrossRef]
- Jowkar, M.; Rijal, H.B.; Montazami, A.; Brusey, J.; Temeljotov-Salaj, A. The influence of acclimatization, age and gender-related differences on thermal perception in university buildings: Case studies in Scotland and England. Build. Environ. 2020, 179, 106933. [Google Scholar] [CrossRef]
- Ramprasad Vittal; Subbaiyan Gnanasambandam Perceived Thermal Environment of NaturallyVentilated Classrooms in India. Creat. Sp. 2016, 3, 149–165. [CrossRef]
- Carneiro Lucas, R.E.; da Silva, L.B.; de Souza, E.L. Quantitative analysis of the influence of air temperature variability on thermal perception of Brazilian university students. Work 2023, 74, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yuan, M.; Li, C.; Cheng, Y.; Liu, H. The effect of indoor thermal history on human thermal responses in cold environments of early winter. J. Therm. Biol. 2019, 86, 102448. [Google Scholar] [CrossRef]
- Haddad, S.; Osmond, P.; King, S. Metabolic rate estimation in the calculation of PMV for children. In Proceedings of the 47th International Conference of the Architectural Science Association; 2013.
- Humphreys, M.A.; Rijal, H.B.; Nicol, J.F. Updating the adaptive relation between climate and comfort indoors; new insights and an extended database. Build. Environ. 2013, 63, 40–55. [Google Scholar] [CrossRef]
- Singh, M.K.; Kumar, S.; Ooka, R.; Rijal, H.B.; Gupta, G.; Kumar, A. Status of thermal comfort in naturally ventilated classrooms during the summer season in the composite climate of India. Build. Environ. 2018, 128, 287–304. [Google Scholar] [CrossRef]
- Dorizas, P.V.; Assimakopoulos, M.-N.; Santamouris, M. A holistic approach for the assessment of the indoor environmental quality, student productivity, and energy consumption in primary schools. Environ. Monit. Assess. 2015, 187, 259. [Google Scholar] [CrossRef]
- Montazami, A.; Gaterell, M.; Nicol, F.; Lumley, M.; Thoua, C. Impact of social background and behaviour on children’s thermal comfort. Build. Environ. 2017, 122, 422–434. [Google Scholar] [CrossRef]
- Almeida, R.M.S.F.; de Freitas, V.P. IEQ Assessment of Classrooms with an Optimized Demand Controlled Ventilation System. Energy Procedia 2015, 78, 3132–3137. [Google Scholar] [CrossRef]
- Haddad, S.; Osmond, P.; King, S. Relationship between children’s comfort temperature and outdoor climate: Some methodological issues. Proc. - 9th Int. Wind. Conf. 2016 Mak. Comf. Relev. 2016, 1270-1283.
- CIBSE Chartered Institution of Building Services Engineers; CIBSE, 2021.
- Brager, G.S.; de Dear, R.J. Thermal adaptation in the built environment: a literature review. Energy Build. 1998, 27, 83–96. [Google Scholar] [CrossRef]
- de Dear, R.J.; Brager, G.S. Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy Build. 2002, 34, 549–561. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Rubio-Bellido, C. Adaptive Thermal Comfort Models for Buildings. En Adaptive Thermal Comfort of Indoor Environment for Residential Buildings; 2021; pp. 13–33.
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Romero, P.; Valero-Amaro, V.; Rubio, S.; Miranda, M.T. An Analysis of Thermal Comfort as an Influencing Factor on the Academic Performance of University Students. Educ. Sci. 2024, 14, 1340. [Google Scholar] [CrossRef]
- Tripathi, B.; Moulic, S.G. Investigation of Air Drafting Pattern Obtained from the Variation in Outlet Positions inside a Closed Area. J. Appl. Fluid Mech. 2012, 5. [Google Scholar] [CrossRef]
- Kabanshi, A.; Wigö, H.; Ljung, R.; Sörqvist, P. Human perception of room temperature and intermittent air jet cooling in a classroom. Indoor Built Environ. 2017, 26, 528–537. [Google Scholar] [CrossRef]
- Suhaila, H.; Suhaimi, I.; Mohamed, M.A.S.; Mustaffa, M.T.; Kartini, A.; Atikah, A. Thermal Comfort Study of a Classroom in Northern Malaysia: A CFD Approach. IOP Conf. Ser. Mater. Sci. Eng. 2019, 670, 012011. [Google Scholar] [CrossRef]
- Kim, S.-K.; Ryu, J.-H.; Seo, H.-C.; Hong, W.-H. Understanding Occupants’ Thermal Sensitivity According to Solar Radiation in an Office Building with Glass Curtain Wall Structure. Buildings 2022, 12, 58. [Google Scholar] [CrossRef]
- Chaiyapinunt, S.; Khamporn, N. Effect of solar radiation on human thermal comfort in a tropical climate. Indoor Built Environ. 2021, 30, 391–410. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Sabatino, S. Di; Martilli, A.; Chan, P.W. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong. Environ. Res. Lett. 2018, 13, 034015. [Google Scholar] [CrossRef]
- Lan, L.; Lian, Z.; Liu, W.; Liu, Y. Investigation of gender difference in thermal comfort for Chinese people. Eur. J. Appl. Physiol. 2008, 102, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, A.; de la Hoz-Torres, M.; Martínez-Aires, M.; Ruiz, D. Thermal Perception in Naturally Ventilated University Buildings in Spain during the Cold Season. Buildings 2022, 12, 890. [Google Scholar] [CrossRef]
- Chu, J. Evaluation of the Effects of Airflow Patterns on Human Thermal Perception. Highlights Sci. Eng. Technol. 2023, 51, 34–41. [Google Scholar] [CrossRef]
- Bayoumi, M. Improving Indoor Air Quality in Classrooms via Wind-Induced Natural Ventilation. Model. Simul. Eng. 2021, 2021, 1–14. [Google Scholar] [CrossRef]













| University | No. of classrooms studied | No. of students | Operation mode | |
|---|---|---|---|---|
| Max. | Min. | |||
| ESE | 7 | 42 | 9 | NV |
| 4 | 17 | 6 | AC | |
| ESS | 2 | 30 | 20 | NV |
| 2 | 20 | 13 | AC | |
| Scale | Thermal Sensation (TS) | Thermal Comfort (TC) | Thermal Preference (TP) |
|---|---|---|---|
| -3 | Cold | ||
| -2 | Cool | ||
| -1 | Slightly cool | Cooler | |
| 0 | Neutral | No change | |
| 1 | Slightly warm | Very comfortable | Warmer |
| 2 | Warm | Comfortable | |
| 3 | Hot | Slightly uncomfortable | |
| 4 | Uncomfortable | ||
| 5 | Very uncomfortable |
| Equipment | Parameter | Probe | Range | Accuracy |
|---|---|---|---|---|
| Thermal microclimate HD32.1 instrument (Delta Ohm) |
Ta (°C) | HP3217R | -40 to 100°C | 1.5+1.5% measure (15 to 35°C) |
| Tg (°C) | TP3275 | -30 to 120°C | ||
| RH (%) | HP3217R | 0 to 100% RH | ±1.5% RH (0 to 90% RH) ±2%RH (90 to 100% RH) |
|
| va (m/s) | AP3203 | 0.02 to 5 m/s |
| University | Sample | Gender | Age | Iclo (clo) | Activity (W/m2) | ||||
|---|---|---|---|---|---|---|---|---|---|
| Male | Female | Other | 18-24 | 24-30 | +30 | ||||
| ESE | 191 | 85 | 105 | 1 | 160 | 27 | 4 | 0.33 | 70.00 |
| ESS | 83 | 6 | 77 | 0 | 72 | 8 | 3 | 0.25 | |
| Air temperature (°C) | Relative humidity (%) | Air velocity (km/h) | |
|---|---|---|---|
| Mean | 28.24 | 50.62 | 12.80 |
| SD | 2.99 | 10.91 | 2.08 |
| Max | 33.29 | 76.15 | 16.38 |
| Min | 21.49 | 33.33 | 9.49 |
| University | Classroom code | N | Windows/Doors | Operation mode | Ta (°C) |
Tg (°C) |
Tmrt (°C) |
Top (°C) |
RH (%) |
va (m/s) |
|---|---|---|---|---|---|---|---|---|---|---|
| ESE | ESE01 | 16 | CW/OD | NV | 26.14 | 25.56 | 24.88 | 25.51 | 48.96 | 0.03 |
| ESE02 | 19 | OW/OD | NV | 27.03 | 26.22 | 25.79 | 26.41 | 33.99 | 0.08 | |
| ESE03 | 21 | OW/OD | NV | 27.32 | 26.49 | 26.06 | 26.69 | 32.75 | 0.07 | |
| ESE04 | 6 | CW/CD | AC | 22.38 | 22.82 | 23.49 | 22.94 | 48.02 | 0.01 | |
| ESE05 | 42 | OW/OD | NV | 25.39 | 25.29 | 25.26 | 25.33 | 57.54 | 0.04 | |
| ESE06 | 10 | CW/OD | NV | 25.59 | 25.56 | 25.57 | 25.58 | 51.60 | 0.00 | |
| ESE07 | 24 | CW/OD | NV | 26.69 | 26.28 | 25.80 | 26.25 | 63.11 | 0.04 | |
| ESE08 | 13 | CW/OD | NV | 25.57 | 25.31 | 25.25 | 25.41 | 53.22 | 0.01 | |
| ESE09 | 17 | CW/CD | AC | 24.95 | 24.42 | 24.24 | 24.60 | 59.44 | 0.00 | |
| ESE10 | 9 | CW/CD | AC | 24.96 | 25.29 | 24.66 | 24.80 | 59.36 | 0.00 | |
| ESE11 | 14 | CW/CD | AC | 24.48 | 26.19 | 24.86 | 25.17 | 53.44 | 0.01 | |
| ESS | ESS01 | 20 | CW/CD | AC | 24.67 | 24.59 | 24.57 | 24.62 | 47.00 | 0.02 |
| ESS02 | 13 | CW/CD | AC | 24.47 | 24.27 | 24.15 | 24.31 | 38.67 | 0.00 | |
| ESS03 | 20 | CW/OD | NV | 31.24 | 31.33 | 31.42 | 31.33 | 39.40 | 0.05 | |
| ESS04 | 30 | CW/OD | NV | 29.73 | 29.63 | 29.51 | 29.62 | 48.74 | 0.08 |
| Operation mode | N | Tc (°C) | ||
|---|---|---|---|---|
| α=0.25 | α=0.33 | α=0.50 | ||
| AC | 79 | 26.23 (±3.18) | 25.84 (±2.46) | 25.42 (±1.71) |
| NV | 195 | 21.42 (±3.52) | 22.74 (±2.76) | 24.14 (±2.15) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
