Submitted:
31 December 2024
Posted:
31 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
Sampling and Generation of the Standard COI Barcode
Primer Design for the Amplicon Melting Curve Analysis
3. Results
3.1. Preparation of Reference DNA Samples
3.2. Analysis of the DNA Melting Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Byrd, J.H.; Tomberlin, J.K. Forensic Entomology: The Utility of Arthropods in Legal Investigations; 3rd ed.; CRC Press: London, UK, 2019. [CrossRef]
- Matuszewski, S.; Bajerlein, D.; Konwerski, S.; Szpila, K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: Succession of carrion fauna. Forensic Sci. Int. 2011, 207(1-3), 150–163. [CrossRef]
- Matuszewski, S. Matuszewski, S. Post-mortem interval estimation based on insect evidence: current challenges. Insects 2021, 12(4), 314. [Google Scholar] [CrossRef]
- Sharma, R.; Garg, R. K.; Gaur, J. R. Various methods for the estimation of the post mortem interval from Calliphoridae: A review. Egyptian J. Forensic Sci. 2015, 5(1), 1–12. [Google Scholar] [CrossRef]
- Ridgeway, J. A.; Midgley, J. M.; Collett, I. J.; Villet, M. H. Advantages of using development models of the carrion beetles Thanatophilus micans (Fabricius) and T. mutilatus (Castelneau) (Coleoptera: Silphidae) for estimating minimum post mortem intervals, verified with case data. Int. J. Legal Med. 2014, 128, 207–220. [CrossRef]
- Kočarek, P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur. J. Soil Biol. 2003, 39, 31–45. [Google Scholar] [CrossRef]
- Castro, C. P.; García, M. D.; da Silva, P. M.; Silva, I. F.; Serrano, A. Coleoptera of forensic interest: A study of seasonal community composition and succession in Lisbon, Portugal. Forensic Sci. Int. 2013, 232(1–3), 73–83. [CrossRef]
- Ratnasingham, S.; Hebert, P. D. BOLD: The Barcode of Life Data System (http://www. barcodinglife. org). Mol. Ecol. Notes 2007, 7(3), 355–364. [CrossRef]
- Tamburro, M.; Ripabelli, G. High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: a comprehensive review of the literature. Ann. Ig. 2017, 29(4), 293–316. [Google Scholar] [CrossRef]
- Malewski, T.; Draber-Mońko, A.; Pomorski, J.; Łoś, M.; Bogdanowicz, W. Identification of forensically important blowfly species (Diptera: Calliphoridae) by high-resolution melting PCR analysis. Int. J. Legal Med. 2010, 124, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Behrens-Chapuis, S.; Malewski, T.; Suchecka, E.; Geiger, M. F.; Herder, F.; Bogdanowicz, W. Discriminating European cyprinid specimens by barcode high-resolution melting analysis (Bar-HRM) - A cost efficient and faster way for specimen assignment? Fish Res. 2018, 204, 61–73. [Google Scholar] [CrossRef]
- Ramón-Laca, A.; Gleeson, D.; Yockney, I.; Perry, M.; Nugent, G.; Forsyth, D. M. Reliable discrimination of 10 ungulate species using high resolution melting analysis of faecal DNA. PLoS ONE 2014, 9(3), e92043. [Google Scholar] [CrossRef]
- Winder, L.; Phillips, C.; Richards, N.; Ochoa-Corona, F.; Hardwick, S.; Vink, C. J.; Goldson, S. Evaluation of DNA melting analysis as a tool for species identification. Methods in Ecology and Evolution 2011, 2(3), 312–320. [Google Scholar] [CrossRef]
- Thanakiatkrai, P.; Kitpipit, T. Meat species identification by two direct-triplex real-time PCR assays using low resolution melting. Food Chem. 2017, 233, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Mori, C.; Matsumura, S. Development and validation of simultaneous identification of 26 mammalian and poultry species by a multiplex assay. Int. J. Legal Med. 2022, 136(1), 1–12. [Google Scholar] [CrossRef] [PubMed]
- Michalska-Hejduk, D. Meadows of the “Granica” complex in the Kampinos National Park (Central Poland): geobotanical characteristics and protection proposals. Nature Conservation 2001, 58, 57–67. [Google Scholar]
- Matysiak, A.; Dembek, W. Floristic diversity of plant communities in selected post-agricultural areas of the Kampinos National Park. Woda – Środowisko – Obszary Wiejskie 2007, 6(2), 231–254.
- Banaszak, J.; Buszko, J.; Czachorowski, S.; Czechowska, W.; Hebda, G.; Liana, A.; Pawlowski, J.; Szeptycki, A.; Trojan, P.; Węgierek P. Przegląd badań inwentaryzacyjnych nad owadami w parkach narodowych Polski. Wiadomości Entomologiczne 2004, 23(2), 5–56.
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol 1994, 3, 294–299. [Google Scholar]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21), 2947–2948. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B. C.; Remm, M.; Rozen, S. G. Primer3 - new capabilities and interfaces. Nucleic Acids Res. 2012, 40(15), e115–e115. [Google Scholar] [CrossRef] [PubMed]
- Wittwer, C. T.; Hemmert, A. C.; Kent, J. O.; Rejali, N. A. DNA melting analysis. Mol. Aspects Med. 2024, 97, 101268. [Google Scholar] [CrossRef] [PubMed]
- Farrar, J.S., Reed, G.H., Wittwer, C.T., High resolution melting curve analysis for molecular diagnostics. In: Molecular Diagnostics, 2nd ed.; Patrinos, G.P.; Ansorge, W. Elsevier, London, UK, 2010, pp. 229-245. [CrossRef]
- Barton P.S.; Cunningham S.A.; Lindenmayer D.B.; Manning A.D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia. 2013;171, 761–772. [CrossRef]
- Dekeirsschieter, J.; Verheggen, F.; Lognay, G.; Haubruge, E. Large carrion beetles (Coleoptera, Silphidae) in Western Europe: a review. Biotechnol. Agron. Soc. Environ 2011, 15(3), 435–447. [Google Scholar]
- Sutton, P. The colonisation of stoat carrion by Nicrophorus spp.(Silphidae). The Coleopterist 2016, 25(1), 11–15. [Google Scholar] [CrossRef]
- Shayya, S.; Dégallier, N.; Nel, A.; Azar, D.; Lackner, T. Contribution to the knowledge of Saprinus Erichson, 1834 of forensic relevance from Lebanon (Coleoptera, Histeridae). ZooKeys 2018, 738, 117–152. [Google Scholar] [CrossRef] [PubMed]
- Charabidze, D.; Vincent, B.; Pasquerault, T.; Hedouin, V. The biology and ecology of Necrodes littoralis, a species of forensic interest in Europe. Int. J. Legal Med 2016, 130(1), 273–280. [Google Scholar] [CrossRef]
- Frątczak-Łagiewska, K.; Matuszewski, S. Resource partitioning between closely related carrion beetles: Thanatophilus sinuatus (F.) and Thanatophilus rugosus (L.) (Coleoptera: Silphidae). Entomol. Gen. 2018, 37, 143–156. [CrossRef]
- Bajerlein, D.; Matuszewski, S.; Konwerski, S. Insect succession on carrion: seasonality, habitat preference and residency of histerid beetles (Coleoptera: Histeridae) visiting pig carrion exposed in various forests (Western Poland). Pol. J. Ecol. 2011, 59, 787–797. [Google Scholar]
- Szelecz, I.; Feddern, N.; Seppey, C. V. W.; Amendt, J.; Mitchell, E. A. D. The importance of Saprinus semistriatus (Coleoptera: Histeridae) for estimating the minimum post-mortem interval. Leg. Med. (Tokyo). [CrossRef]
- Charabidze, D.; Colard, T.; Vincent, B.; Pasquerault, T.; Hedouin, V. Involvement of larder beetles (Coleoptera: Dermestidae) on human cadavers: a review of 81 forensic cases. Int. J. Legal Med 2014, 128(6), 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Kadej, M.; Szleszkowski, Ł.; Thannhäuser, A.; Jurek, T. Dermestes (s.str.) haemorrhoidalis (Coleoptera: Dermestidae) - The Most Frequent Species on Mummified Human Corpses in Indoor Conditions? Three Cases from Southwestern Poland. Insects 2023, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Magni, P.A.; Voss, S.C.; Testi, R.; Borrini, M.; Dadour, I.R. A Biological and Procedural Review of Forensically Significant Dermestes Species (Coleoptera: Dermestidae). J. Med. Entomol 2015, 52(5), 755–769. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, S.; Bajerlein, D.; Konwerski, S.; Szpila, K. An initial study of insect succession and carrion decomposition in various forest habitats of Central Europe. Forensic Sci. Int. [CrossRef]
- Mądra, A.; Konwerski, S.; Matuszewski, S. Necrophilous Staphylininae (Coleoptera: Staphylinidae) as indicators of season of death and corpse relocation. Forensic Sci. Int. 2014, 242, 32–37. [Google Scholar] [CrossRef]
- Frątczak-Łagiewska, K.; Grzywacz, A.; Matuszewski, S. Development and validation of forensically useful growth models for Central European population of Creophilus maxillosus L. (Coleoptera: Staphylinidae). Int. J. Legal Med. 2020, 134, 1531-1545. [CrossRef]
- Matuszewski, S.; Szafałowicz, M. Temperature-dependent appearance of forensically useful beetles on carcasses. Forensic Sci. Int. 2013, 229(1-3), 92-99. [CrossRef]
- Jarmusz, M.; Bajerlein, D. Anoplotrupes stercorosus (Scr.) and Trypocopris vernalis (L.) (Coleoptera: Geotrupidae) visiting exposed pig carrion in forests of Central Europe: seasonality, habitat preferences and influence of smell of decay on their abundances. Entomol. Gen. 2015, 35, 213-228. [CrossRef]
- Urbański, A.; Baraniak, E. Differences in early seasonal activity of three burying beetle species (Coleoptera: Silphidae: Nicrophorus F.) in Poland. Coleopt. Bull. 2015, 69, 283–292.
- Konieczna, K.; Czerniakowski, Z.; Wolański, P. The occurrence and species richnes of nicrophagous Silphidae (Coleoptera) in wooded areas in different degree of urbanization. Baltic Journal of Coleopterology, 2019, 19(2), 213-232.
- Aleksandrowicz, O.; Komosinski, K. On the fauna of carrion beetles (Coleoptera, Silphidae) of Mazurian Lakeland (north-eastern Poland). In: Protection of coleoptera in the Baltic Sea region. Skłodowski, J.; Huruk, S.; Barševskis, A.; Tarasiuk, S. Agricultural University Press, Warsaw, Poland, 2005, pp. 147–153.
- Mazur, A.; Melke, A. Staphylinina (Coleoptera: Staphylininae) of Poland. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań, Poland, 2022.
- Kadej, M.; Szleszkowski, Ł.; Thannhäuser, A.; Jurek, T. A mummified human corpse and associated insects of forensic importance in indoor conditions. Int. J. Legal Med. 2020, 134(5), 1963–1971. [Google Scholar] [CrossRef] [PubMed]
- Sawoniewicz, M. Beetles (Coleoptera) occurring in decaying birch (Betula spp.) wood in the Kampinos National Park. Forest Research Papers, 2013, 74 (1), 71–85. [CrossRef]
- Mroczyński, R.; Marczak, D. Coprophagous beetles (Coleoptera) found in moose (Alces alces L.) feces in Kampinos National Park. World Scientific News, 2017, 86(3), 365-370.
- Szawaryn, K.; Marczak, D. Ladybird beetles (Coleoptera: Coccinellidae) of Kampinos National Park. Entomological News (Poland), 2021, 14-29.
- Mroczyński, R.; Marczak, D. A contribution to the knowledge of the fauna of the Kampinos National Park: Scarabaeidae. Part 1. Subfamilies: Melolonthinae, Sericinae, Rutelinae, Dynastinae i Cetoninae. Entomological News, 2016, 35(3), 161–171.
- Mroczyński, R.; Marczak, D. A contribution to knowledge of fauna of Kampinos National Park: Scarabaeidae. Part 2: Subfamilies: Aphodiinae, Scarabaeinae. Entomological News, 2016, 35(4), 212–224.
- Marczak, D.; Mroczyński, R.; Masiarz, J. Contribution to the knowledge of the fauna of Kampinos National Park: Tetratomidae (Coleoptera: Tenebrionoidea). World Scientific News, 2018, 107, 196-200.
- Marczak, D.; Komosiński, K.; Masiarz, J. Contribution to the knowledge of the fauna of Kampinos National Park: Ptiliidae (Coleoptera: Staphylinoidea). World Scientific News, 2017, 83, 1-14.
- Marczak, D.; Jerzy Borowski, J.; Jędryczkowski, W. A contribution to the knowledge of the fauna of the Kampinos National Park: Dasytidae, Malachiidae (Coleoptera: Cleroidea). Entomological News, 2016, 35(2), 72-81.
- Malewski, T.; Łoś, M.; Sołtyszewski I. Application of HRM–PCR (high resolution melting PCR) for identification of forensically important Coleoptera species. Forensic Sci. Int.: Genetic Supplement Series, 2019, 7(1), 132-134. [CrossRef]
- Dekeirsschieter, J.; Frederickx, C.; Verheggen, F. J.; Boxho, P; Haubruge, E. Forensic entomology investigations from Doctor Marcel Leclercq (1924–2008): a review of cases from 1969 to 2005. J. Med. Entomol. 2013, 50(5), 935-954. [CrossRef]
- Tomsia, M.; Grzywacz, A.; Szpila, K.; Walczak, K.; Mahlerová, K.; Vaněk, D.; Matuszewski, S. Human costal cartilage, tooth cavities, and femur nutrient canals—new niches for insects used in forensic entomology. Forensic Sci. Res. 2024, owae028. [CrossRef]

| BLAST top-hit | Specimen GenBank | ||
|---|---|---|---|
| Identity (%) | GenBank Acc no | Closest Match | Acc no |
| 98.94 | KU906252.1 | Aleochara curtula (Goeze, 1777) | PQ740092 |
| 98.81 | KU906252.1 | A. curtula | PQ740091 |
| 98.93 | KU906252.1 | A. curtula | PQ740090 |
| 99.24 | KU906252.1 | A. curtula | PQ740089 |
| 98.96 | KU906252.1 | A. curtula | PQ740088 |
| 99.37 | KU906252.1 | A. curtula | PQ740087 |
| 100 | KM443099.1 | Anisotoma glabra (Kugelann, 1794) | PQ740105 |
| 98.72 | KM451400.1 | Anoplotrupes stercorosus (Scriba, 1791) | PQ740173 |
| 99.1 | KM451400.1 | A. stercorosus | PQ740172 |
| 98.89 | HQ165003.1 | A. stercorosus | PQ740171 |
| 99.26 | KF317270.1 | Athous subfuscus (Müller, 1764) | PQ740124 |
| Dear Colleagues, | KF317270.1 | A. subfuscus | PQ740123 |
| 99.36 | KF317270.1 | A. subfuscus | PQ740122 |
| 100 | KF317270.1 | A. subfuscus | PQ740121 |
| 99.27 | KF317270.1 | A. subfuscus | PQ740120 |
| 97.09 | HM411773.1 | Carabus nemoralis (Müller, 1764) | Dear Colleagues, |
| 98.97 | HM411773.1 | C. nemoralis | PQ740136 |
| 99.46 | HM411773.1 | C. nemoralis | PQ740135 |
| 99.16 | Dear Colleagues, | Dear Colleagues, | PQ740104 |
| 99.23 | KM449140.1 | C. fuscus | PQ740103 |
| 99.36 | KM449140.1 | C. fuscus | PQ740102 |
| 99.39 | KJ966129.1 | Creophilus maxillosus (Linnaeus, 1758) | PQ740170 |
| 96.75 | KJ966129.1 | C. maxillosus | PQ740169 |
| 99 | KJ966129.1 | C. maxillosus | PQ740168 |
| 97.4 | KU494101.1 | Dermestes undulatus (Brahm, 1790) | PQ740167 |
| 98.67 | KU494101.1 | D. undulatus | PQ740166 |
| 98.7 | KU494101.1 | D. undulatus | PQ740165 |
| 99.09 | JX064157.1 | Geotrupes stercorarius Linnaeus, 1758 | PQ740108 |
| 99.19 | JX064157.1 | G. stercorarius | PQ740107 |
| Dear Colleagues, | KU915456.1 | Hister unicolor (Linnaeus, 1758) | PQ740164 |
| 99.44 | KU915456.1 | H. unicolor | Dear Colleagues, |
| 98.82 | KU915456.1 | H. unicolor | PQ740160 |
| 99.2 | JF889776.1 | Hypocaccus rugifrons (Paykull, 1798) | PQ740114 |
| 99.42 | JF889776.1 | H. rugifrons | PQ740113 |
| 98.83 | KU908440.1 | Margarinotus brunneus (Fabricius, 1775) | PQ740162 |
| 98.49 | KU908440.1 | M. brunneus | PQ740161 |
| 98.97 | KU908440.1 | M. brunneus | PQ740159 |
| 99.65 | MG456750.1 | Necrobia ruficollis (Fabricius, 1775) | PQ740131 |
| 97.98 | KM452149.1 | Necrodes littoralis (Linnaeus, 1758) | PQ740158 |
| 98.52 | KM452149.1 | N. littoralis | PQ740157 |
| 98.65 | KM452149.1 | N. littoralis | PQ740156 |
| 98.09 | KU915489.1 | Nicrophorus investigator (Zetterstedt, 1824) | PQ740119 |
| 98.5 | KU915489.1 | N. investigator | PQ740118 |
| 99.36 | KU915489.1 | N. investigator | PQ740117 |
| 99.35 | KU915079.1 | Nitidula rufipes (Linnaeus, 1767) | PQ740128 |
| 99.16 | KU915079.1 | N. rufipes | PQ740127 |
| 99.85 | KU915079.1 | N. rufipes | PQ740126 |
| 99.48 | KU915079.1 | N. rufipes | PQ740125 |
| 99.01 | MZ659350.1 | Oiceoptoma thoracicum (Linnaeus, 1758) | PQ740155 |
| 98.68 | MZ659350.1 | O. thoracicum | PQ740154 |
| 98.19 | MZ659350.1 | O. thoracicum | PQ740153 |
| 98.74 | LR742640.1 | O. thoracicum | PQ740152 |
| 98.87 | KM440670.1 | Ontholestes murinus (Linnaeus, 1758) | PQ740151 |
| 97.03 | KM440670.1 | O. murinus | PQ740150 |
| 99.11 | KM440670.1 | O. murinus | PQ740149 |
| 98.92 | KM444600.1 | O. murinus | PQ740148 |
| 100 | OL343377.1 | Phelotrupes auratus (Motschulsky, 1857) | PQ740106 |
| 98.24 | KR485683.1 | Philonthus cognatus (Stephens, 1832) | PQ740086 |
| 98.85 | KR485683.1 | P. cognatus | PQ740085 |
| 99.32 | KR485683.1 | P. cognatus | PQ740084 |
| 99.43 | KR485683.1 | P. cognatus | PQ740083 |
| 99.37 | KR485683.1 | P. cognatus | PQ740082 |
| 99.07 | KR485683.1 | P. cognatus | PQ740081 |
| 99.01 | KM441423.1 | Ptenidium nitidum (Heer, 1841) | PQ740096 |
| 99.21 | KM441423.1 | P. nitidum | PQ740095 |
| 99.38 | KM441423.1 | P. nitidum | PQ740094 |
| 99.48 | KM441423.1 | P. nitidum | PQ740093 |
| 99.27 | MN454714.1 | Pterostichus nigrita (Paykull, 1790) | PQ740134 |
| 99.26 | MN454714.1 | P. nigrita | PQ740133 |
| 99.34 | MN454714.1 | P. nigrita | PQ740132 |
| 98.57 | MH307935.1 | Saprinus planiusculus (Motschulsky, 1849) | PQ740147 |
| 99.52 | MH307935.1 | S. planiusculus | PQ740146 |
| 99.26 | MH307935.1 | S. planiusculus | PQ740145 |
| 99.18 | KM439324.1 | Saprinus semistriatus (L.G.Scriba, 1790) | PQ740112 |
| 99.28 | KM439324.1 | S. semistriatus | PQ740111 |
| 99.16 | KM439324.1 | S. semistriatus | PQ740110 |
| 99.36 | KM439324.1 | S. semistriatus | PQ740109 |
| 99.18 | KM849301.1 | Sciodrepoides watsoni (Spence, 1813) | PQ740100 |
| 97.75 | KM849301.1 | S. watsoni | PQ740099 |
| 98.9 | KM849301.1 | S. watsoni | PQ740098 |
| 99.46 | MZ609983.1 | S. watsoni | PQ740097 |
| 98.74 | HQ559261.1 | Silpha tristis (Illiger, 1798) | PQ740116 |
| 99.25 | HQ559261.1 | S. tristis | PQ740115 |
| 99.25 | HQ559261.1 | S. tristis | PQ740174 |
| 99.04 | KU916971.1 | Stephostethus lardarius (DeGeer, 1775) | PQ740130 |
| 99.14 | KU916971.1 | S. lardarius | PQ740129 |
| 98.5 | KM441510.1 | Thanatophilus sinuatus (Fabricius, 1775) | PQ740144 |
| 98.14 | KM441510.1 | T. sinuatus | PQ740143 |
| 99.47 | KM441510.1 | T. sinuatus | PQ740142 |
| 99.05 | KM441510.1 | T. sinuatus | PQ740141 |
| 99.19 | KJ963777.1 | Thanatophilus rugosus (Linnaeus, 1758) | PQ740140 |
| 95.26 | KJ963777.1 | T. rugosus | PQ740139 |
| 99.41 | KJ963777.1 | T. rugosus | PQ740138 |
| Amplicon Tm (C0). Mean ± SD. | Species | |
|---|---|---|
| Coleop II | Coleop I | |
| 67.0 ± 0.17 | no product | Dermestes undulatus |
| 69.5 ± 0.11 | no product | Necrodes littoralis |
| 70.1 ± 0.14 | no product | Oiceoptoma thoracicum |
| no product | 75.5 ± 0.11 | Thanatophilus rugosus |
| no product | 76.0 ± 0.14 | Hister unicolor |
| no product | 76.6 ± 0.15 | Anoplotrupes stercorosus |
| no product | 77.0 ± 0.13 | Creophilus maxillosus |
| no product | 77.5 ± 0.11 | Margarinotus brunneus |
| 69.5 ± 0.12 | 72.1 ± 0.10 | Ontholestes murinus |
| 69.4 ± 0.16 | 76.0 ± 0.09 | Saprinus planiusculus |
| 69.5 ± 0.11 | 77.1 ± 0.17 | Nicrophorus vespilloides |
| 69.6 ± 0.09 | 78.0 ± 0.15 | Philonthus cognatus |
| 70.0 ± 0.10 | 76.1 ± 0.16 | Aleochara curtula |
| 70.0 ± 0.14 | 76.5 ± 0.11 | Silpha tristis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
