Submitted:
22 December 2024
Posted:
24 December 2024
You are already at the latest version
Abstract
4-Chloro-5-chlorosulfonylsalicylic acid [C7H4Cl2O5S] is a derivative of salicylic acid and a diuretic agent. Its ability to form polymorphs through recrystallization from various solvents was demonstrated. As a result, four polymorphs were successfully obtained and analyzed using single-crystal X-ray diffraction and powder X-ray diffraction. The solid-state properties were investigated by evaluating crystal lattice energies and intermolecular interactions.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Crystallization Experiments
2.2. Single Crystal X-Ray Diffraction and Refinement
2.3. Powder X-Ray Diffraction Analysis
2.4. Computational Chemistry
3. Results
3.1. Descriptions of the Crystal Structures
3.1.1. Polymorph 1
3.1.2. Polymorph 2
3.1.3. Polymorph 3
3.1.4. Polymorph 4
3.2. Powder X-Ray Diffraction
3.3. Hirshfeld Surface Analysis
3.4. Intermolecular Interaction Energies
3.5. Crystal Lattice Energies in Polymorphs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- War, A.R.; Paulraj, M.G.; War, M.Y.; Ignacimuthu, S. Role of Salicylic Acid in Induction of Plant Defense System in Chickpea ( Cicer Arietinum L.). Plant Signaling & Behavior 2011, 6, 1787–1792. [Google Scholar] [CrossRef]
- Madan, R.K.; Levitt, J. A Review of Toxicity from Topical Salicylic Acid Preparations. Journal of the American Academy of Dermatology 2014, 70, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Bilal, H.; Xiao, Y.; Khan, M.N.; Chen, J.; Wang, Q.; Zeng, Y.; Lin, X. Stabilization of Acne Vulgaris-Associated Microbial Dysbiosis with 2% Supramolecular Salicylic Acid. Pharmaceuticals 2023, 16, 87. [Google Scholar] [CrossRef]
- Andrýsková, N.; Motyčka, J.; Babincová, M.; Babinec, P.; Šimaljaková, M. Computational Design of a Novel Dithranol–Salicylic Acid Antipsoriatic Prodrug for Esterase-Activated Topical Drug Delivery. Applied Sciences 2024, 14, 1094. [Google Scholar] [CrossRef]
- Măgerușan, Șoimița E.; Hancu, G.; Rusu, A. A Comprehensive Bibliographic Review Concerning the Efficacy of Organic Acids for Chemical Peels Treating Acne Vulgaris. Molecules 2023, 28, 7219. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.H. Exploring Acne Treatments: From Pathophysiological Mechanisms to Emerging Therapies. IJMS 2024, 25, 5302. [Google Scholar] [CrossRef]
- Song, X.; Li, R.; Zhang, Q.; He, S.; Wang, Y. Antibacterial Effect and Possible Mechanism of Salicylic Acid Microcapsules against Escherichia Coli and Staphylococcus Aureus. IJERPH 2022, 19, 12761. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, A.A.; Bazhmina, M.Yu.; Smirnov, V.A. Synthesis and Diuretic Activity of 4-Chlorosalicylic Acid Derivatives. Pharm Chem J 1987, 21, 641–645. [Google Scholar] [CrossRef]
- Smith, R.L.; Woltersdorf, O.W.; Cragoe, E.J. Chapter 8: Diuretics. In Annual Reports in Medicinal Chemistry; Elsevier, 1976; Vol. 11, pp. 71–79 ISBN 978-0-12-040511-4.
- Braun, D.E.; Karamertzanis, P.G.; Arlin, J.-B.; Florence, A.J.; Kahlenberg, V.; Tocher, D.A.; Griesser, U.J.; Price, S.L. Solid-State Forms of β-Resorcylic Acid: How Exhaustive Should a Polymorph Screen Be? Crystal Growth & Design 2011, 11, 210–220. [Google Scholar] [CrossRef]
- Sarma, B.; Sanphui, P.; Nangia, A. Polymorphism in Isomeric Dihydroxybenzoic Acids. Crystal Growth & Design 2010, 10, 2388–2399. [Google Scholar] [CrossRef]
- Turza, A.; Borodi, G.; Miclaus, M.O.; Kacso, I. Structural Studies of the Diuretic Compound 4-Chloro Salicylic Acid-5-Sulfonamide. Journal of Molecular Structure 2020, 1212, 128154. [Google Scholar] [CrossRef]
- Montis, R.; Hursthouse, M.B. Surprisingly Complex Supramolecular Behaviour in the Crystal Structures of a Family of Mono-Substituted Salicylic Acids. CrystEngComm 2012, 14, 5242. [Google Scholar] [CrossRef]
- Alexandru, T.; Maria, M.O.; Liviu, Z.; Maria, D.; Irina, K.; Gheorghe, B. New Solid Forms of the Diuretic Compound 4-Chloro Salicylic Acid-5-Sulfonamide. Journal of Molecular Structure 2021, 1241, 130682. [Google Scholar] [CrossRef]
- Bernstein, J. Polymorphism in Molecular Crystals; IUCr monographs on crystallography; Second edition.; Oxford University Press: Oxford ; New York, 2020; ISBN 978-0-19-965544-1.
- Vippagunta, S.R.; Brittain, H.G.; Grant, D.J.W. Crystalline Solids. Advanced Drug Delivery Reviews 2001, 48, 3–26. [Google Scholar] [CrossRef] [PubMed]
- Chistyakov, D.; Sergeev, G. The Polymorphism of Drugs: New Approaches to the Synthesis of Nanostructured Polymorphs. Pharmaceutics 2020, 12, 34. [Google Scholar] [CrossRef]
- CrysAlis PRO 2018.
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. J Appl Crystallogr 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr A Found Crystallogr 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr A Found Adv 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr C Struct Chem 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer : A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J Appl Crystallogr 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, C.F.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems. IUCrJ 2017, 4, 575–587. [Google Scholar] [CrossRef]
- Hahn, T. International Tables for Crystallography; 5th ed.; Kluwer academic publ: Dordrecht, 2002; ISBN 978-0-7923-6590-7.
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0 : From Visualization to Analysis, Design and Prediction. J Appl Crystallogr 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Chisholm, J.A.; Motherwell, S. COMPACK : A Program for Identifying Crystal Structure Similarity Using Distances. J Appl Crystallogr 2005, 38, 228–231. [Google Scholar] [CrossRef]
- Spek, A.L. checkCIF validation ALERTS: What they mean and how to respond. Acta Crystallogr. Sect. E Crystallogr. Commun. 2020, 76, 1–11. [Google Scholar] [CrossRef] [PubMed]







| Identification code | Polymorph 1 | Polymorph 2 | Polymorph 3 | Polymorph 4 |
| Empirical formula | C7H4Cl2O5S | C7H4Cl2O5S | C7H4Cl2O5S | C7H4Cl2O5S |
| Formula weight | 271.06 | 271.06 | 271.06 | 271.06 |
| Temperature/K | 293(2) | 293(2) | 293(2) | 293(2) |
| Crystal system | monoclinic | triclinic | monoclinic | monoclinic |
| Space group | C2/c | P-1 | P21/c | P21/c |
| a/Å | 16.1353(7) | 7.6935(7) | 7.4495(3) | 5.9570(2) |
| b/Å | 7.3277(3) | 8.1150(7) | 8.5652(2) | 9.6985(3) |
| c/Å | 17.1273(7) | 8.7459(9) | 15.4974(5) | 16.8231(5) |
| α/° | 90 | 81.717(8) | 90 | 90 |
| β/° | 95.571(4) | 68.786(9) | 97.386(3) | 95.364(3) |
| γ/° | 90 | 79.410(8) | 90 | 90 |
| Volume/Å3 | 2015.48(15) | 498.57(9) | 980.63(6) | 967.68(5) |
| Z’ | 1 | 1 | 1 | 1 |
| Z | 8 | 2 | 4 | 4 |
| ρcalcg/cm3 | 1.787 | 1.806 | 1.836 | 1.861 |
| μ/mm-1 | 7.781 | 0.856 | 0.870 | 8.103 |
| F(000) | 1088.0 | 272.0 | 544.0 | 544.0 |
| Radiation | CuKα (λ = 1.54184) | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) | Cu Kα (λ = 1.54184) |
| 2Θ range for data collection/° | 10.378 to 142.836 | 6.862 to 58.076 | 7.124 to 58.136 | 10.54 to 142.178 |
| Index ranges | -15 ≤ h ≤ 19, -8 ≤ k ≤ 4, -18 ≤ l ≤ 20 | -9 ≤ h ≤ 9, -11 ≤ k ≤ 9, -11 ≤ l ≤ 10 | -9 ≤ h ≤ 9, -11 ≤ k ≤ 11, -20 ≤ l ≤ 20 | -7 ≤ h ≤ 7, -11 ≤ k ≤ 11, -20 ≤ l ≤ 12 |
| Reflections collected | 3114 | 3305 | 13001 | 3406 |
| Independent reflections | 1909 [Rint = 0.0140, Rsigma = 0.0230] | 2147 [Rint = 0.0372, Rsigma = 0.0643] | 2384 [Rint = 0.0458, Rsigma = 0.0372] | 1829 [Rint = 0.0206, Rsigma = 0.0301] |
| Data/restraints/parameters | 1909/0/138 | 2147/4/144 | 2384/2/144 | 1829/0/139 |
| Goodness-of-fit on F2 | 1.050 | 1.072 | 1.078 | 1.049 |
| Final R indexes [I>=2σ (I)] | R1 = 0.0344, wR2 = 0.0886 | R1 = 0.0565, wR2 = 0.1320 | R1 = 0.0628, wR2 = 0.1714 | R1 = 0.0359, wR2 = 0.0970 |
| Final R indexes [all data] | R1 = 0.0384, wR2 = 0.0926 | R1 = 0.0783, wR2 = 0.1656 | R1 = 0.0967, wR2 = 0.1967 | R1 = 0.0406, wR2 = 0.1032 |
| Largest diff. peak/hole / e Å-3 | 0.32/-0.48 | 0.42/-0.62 | 0.72/-0.67 | 0.35/-0.33 |
| Contact | dnorm distance (Å) | ∑vdW (Å) | Δ(∑vdW-dnorm distance) | Symmetry operation |
| Polymorph 1 | ||||
| O1-H1···O2 | 1.666 | 2.72 | 0.944 | ½-x,1/2-y,-z |
| O3-H3···O5 | 2.490 | 2.72 | 0.12 | x, 1-y, -1/2+z |
| C4-H4···O4 | 2.445 | 2.72 | 0.165 | x, 1+y, z |
| O4···C1 | 2.904 | 3.22 | 0.316 | ½-x, ½+y, 1/2-z |
| O4···C2 | 3.129 | 3.22 | 0.091 | ½-x, ½+y, 1/2-z |
| C1···Cl2 | 3.409 | 3.45 | 0.041 | 1-x, y, ½-y |
| Polymorph 2 | ||||
| O1-H1···O2 | 1.705 | 2.72 | 0.905 | 1-x, 1-y, -1-z |
| O3-H3···O5 | 2.387 | 2.72 | 0.223 | 1+x, y, -1+z |
| C4-H4···O4 | 2.308 | 2.72 | 0.302 | 1+x, y, z |
| Cl2···O3 | 3.249 | 3.27 | 0.021 | 1-x, 2-y, -z |
| Polymorph 3 | ||||
| O1-H1···O2 | 1.718 | 2.72 | 0.892 | -x, -y, -z |
| C4···C4 (π ···π) | 3.393 | 3.40 | 0.007 | 1-x, 1-y, -z |
| C7-H7···Cl2 | 2.949 | 2.95 | 0.109 | -x, -1/2+y, ½-z |
| C7···O5 | 3.213 | 3.22 | 0.007 | 1-x, -1/2+y, ½-z |
| Polymorph 4 | ||||
| O1-H1···O2 | 1.698 | 2.72 | 0.912 | -x, 2-y, 1-z |
| O3-H3···O5 | 2.606 | 2.72 | 0.004 | x, 1.5-y, ½+z |
| C7-H7···Cl2 | 2.925 | 2.95 | 0.025 | -x, ½+y, ½-z |
| Cl1···Cl2 | 3.425 | 3.50 | 0.075 | 1+x, y, z |
| O3···Cl2 | 3.258 | 3.27 | 0.012 | 1-x, 1-y, 1-z |
| Crystal | Contact | Eele | Epol | Edisp | Erep | Etot |
| Polymorph 1 | O1-H1···O2 | -115.0 | -19.9 | -11.5 | 87.6 | -59.8 |
| O3-H3···O5 | -2.5 | -0.9 | -7.4 | 3.1 | -7.6 | |
| C4-H4···O4 | -4.7 | -1.4 | -11.5 | 7.1 | -10.5 | |
| O4 ···C1 O4 ···C2 |
-16.1 | -2.7 | -24.9 | 10.6 | -33.1 | |
| Cl2 ···C1 | -8.9 | -0.7 | -39.0 | 19.8 | -28.8 | |
| Polymorph 2 | O1-H1···O2 | -104.9 | -17.6 | -11.6 | 74.6 | -59.5 |
| O3-H3···O5 | -5.3 | -1.0 | -7.2 | 4.5 | -9.0 | |
| C4-H4···O4 | -6.9 | -0.9 | -8.4 | 6.6 | -9.6 | |
| Cl2···O3 | -6.1 | -0.6 | -29.5 | 14.9 | -21.3 | |
| Polymorph 3 | O1-H1···O2 | -101.0 | -16.6 | -11.1 | 72.8 | -55.9 |
| C4···C4 (π ···π) | -2.7 | -0.8 | -34.1 | 14.4 | -23.2 | |
| C7-H7···Cl2 | -4.1 | -1.1 | -13.5 | 0 | -18.7 | |
| C7···O5 | -7.6 | -2.3 | -11.9 | 4.5 | -17.3 | |
| Polymorph 4 | O1-H1···O2 | -107.4 | -19.1 | -11.5 | 79.9 | -58.1 |
| O3-H3···O5 | -3.7 | -0.7 | -6.8 | 2.8 | -8.4 | |
| C7-H7···Cl2 | -12.8 | -1.4 | -11.2 | 7.4 | -18.0 | |
| Cl1···Cl2 | 4.3 | -1.0 | -18.6 | 9.4 | -5.9 | |
| O3 ···Cl2 | -2.8 | -0.7 | -33.0 | 15.0 | -21.5 |
| Structure | Ecoul (kJ/mol) | Epol (kJ/mol) | Edisp (kJ/mol) | Erep (kJ/mol) | Elatt (kJ/mol) | Density (g/cm3) | Packing index % |
| Polymorph 1 | -88.7 | -9.2 | -87.9 | 79.4 | -106.4 | 1.787 | 68.5 |
| Polymorph 2 | -81.4 | -6.0 | -98.0 | 77.1 | -108.3 | 1.806 | 69.3 |
| Polymorph 3 | -76.6 | -10.2 | -101.2 | 73.4 | -114.6 | 1.836 | 70.8 |
| Polymorph 4 | -82.2 | -10.3 | -97.3 | 80.5 | -109.3 | 1.861 | 71.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
