Submitted:
20 December 2024
Posted:
23 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Background
2. Udder Health
2.1. Impact on Milk Production and Quality
2.1.1. Decrease in Milk Yield
2.1.2. Alterations in Milk Composition and Quality
3. Economic Implications
3.1. Direct Costs
3.2. Indirect Costs
4. Economic Estimates and Industry Impact
5. Welfare Considerations
5.1. Physical Discomfort and Pain
5.2. Emotional and Behavioral Changes
5.3. Quality of Life and Ethical Considerations
6. Prevalence of Mastitis
6.1. Global and Regional Prevalence
6.2. Global Prevalence
6.3. Regional Variations








7. Influencing Factors
8. Factors Influencing Prevalence
8.1. Management Practices
8.2. Environmental Conditions
8.3. Genetics
9. Subclinical Mastitis
9.1. Characteristics of Subclinical Mastitis
10. Detection and Diagnosis
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| CM | Clinical Mastitis |
| CMT | California Mastitis Test |
| DMD | Draminski Mastitis Detector |
| LMICs | Low-and-middle-income countries |
| LPS | Lipopolysaccharide |
| MMPs | Matrix Metalloproteinases |
| SCC | Somatic Cell Count |
| SCM | Subclinical Mastitis |
| WST | White Side Test |
References
- Arnott, G.; Ferris, C.P.; O’Connell, N.E. Review: Welfare of dairy cows in continuously housed and pasture-based production systems. Animal 2017, 11, 261–273. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortázar Schmidt, C.; Herskin, M.; Michel, V.; Miranda Chueca, M.Á.; Padalino, B.; Roberts, H.C.; Spoolder, H.; Stahl, K.; Velarde, A.; Viltrop, A.; De Boyer des Roches, A.; Jensen, M.B.; Mee, J.; Green, M.; Thulke, H.H.; Bailly-Caumette, E.; Candiani, D.; Lima, E.; Van der Stede, Y.; Winckler, C; EFSA Panel on Animal Health and Animal Welfare (AHAW). Welfare of dairy cows. EFSA J. 2023, 21, e07993. [Google Scholar] [CrossRef] [PubMed]
- Ventura, G.; Lorenzi, V.; Mazza, F.; Clemente, G.A.; Iacomino, C.; Bertocchi, L.; Fusi, F. Best farming practices for the welfare of dairy cows, heifers and calves. Animals (Basel) 2021, 11, 2645. [Google Scholar] [CrossRef] [PubMed]
- Abeni, F.; Bertoni, G. Main causes of poor welfare in intensively reared dairy cows. Ital. J. Anim. Sci. 2009, 8, 45–66. [Google Scholar] [CrossRef]
- Neculai-Valeanu, A.S.; Ariton, A.M. Udder health monitoring for prevention of bovine mastitis and improvement of milk quality. Bioengineering (Basel) 2022, 9, 608. [Google Scholar] [CrossRef]
- Brown, K.A.; Venkateshmurthy, N.S.; Potubariki, G. The role of dairy in healthy and sustainable food systems: community voices from India. BMC Public Health 2022, 22, 806. [Google Scholar] [CrossRef]
- Shamsuddoha, M.; Nasir, T.; Hossain, N.U.I. A sustainable supply chain framework for dairy farming operations: A system dynamics approach. Sustainability 2023, 15, 8417. [Google Scholar] [CrossRef]
- FAO. Milk and dairy products in human nutrition; Food and Agriculture Organization of the United Nations (FAO): Rome, 2013. https://www.fao.org/4/i3396e/i3396e.pdf.
- Gonçalves, J.L.; Kamphuis, C.; Martins, C.M.; Barreiro, J.R.; Tomazi, T.; Gameiro, A.H.; Hogeveen, H.; Dos Santos, M.V. Bovine subclinical mastitis reduces milk yield and economic return. Livest. Sci. 2018, 210, 25–32. [Google Scholar] [CrossRef]
- Zachut, M.; Šperanda, M.; De Almeida, A.M.; Gabai, G.; Mobasheri, A.; Hernández-Castellano, L.E. Biomarkers of fitness and welfare in dairy cattle: Healthy productivity. J. Dairy Res. 2020, 87, 4–13. [Google Scholar] [CrossRef]
- Themistokleous, K.S.; Papadopoulos, I.; Panousis, N.; Zdragas, A.; Arsenos, G.; Kiossis, E. Udder Ultrasonography of Dairy Cows: Investigating the Relationship between Echotexture, Blood Flow, Somatic Cell Count and Milk Yield during Dry Period and Lactation. Animals 2023, 13, 1779. [Google Scholar] [CrossRef]
- Barkema, H.W.; von Keyserlingk, M.A.; Kastelic, J.P.; Lam, T.J.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed]
- Forsbäck, L.; Lindmark-Månsson, H.; Andrén, A.; Åkerstedt, M.; Svennersten-Sjaunja, K. Udder quarter milk composition at different levels of somatic cell count in cow composite milk. Animal 2009, 3, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Ubaldo, A.L.; Rivero-Perez, N.; Valladares-Carranza, B.; Velázquez-Ordoñez, V.; Delgadillo-Ruiz, L.; Zaragoza-Bastida, A. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Vet. Anim. Sci. 2023, 21, 100306. [Google Scholar] [CrossRef] [PubMed]
- Botrel, M.A.; Haenni, M.; Morignat, E.; Sulpice, P.; Madec, J.Y.; Calavas, D. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhône-Alpes, France. Foodborne Pathog. Dis. 2010, 7, 479–487. [Google Scholar] [CrossRef]
- Hegde, R.; Isloor, S.; Prabhu, K.N.; Shome, B.R.; Rathnamma, D.; Suryanarayana, V.V.; Yatiraj, S.; Prasad, C.R.; Krishnaveni, N.; Sundareshan, S.; Akhila, D.S. Incidence of subclinical mastitis and prevalence of major mastitis pathogens in organized farms and unorganized sectors. Indian J. Microbiol. 2013, 53, 315–320. [Google Scholar] [CrossRef]
- Pakrashi, A.; Ryan, C.; Guéret, C.; Berry, D.P.; Corcoran, M.; Keane, M.T.; Mac Namee, B. Early detection of subclinical mastitis in lactating dairy cows using cow-level features. J. Dairy Sci. 2023, 106, 4978–4990. [Google Scholar] [CrossRef]
- Shittu, A.; Junaidu, A.U.; Chafe, U.M.; Magaji, A.A.; Faleke, O.O.; Salihu, M.D.; Jibril, A.; Mahmud, M.A. A Survey on Current Milk Production and Pricing in Sokoto State, Nigeria. Sokoto J. Vet. Sci. 2008, 7, 53–58. [Google Scholar]
- Shittu, A.; Abdullahi, J.; Jibril, A.; Mahmud, M.A. Sub-clinical mastitis and associated risk factors on lactating cows in the Savannah Region of Nigeria. BMC Vet. Res. 2012, 8, 134. [Google Scholar] [CrossRef]
- Rege, J.E.O.; Tawah, C.L. The state of African cattle genetic resources II. Geographical distribution, characteristics and uses of present-day breeds and strains. Anim. Genet. Resour. Inf. Bull. 1999, 26, 1–26. [Google Scholar] [CrossRef]
- Adeyeye, A.A.; Muhammad, B.I.; Adamu, U. Reproductive Performance and its Associated Factors in Cows Raised in Sokoto, Nigeria. J. Agric. Environ. 2020, 16, 35–42. [Google Scholar]
- Nosike, R.J.; Nwakpu, O.F.; Isaac, U.C.; Akinsola, K.L.; Nwose, R.N.; Onunkwo, D.N. Characterization of indigenous cattle genotypes based on linear body traits in the humid tropics. Nig. J. Anim. Prod. 2020, 47, 41–46. [Google Scholar] [CrossRef]
- Zapata-Salas, R.; Guarín, J.F.; Ríos-Osorio, L.A. Udder health, conceptual construct, and uses of the term: A systematic review from 1962 to 2019. Vet. World 2022, 15, 855–869. [Google Scholar] [CrossRef]
- Böker, A.R.; Bartel, A.; Do Duc, P.; Hentzsch, A.; Reichmann, F.; Merle, R.; Arndt, H.; Dachrodt, L.; Woudstra, S.; Hoedemaker, M. Status of udder health performance indicators and implementation of on-farm monitoring on German dairy cow farms: Results from a large-scale cross-sectional study. Front. Vet. Sci. 2023, 10, 1193301. [Google Scholar] [CrossRef] [PubMed]
- Azooz, M.F.; El-Wakeel, S.A.; Yousef, H.M. Financial and economic analyses of the impact of cattle mastitis on the profitability of Egyptian dairy farms. Vet. World 2020, 13, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Abed, A.H.; Menshawy, A.M.S.; Zeinhom, M.M.A.; Hossain, D.; Khalifa, E.; Wareth, G.; Awad, M.F. Subclinical mastitis in selected bovine dairy herds in North Upper Egypt: Assessment of prevalence, causative bacterial pathogens, antimicrobial resistance, and virulence-associated genes. Microorganisms 2021, 9, 1175. [Google Scholar] [CrossRef] [PubMed]
- Ezzat Alnakip, M.; Quintela-Baluja, M.; Böhme, K.; Fernández-No, I.; Caamaño-Antelo, S.; Calo-Mata, P.; Barros-Velázquez, J. The immunology of the mammary gland of dairy ruminants between healthy and inflammatory conditions. J. Vet. Med. 2014, 659801. [Google Scholar] [CrossRef]
- Blum, S.E.; Heller, D.E.; Jacoby, S.; et al. Physiological response of mammary glands to Escherichia coli infection: A conflict between glucose need for milk production and immune response. Sci. Rep. 2020, 10, 9602. [Google Scholar] [CrossRef]
- Goncalves, J.L.; Freu, G.; Garcia, B.L.N.; Barcelos, M.M.; Alves, B.G.; de Freitas Leite, R.; Pedrosa Monteiro, C.; Martins, M.; Tomazi, T.; Hogeveen, H.; Veiga dos Santos, M. Effect of bovine subclinical mastitis on milk production and economic performance of Brazilian dairy farms. Braz. J. Vet. Res. Anim. Sci. 2023, 60, Article–e208514. [Google Scholar] [CrossRef]
- Plummer, P.J.; Plummer, C. Diseases of the Mammary Gland. In Sheep and Goat Medicine; Second Edition, 2012, 442–465. [CrossRef]
- Olde Riekerink, R.G.; Barkema, H.W.; Veenstra, W.; Berg, F.E.; Stryhn, H.; Zadoks, R.N. Somatic cell count during and between milkings. J. Dairy Sci. 2007, 90, 3733–3741. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Bhadwal, M.S. Relationship of somatic cell count and mastitis: An overview. Asian-Aust. J. Anim. Sci. 2011, 24, 429–438. [Google Scholar] [CrossRef]
- Rainard, P.; Foucras, G.; Boichard, D.; Rupp, R. Invited review: Low milk somatic cell count and susceptibility to mastitis. J. Dairy Sci. 2018, 101, 6703–6714. [Google Scholar] [CrossRef] [PubMed]
- Sumon, S.M.M.R.; Parvin, M.S.; Ehsan, M.A.; Islam, M.T. Relationship between somatic cell counts and subclinical mastitis in lactating dairy cows. Vet. World 2020, 13, 1709–1713. [Google Scholar] [CrossRef]
- van den Crommenacker-Konings, L.W.J.H.; van Dam, P.; Everts, R.; Shittu, A.; Nielen, M.; Lam, T.J.G.M.; Koop, G. Dynamics of intramammary infections in suckler ewes during early lactation. J. Dairy Sci. 2021, 104, 5979–5987. [Google Scholar] [CrossRef]
- Taponen, S.; Myllys, V.; Pyörälä, S. Somatic cell count in bovine quarter milk samples culture positive for various Staphylococcus species. Acta Vet. Scand. 2022, 64, 32. [Google Scholar] [CrossRef]
- Williamson, J.; Callaway, T.; Rollin, E.; Ryman, V. Association of milk somatic cell count with bacteriological cure of intramammary infection—A review. Agriculture 2022, 12, 1437. [Google Scholar] [CrossRef]
- Fadillah, A.; van den Borne, B.H.P.; Poetri, O.N.; Hogeveen, H.; Slijper, T.; Pisestyani, H.; Schukken, Y.H. Evaluation of factors associated with bulk milk somatic cell count and total plate count in Indonesian smallholder dairy farms. Front. Vet. Sci. 2023, 10, 1280264. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, C.; Dhuyvetter, K.; Mitchell, R.; Schukken, Y. Influence of variable milk quality premiums on observed milk quality. J. Dairy Sci. 2008, 91, 1236–1244. [Google Scholar] [CrossRef]
- Le Maréchal, C.; Thiéry, R.; Vautor, E. Mastitis impact on technological properties of milk and quality of milk products—A review. Dairy Sci. Technol. 2011, 91, 247–282. [Google Scholar] [CrossRef]
- Dejyong, T.; Chanachai, K.; Immak, N.; Prarakamawongsa, T.; Rukkwamsuk, T.; Tago Pacheco, D.; Phimpraphai, W. An economic analysis of high milk somatic cell counts in dairy cattle in Chiang Mai, Thailand. Front. Vet. Sci. 2022, 9, 958163. [Google Scholar] [CrossRef]
- Carmo, R.M.; Nascimento, L.E.; Leão, P.V.; de Paula, G.H.; Dias, M.B.; Fernandes, P.B.; Mesquita, A.A.; Nicolau, E.S.; Rezende, M.M.; Sousa, W.A. , et al. Influence of somatic cell removal on milk quality and yield. Beverages 2024, 10, 5. [Google Scholar] [CrossRef]
- Malek dos Reis, C.B.; Barreiro, J.R.; Mestieri, L.; Porcionato, M.A.; dos Santos, M.V. Effect of somatic cell count and mastitis pathogens on milk composition in Gyr cows. BMC Vet. Res. 2013, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.L.; Kamphuis, C.; Vernooij, H.; Araújo, J.P., Jr.; Grenfell, R.C.; Juliano, L.; Anderson, K.L.; Hogeveen, H.; dos Santos, M.V. Pathogen effects on milk yield and composition in chronic subclinical mastitis in dairy cows. Vet. J. 2020, 262, 105473. [Google Scholar] [CrossRef] [PubMed]
- Harjanti, D.W.; Sambodho, P. Effects of mastitis on milk production and composition in dairy cows. IOP Conf. Ser.: Earth Environ. Sci. 2020, 518, 012032. [Google Scholar] [CrossRef]
- Youssif, N.H.; Hafiz, N.M.; Halawa, M.A.; Aziz, H.M.; Saad, M.F. Impact of subclinical mastitis on milk quality in different seasons. Int. J. Vet. Sci. 2020, 9, 313–316. [Google Scholar]
- Bentayeb, L.; Akkou, M.; Zennia, S.S.-I.; Titouche, Y.; Doumandji, A.; Megateli, S. Impacts of subclinical mastitis on milk quality, clotting ability, and microbial resistance of the causative Staphylococci. Large Anim. Rev. 2023, 29, 105–111. [Google Scholar]
- Bochniarz, M.; Błaszczyk, P.; Szczubiał, M.; Vasiu, I.; Adaszek, Ł.; Michalak, K.; Pietras-Ożga, D.; Wochnik, M.; Dąbrowski, R. Comparative analysis of total protein, casein, lactose, and fat content in milk of cows suffering from subclinical and clinical mastitis caused by Streptococcus spp. J. Vet. Res. 2023, 67, 251–257. [Google Scholar] [CrossRef]
- Batavani, R.A.; Asri, S.; Naebzadeh, H. The effect of subclinical mastitis on milk composition in dairy cows. Iran. J. Vet. Res. 2007, 8, 20. [Google Scholar]
- Martins, L.; Barcelos, M.M.; Cue, R.I.; Anderson, K.L.; Santos, M.V.; Gonçalves, J.L. Chronic subclinical mastitis reduces milk and components yield at the cow level. J. Dairy Res. 2020, 87, 298–305. [Google Scholar] [CrossRef]
- Saleem, H.D.; Razooqi, M.A.; Gharban, H.A.J. Cumulative Effect of Subclinical Mastitis on Immunological and Biochemical Parameters in Cow Milk. Arch. Razi Inst. 2021, 76, 1629–1638. [Google Scholar] [CrossRef]
- Antanaitis, R.; Juozaitienė, V.; Jonike, V.; Baumgartner, W.; Paulauskas, A. Milk Lactose as a Biomarker of Subclinical Mastitis in Dairy Cows. Animals (Basel) 2021, 11, 1736. [Google Scholar] [CrossRef]
- Portnoy, M.; Barbano, D.M. Lactose: Use, measurement, and expression of results. J. Dairy Sci. 2021, 104, 8314–8325. [Google Scholar] [CrossRef] [PubMed]
- Maristela, R.; Natalia, R.; Gerardo, C.; Jordi, S.; Gabriel, L. Effect of subclinical intramammary infection on milk quality in dairy sheep: I. Fresh-soft cheese produced from milk of uninfected and infected glands and from their blends. Small Rumin. Res. 2015, 125, 127–136. [Google Scholar] [CrossRef]
- Bobbo, T.; Ruegg, P.L.; Stocco, G.; Fiore, E.; Gianesella, M.; Morgante, M.; Pasotto, D.; Bittante, G.; Cecchinato, A. Associations between pathogen-specific cases of subclinical mastitis and milk yield, quality, protein composition, and cheese-making traits in dairy cows. J. Dairy Sci. 2017, 100, 4868–4883. [Google Scholar] [CrossRef] [PubMed]
- Olives, A.M.-D.; Peris, C.; Molina, M.P. Effect of subclinical mastitis on the yield and cheese-making properties of ewe’s milk. Small Rumin. Res. 2020, 184, 106044. [Google Scholar] [CrossRef]
- Bezerra, J.S.; Sales, D.C.; Oliveira, J.; et al. Effect of high somatic cell counts on the sensory acceptance and consumption intent of pasteurized milk and coalho cheese. Food Sci. Technol. 2021, 41 (Suppl. 2), 423–431. [Google Scholar] [CrossRef]
- Ivanova, I.; Ivanova, M.; Ivanov, G.; Bilgucu, E. Effect of somatic cells count in cow milk on the formation of biogenic amines in cheese. J. Food Sci. Technol. 2021, 58, 3409–3416. [Google Scholar] [CrossRef]
- Moradi, M.; Omer, A.K.; Razavi, R.; Valipour, S.; Guimarães, J.T. The relationship between milk somatic cell count and cheese production, quality and safety: A review. Int. Dairy J. 2021, 113, 104884. [Google Scholar] [CrossRef]
- FAO. Impact of mastitis in small-scale dairy production systems. Anim. Prod. Health Work. Pap. 2014, 13. [Google Scholar]
- Silva-Villacorta, D.; Lopez-Villalobos, N.; Blair, H.T.; Hickson, R.E.; MacGibbon, A.K. Production and profitability of dairy farms producing milk with different concentrations of unsaturated fatty acids: A simulation study. N. Z. J. Agric. Res. 2016, 60, 32–44. [Google Scholar] [CrossRef]
- Sinha, M.K.; Thombare, N.N.; Mondal, B. Subclinical mastitis in dairy animals: incidence, economics, and predisposing factors. Sci. World J. 2014, 2014, 523984. [Google Scholar] [CrossRef]
- Aghamohammadi, M.; Haine, D.; Kelton, D.F.; Barkema, H.W.; Hogeveen, H.; Keefe, G.P.; Dufour, S. Herd-Level Mastitis Associated Costs on Canadian Dairy Farms. Front. Vet. Sci. 2018, 5, 100. [Google Scholar] [CrossRef] [PubMed]
- Moru, N.H.; Umoh, J.U.; Maikai, B.V.; Barje, P.P.; Amuta, P. Milk yield losses and cost of clinical mastitis in Friesian × Bunaji crossbred dairy cows in Zaria, Nigeria. Sokoto J. Vet. Sci. 2018, 16. [Google Scholar] [CrossRef]
- Richardet, M.; Solari, H.G.; Cabrera, V.E.; Vissio, C.; Agüero, D.; Bartolomé, J.A.; Bó, G.A.; Bogni, C.I.; Larriestra, A.J. The Economic Evaluation of Mastitis Control Strategies in Holstein-Friesian Dairy Herds. Animals (Basel) 2023, 13, 1701. [Google Scholar] [CrossRef] [PubMed]
- Busanello, M.; Freitas, L.N.; Winckler, J.P.P.; et al. Month-wise variation and prediction of bulk tank somatic cell count in Brazilian dairy herds and its impact on payment based on milk quality. Ir. Vet. J. 2017, 70, 26. [Google Scholar] [CrossRef] [PubMed]
- Senturk, B. Evaluation of the Costs of Clinical Mastitis Treatment in Dairy Farming. World's Vet. J. 2014, 4, 11–14.
- Wilm, J.; Svennesen, L.; Østergaard Eriksen, E.; Halasa, T.; Krömker, V. Veterinary Treatment Approach and Antibiotic Usage for Clinical Mastitis in Danish Dairy Herds. Antibiotics (Basel) 2021, 10, 189. [Google Scholar] [CrossRef]
- de Jong, E.; van der Velden, I.; Smid, A.-M.C.; Ida, J.A.; Reyher, K.K.; Kelton, D.F.; Barkema, H.W. Dairy farmers’ considerations for antimicrobial treatment of clinical mastitis in British Columbia and Alberta, Canada. Front. Vet. Sci. 2024, 11, 1417958. [Google Scholar] [CrossRef]
- Bar, D.; Tauer, L.W.; Bennett, G.; González, R.N.; Hertl, J.A.; Schukken, Y.H.; Schulte, H.F.; Welcome, F.L.; Gröhn, Y.T. The cost of generic clinical mastitis in dairy cows as estimated by using dynamic programming. J. Dairy Sci. 2008, 91, 2205–2214. [Google Scholar] [CrossRef]
- Rollin, E.; Dhuyvetter, K.C.; Overton, M.W. The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Prev. Vet. Med. 2015, 122, 257–264. [Google Scholar] [CrossRef]
- van Soest, F.J.S.; Santman-Berends, I.M.G.A.; Lam, T.J.G.M.; Hogeveen, H. Failure and preventive costs of mastitis on Dutch dairy farms. J. Dairy Sci. 2016, 99, 8365–8374. [Google Scholar] [CrossRef]
- Bonestroo, J.; Fall, N.; Hogeveen, H.; Emanuelson, U.; Klaas, I.C.; van der Voort, M. The costs of chronic mastitis: A simulation study of an automatic milking system farm. Prev. Vet. Med. 2023, 210, 105799. [Google Scholar] [CrossRef]
- de Jong, E.; McCubbin, K.D.; Speksnijder, D.; Dufour, S.; Middleton, J.R.; Ruegg, P.L.; Lam, T.J.G.M.; Kelton, D.F.; McDougall, S.; Godden, S.M.; Lago, A.; Rajala-Schultz, P.J.; Orsel, K.; De Vliegher, S.; Krömker, V.; Nobrega, D.B.; Kastelic, J.P.; Barkema, H.W. Invited review: Selective treatment of clinical mastitis in dairy cattle. J. Dairy Sci. 2023, 106, 3761–3778. [Google Scholar] [CrossRef] [PubMed]
- Leite de Campos, J.; Gonçalves, J.L.; Kates, A.; Steinberger, A.; Sethi, A.; Suen, G.; Shutske, J.; Safdar, N.; Goldberg, T.; Ruegg, P.L. Variation in partial direct costs of treating clinical mastitis among 37 Wisconsin dairy farms. J. Dairy Sci. 2023, 106, 9276–9286. [Google Scholar] [CrossRef] [PubMed]
- Ott, S. Costs of herd-level production losses associated with subclinical mastitis in U.S. dairy cows. Proceedings of the 38th Annual Meeting of National Mastitis Council, Arlington, VA. 1999, 152–156.
- Blowey, R.W.; Edmondson, P. Mastitis Control in Dairy Herds; CABI: 2010; 2nd edition.
- Holland, J.K.; Hadrich, J.C.; Wolf, C.A.; Lombard, J. Economics of Measuring Costs Due to Mastitis-Related Milk Loss. Presentation at the 2015 AAEA & WAEA Joint Annual Meeting, San Francisco, CA, July 26–28, 2015.
- Janzen, J.J. Economic losses resulting from mastitis: A review. J. Dairy Sci. 1970, 53, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Geary, U.; Begley, N.; McCoy, F.; O’Brien, B.; O’Grady, L.; Shalloo, L. Estimating the impact of mastitis on the profitability of Irish dairy farms. In Udder Health and Communication; Hogeveen, H., Lam, T.J.G.M., Eds.; Wageningen Academic Publishers: Wageningen, 2011. [Google Scholar] [CrossRef]
- Guimarães, J.L.B.; Brito, M.A.V.P.; Lange, C.C.; Silva, M.R.; Ribeiro, J.B.; Mendonça, L.C.; Mendonça, J.F.M.; Souza, G.N. Estimate of the economic impact of mastitis: A case study in a Holstein dairy herd under tropical conditions. Prev. Vet. Med. 2017, 142, 46–50. [Google Scholar] [CrossRef]
- Sachi, S.; Ferdous, J.; Sikder, M.H.; Azizul Karim Hussani, S.M. Antibiotic residues in milk: Past, present, and future. J. Adv. Vet. Anim. Res. 2019, 6, 315–332. [Google Scholar] [CrossRef]
- He, W.; Ma, S.; Lei, L.; He, J.; Li, X.; Tao, J.; Wang, X.; Song, S.; Wang, Y.; Wang, Y.; Shen, J.; Cai, C.; Wu, C. Prevalence, etiology, and economic impact of clinical mastitis on large dairy farms in China. Vet. Microbiol. 2020, 242, 108570. [Google Scholar] [CrossRef]
- Singh, S.V.; Singh, J.P.; Ramakant, D.N.; Kumar, Y.D.; Rakesh, G.; Maurya, S.K. Analysis of economic losses due to mastitis in cattle of Uttar Pradesh, India. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 1571–1576. [Google Scholar] [CrossRef]
- Kebede, N.; Tilahun, A. Review on dairy cow mastitis and its economic impact. Int. J. Adv. Res. Biol. Sci. 2023, 10, 109–125. [Google Scholar] [CrossRef]
- Bascom, S.S.; Young, A.J. A summary of the reasons why farmers cull cows. J. Dairy Sci. 1998, 81, 2299–305. [Google Scholar] [CrossRef]
- Seegers, H.; Beaudeau, F.; Fourichon, C.; Bareille, N. Reasons for culling in French Holstein cows. Prev. Vet. Med. 1998, 36, 257–71. [Google Scholar] [CrossRef]
- Seegers, H.; Fourichon, C.; Beaudeau, F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet. Res. 2003, 34, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Olechnowicz, J.; Jaskowski, J.M. Reasons for culling, culling due to lameness, and economic losses in dairy cows. Medycyna Weterynaryjna 2011, 67. [Google Scholar]
- Pinedo, P.J.; Daniels, A.; Shumaker, J.; De Vries, A. Dynamics of culling for Jersey, Holstein, and Jersey × Holstein crossbred cows in large multibreed dairy herds. J. Dairy Sci. 2014, 97, 2886–2895. [Google Scholar] [CrossRef] [PubMed]
- Rilanto, T.; Reimus, K.; Orro, T.; et al. Culling reasons and risk factors in Estonian dairy cows. BMC Vet. Res. 2020, 16, 173. [Google Scholar] [CrossRef]
- Cockram, M.S. Invited Review: The welfare of cull dairy cows. Applied Animal Science. 2021, 37, 334–352. [Google Scholar] [CrossRef]
- Yanga, D.S.; Jaja, I.F. Culling and mortality of dairy cows: why it happens and how it can be mitigated. F1000Res. 2022, 10, 1014. [Google Scholar] [CrossRef]
- Kulkarni, P.S.; Mourits, M.C.M.; Slob, J.; Veldhuis, A.M.B.; Nielen, M.; Hogeveen, H.; Schaik, G.V.; Steeneveld, W. Dutch dairy farmers' perspectives on culling reasons and strategies. Prev. Vet. Med. 2023, 218, 105997. [Google Scholar] [CrossRef]
- Dubuc, J.; Duffield, T.F.; Leslie, K.E.; Walton, J.S.; Leblanc, S.J. Effects of postpartum uterine diseases on milk production and culling in dairy cows. J. Dairy Sci. 2011, 94, 1339–1346. [Google Scholar] [CrossRef]
- De Vliegher, S.; Fox, L.K.; Piepers, S.; McDougall, S.; Barkema, H.W. Invited review: Mastitis in dairy heifers: nature of the disease, potential impact, prevention, and control. J. Dairy Sci. 2012, 95, 1025–1040. [Google Scholar] [CrossRef]
- Carvalho, M.R.; Peñagaricano, F.; Santos, J.E.P.; DeVries, T.J.; McBride, B.W.; Ribeiro, E.S. Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows. J. Dairy Sci. 2019, 102, 11701–11717. [Google Scholar] [CrossRef]
- Haxhiaj, K.; Wishart, D.S.; Ametaj, B.N. Mastitis: What It Is, Current Diagnostics, and the Potential of Metabolomics to Identify New Predictive Biomarkers. Dairy. 2022, 3, 722–746. [Google Scholar] [CrossRef]
- Miyata, S.; Fan, L.; Kambe, J.; Qasimi, M.I.; Takemoto, S.; Ito, M.; Li, C.; Yamamoto, Y.; Nagaoka, K. Influence of repeated mastitis on milk production and metabolic status in the subsequent lactation period of dairy cattle. Heliyon. 2024, 10, e29789. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.; Barkema, H.W.; Osei, P.P.; Taylor, J.; Shaw, A.P.; Conrady, B.; Chaters, G.; Muñoz, V.; Hall, D.C.; Apenteng, O.O.; Rushton, J.; Torgerson, P.R. Global losses due to dairy cattle diseases: A comorbidity-adjusted economic analysis. J. Dairy Sci. 2024, 107, 6945–6970. [Google Scholar] [CrossRef]
- Nakada, S.; Fujimoto, Y.; Kohara, J.; Makita, K. Economic losses associated with mastitis due to bovine leukemia virus infection. J. Dairy Sci. 2023, 106, 576–588. [Google Scholar] [CrossRef]
- Cheng, W.N.; Han, S.G. Bovine mastitis: risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australas. J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef]
- Mainau, E.; Llonch, P.; Temple, D.; Goby, L.; Manteca, X. Alteration in Activity Patterns of Cows as a Result of Pain Due to Health Conditions. Animals. 2022, 12, 176. [Google Scholar] [CrossRef]
- Morales-Ubaldo, A.L.; Rivero-Perez, N.; Valladares-Carranza, B.; Velázquez-Ordoñez, V.; Delgadillo-Ruiz, L.; Zaragoza-Bastida, A. Bovine mastitis, a worldwide impact disease: Prevalence, antimicrobial resistance, and viable alternative approaches. Vet. Anim. Sci. 2023, 21, 100306. [Google Scholar] [CrossRef]
- Ataallahi, M.; Cheon, S.N.; Park, G.W.; Nugrahaeningtyas, E.; Jeon, J.H.; Park, K.H. Assessment of Stress Levels in Lactating Cattle: Analyzing Cortisol Residues in Commercial Milk Products in Relation to the Temperature-Humidity Index. Animals. 2023, 13, 2407. [Google Scholar] [CrossRef]
- Jurkovich, V.; Hejel, P.; Kovács, L. A Review of the Effects of Stress on Dairy Cattle Behaviour. Animals. 2024, 14, 2038. [Google Scholar] [CrossRef]
- Siivonen, J.; Taponen, S.S.; Hovinen, M.; Pastell, M.; Lensink, J.; Pyörälä, S.; Hänninen, L. Impact of clinical acute mastitis on cow behaviour. Applied Animal Behaviour Science. 2011, 132, 101–106. [Google Scholar] [CrossRef]
- de Boyer des Roches, A.; Faure, M.; Lussert, A.; Herry, V.; Rainard, P.; Durand, D.; Foucras, G. Behavioral and patho-physiological response as possible signs of pain in dairy cows during Escherichia coli mastitis: A pilot study. J. Dairy Sci. 2017, 100, 8385–8397. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, I.; Gertz, M.; Krieter, J. Alterations in sick dairy cows' daily behavioural patterns. Heliyon 2019, 5, e02902. [Google Scholar] [CrossRef]
- McLennan, K.M. Why pain is still a welfare issue for farm animals, and how facial expression could be the answer. Agriculture 2018, 8, 127. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.G.; Weary, D.M. A 100-year review: Animal welfare in the Journal of Dairy Science-The first 100 years. J. Dairy Sci. 2017, 100, 10432–10444. [Google Scholar] [CrossRef] [PubMed]
- Temple, D.; Manteca, X. Animal welfare in extensive production systems is still an area of concern. Front. Sustain. Food Syst. 2020, 4, 545902. [Google Scholar] [CrossRef]
- Hernandez, E.; Llonch, P.; Turner, P.V. Applied animal ethics in industrial food animal production: Exploring the role of the veterinarian. Animals (Basel) 2022, 12, 678. [Google Scholar] [CrossRef]
- Zigo, F.; Vasil', M.; Ondrašovičová, S.; Výrostková, J.; Bujok, J.; Pecka-Kielb, E. Maintaining optimal mammary gland health and prevention of mastitis. Front. Vet. Sci. 2021, 8, 607311. [Google Scholar] [CrossRef]
- Krishnamoorthy, P.; Goudar, A.L.; Suresh, K.P.; Roy, P. Global and countrywide prevalence of subclinical and clinical mastitis in dairy cattle and buffaloes by systematic review and meta-analysis. Res. Vet. Sci. 2021, 136, 561–586. [Google Scholar] [CrossRef]
- Çelik Gürbulak, E.; Akçay, A. Meta-analysis of the prevalence of subclinical mastitis in dairy cattle. J. Hellenic Vet. Med. Soc. 2024, 74, 6649–6662. [Google Scholar] [CrossRef]
- Zadoks, R.; Fitzpatrick, J. Changing trends in mastitis. Ir. Vet. J. 2009, 62 (Suppl. 4). [Google Scholar] [CrossRef]
- Krishnamoorthy, P.; Suresh, K.P.; Jayamma, K.S.; Shome, B.R.; Patil, S.S.; Amachawadi, R.G. An understanding of the global status of major bacterial pathogens of milk concerning bovine mastitis: A systematic review and meta-analysis (Scientometrics). Pathogens 2021, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- Miltenburg, J.D.; De Lange, D.; Crauwels, A.P.P.; Bongers, J.H.; Tielen, M.J.M.; Schukken, Y.H.; Elbers, A.R.W. Incidence of clinical mastitis in a random sample of dairy herds in the southern Netherlands. Vet. Rec. 1996, 139, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Norberg, E.; Hogeveen, H.; Korsgaard, I.R.; Friggens, N.C.; Sloth, K.H.; Løvendahl, P. Electrical conductivity of milk: Ability to predict mastitis status. J. Dairy Sci. 2004, 87, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Sampimon, O.C.; Barkema, H.W.; Berends, I.M.; Sol, J.; Lam, T.J. Prevalence and herd-level risk factors for intramammary infection with coagulase-negative staphylococci in Dutch dairy herds. Vet. Microbiol. 2009, 134, 37–44. [Google Scholar] [CrossRef]
- Borne, B.H.; Schaik, G.; Lam, T.J.; Nielen, M. Variation in herd-level mastitis indicators between primi- and multiparae in Dutch dairy herds. Prev. Vet. Med. 2010, 96, 49–55. [Google Scholar] [CrossRef]
- Valde, J.P.; Lawson, L.G.; Lindberg, A.; Agger, J.F.; Saloniemi, H.; Osterås, O. Cumulative risk of bovine mastitis treatments in Denmark, Finland, Norway, and Sweden. Acta Vet. Scand. 2004, 45, 201–210. [Google Scholar] [CrossRef]
- Hiitiö, H.; Vakkamäki, J.; Simojoki, H.; et al. Prevalence of subclinical mastitis in Finnish dairy cows: Changes during recent decades and impact of cow and herd factors. Acta Vet. Scand. 2017, 59, 22. [Google Scholar] [CrossRef]
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef]
- Olde Riekerink, R.G.; Barkema, H.W.; Kelton, D.F.; Scholl, D.T. Incidence rate of clinical mastitis on Canadian dairy farms. J. Dairy Sci. 2008, 91, 1366–1377. [Google Scholar] [CrossRef]
- Abebe, R.; Hatiya, H.; Abera, M.; et al. Bovine mastitis: Prevalence, risk factors and isolation of Staphylococcus aureus in dairy herds at Hawassa milk shed, South Ethiopia. BMC Vet. Res. 2016, 12, 270. [Google Scholar] [CrossRef]
- Khasapane, N.G.; Byaruhanga, C.; Thekisoe, O.; Nkhebenyane, S.J.; Khumalo, Z.T.H. Prevalence of subclinical mastitis, its associated bacterial isolates, and risk factors among cattle in Africa: A systematic review and meta-analysis. BMC Vet. Res. 2023, 19, 123. [Google Scholar] [CrossRef] [PubMed]
- Iraguha, B. Bovine mastitis control strategies with emphasis on developing countries. Vet. Med. Sci. 2024, IntechOpen. [Google Scholar] [CrossRef]
- Shittu, A.; Abdullahi, J.; Jibril, A.; et al. Sub-clinical mastitis and associated risk factors on lactating cows in the Savannah Region of Nigeria. BMC Vet. Res. 2012, 8, 134. [Google Scholar] [CrossRef] [PubMed]
- Blignaut, D.; Thompson, P.; Petzer, I.M. Prevalence of mastitis pathogens in South African pasture-based and total mixed ration-based dairies during 2008 and 2013. Onderstepoort J. Vet. Res. 2018, 85, e1–e7. [Google Scholar] [CrossRef]
- McDougall, S. Prevalence of clinical mastitis in 38 Waikato dairy herds in early lactation. N. Z. Vet. J. 1999, 47, 143–149. [Google Scholar] [CrossRef]
- Plozza, K.; Lievaart, J.J.; Potts, G.; Barkema, H.W. Subclinical mastitis and associated risk factors on dairy farms in New South Wales. Aust. Vet. J. 2011, 89, 41–46. [Google Scholar] [CrossRef]
- Chung, L.K.; Sahibzada, S.; Annandale, H.C.; Robertson, I.D.; Waichigo, F.W.; Tufail, M.S.; Aleri, J.A. Bacterial pathogens associated with clinical and subclinical mastitis in a Mediterranean pasture-based dairy production system of Australia. Res. Vet. Sci. 2021, 141, 103–109. [Google Scholar] [CrossRef]
- Moscovici Joubran, A.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O'Callaghan, T.F. Invited review: A 2020 perspective on pasture-based dairy systems and products. J. Dairy Sci. 2021, 104, 7364–7382. [Google Scholar] [CrossRef]
- Morse, D.; DeLorenzo, M.A.; Wilcox, C.J.; Collier, R.J.; Natzke, R.P.; Bray, D.R. Climatic effects on occurrence of clinical mastitis. J. Dairy Sci. 1988, 71, 848–853. [Google Scholar] [CrossRef]
- Vitali, A.; Bernabucci, U.; Nardone, A.; Lacetera, N. Effect of season, month and temperature humidity index on the occurrence of clinical mastitis in dairy heifers. Adv. Anim. Biosci. 2016, 7, 250–252. [Google Scholar] [CrossRef]
- Jamali, H.; Barkema, H.W.; Jacques, M.; Lavallée-Bourget, E.M.; Malouin, F.; Saini, V.; Stryhn, H.; Dufour, S. Invited review: Incidence, risk factors, and effects of clinical mastitis recurrence in dairy cows. J. Dairy Sci. 2018, 101, 4729–4746. [Google Scholar] [CrossRef] [PubMed]
- Hogan, J.; Smith, K.L. Managing environmental mastitis. Vet. Clin. North Am. Food Anim. Pract. 2012, 28, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, D.; Ponieważ, A. The Effect of Housing System on Disease Prevalence and Productive Lifespan of Dairy Herds—A Case Study. Animals (Basel) 2022, 12, 1610. [Google Scholar] [CrossRef] [PubMed]
- Nogarafr, G.; Garcia, B.L.N.; Tomazi, T.; Di Leo, G.S.; Gheller, L.S.; Bronzo, V.; Moroni, P.; Dos Santos, M.V. Association between Mastitis Occurrence in Dairy Cows and Bedding Characteristics of Compost-Bedded Pack Barns. Pathogens 2023, 12, 583. [Google Scholar] [CrossRef]
- Meçaj, R.; Muça, G.; Koleci, X.; Sulçe, M.; Turmalaj, L.; Zalla, P.; Koni, A.; Tafaj, M. Bovine environmental mastitis and their control: an overview. Int. J. Agric. Biosci. 2023, 12, 216–221. [Google Scholar] [CrossRef]
- LeBlanc, S.J.; Lissemore, K.D.; Kelton, D.F.; Duffield, T.F.; Leslie, K.E. Major advances in disease prevention in dairy cattle. J. Dairy Sci. 2006, 89, 1267–1279. [Google Scholar] [CrossRef]
- Farag, H.S.; Aly, S.S.; Fahim, K.M.; Fayed, A.A.; Abdelfattah, E.M.; El-Sayed, S.M.; Hegazy, Y.M.; ElAshmawy, W.R. Management Practices of Bovine Mastitis and Milk Quality on Egyptian Dairies. Vet. Sci. 2023, 10, 629. [Google Scholar] [CrossRef]
- Shook, G.E.; Schutz, M.M. Selection on somatic cell score to improve resistance to mastitis in the United States. J. Dairy Sci. 1994, 77, 648–658. [Google Scholar] [CrossRef]
- Rupp, R.; Boichard, D. Genetics of resistance to mastitis in dairy cattle. Vet. Res. 2003, 34, 671–688. [Google Scholar] [CrossRef]
- Berry, D.P.; Bermingham, M.L.; Good, M.; et al. Genetics of animal health and disease in cattle. Ir. Vet. J. 2011, 64, 5. [Google Scholar] [CrossRef]
- Weigel, K.A.; Shook, G.E. Genetic Selection for Mastitis Resistance. Vet. Clin. North Am. Food Anim. Pract. 2018, 34, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Brajnik, Z.; Ogorevc, J. Candidate genes for mastitis resistance in dairy cattle: a data integration approach. J. Anim. Sci. Biotechnol. 2023, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Narayana, S.G.; de Jong, E.; Schenkel, F.S.; Fonseca, P.A.S.; Chud, T.C.S.; Powell, D.; Wachoski-Dark, G.; Ronksley, P.E.; Miglior, F.; Orsel, K.; Barkema, H.W. Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J. Dairy Sci. 2023, 106, 323–351. [Google Scholar] [CrossRef]
- Fávero, S.; Portilho, F.V.R.; Oliveira, A.C.R.; Langoni, H.; Pantoja, J.C.F. Factors associated with mastitis epidemiologic indexes, animal hygiene, and bulk milk bacterial concentrations in dairy herds housed on compost bedding. Livest. Sci. 2015, 181, 220–230. [Google Scholar] [CrossRef]
- Patel, K.; Godden, S.M.; Royster, E.; Crooker, B.A.; Timmerman, J.; Fox, L. Relationships among bedding materials, bedding bacteria counts, udder hygiene, milk quality, and udder health in US dairy herds. J. Dairy Sci. 2019, 102, 10213–10234. [Google Scholar] [CrossRef]
- Alanis, V.M.; Zurakowski, M.; Pawloski, D.; Tomazi, T.; Nydam, D.V.; Ospina, P.A. Description of the characteristics of five bedding materials and association with bulk tank milk quality on five New York dairy herds. Front. Vet. Sci. 2021, 8, 636833. [Google Scholar] [CrossRef]
- Nogara, K.F.; Busanello, M.; Tavares, Q.G.; De Assis, J.A.; Freu, G.; Dos Santos, M.V.; Vieira, F.M.C.; Zopollatto, M. Factors influencing milk quality and subclinical mastitis in dairy herds housed in compost-bedded pack barn system. Animals 2023, 13, 3638. [Google Scholar] [CrossRef]
- Biffa, D.; Debela, E.; Beyene, F. Prevalence and risk factors of mastitis in lactating dairy cows in Southern Ethiopia. Int. J. Appl. Res. Vet. Med. 2005, 3, 189–198. [Google Scholar]
- Jingar, S.C.; Mehla, R.K.; Singh, M. Climatic effects on occurrence of clinical mastitis in different breeds of cows and buffaloes. Arch. Zootec. 2014, 63, 473–482. [Google Scholar] [CrossRef]
- Assatbayeva, G.; Issabekova, S.; Uskenov, R.; Karymsakov, T.; Abdrakhmanov, T. Influence of microclimate on ketosis, mastitis, and diseases of cow reproductive organs. Anim. Behav. Biometeorol. 2022, 10, 2230. [Google Scholar] [CrossRef]
- Leso, L.; Barbari, M.; Lopes, M.A.; Damasceno, F.A.; Galama, P.; Taraba, J.L.; Kuipers, A. Invited review: Compost-bedded pack barns for dairy cows. J. Dairy Sci. 2020, 103, 1072–1099. [Google Scholar] [CrossRef] [PubMed]
- Harmon, R.J. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. 1994, 77, 2103–2112. [Google Scholar] [CrossRef] [PubMed]
- Sender, G.; Korwin-Kossakowska, A.; Pawlik, A.; Abdel Hameed, K.G.; Oprządek, J. Genetic basis of mastitis resistance in dairy cattle – a review. Ann. Anim. Sci. 2013, 13, 663–673. [Google Scholar] [CrossRef]
- Zemanova, M.; Langova, L.; Novotná, I.; Dvorakova, P.; Vrtkova, I.; Havlicek, Z. Immune mechanisms, resistance genes, and their roles in the prevention of mastitis in dairy cows. Arch. Anim. Breed. 2022, 65, 371–384. [Google Scholar] [CrossRef]
- Gutiérrez-Reinoso, M.A.; Aponte, P.M.; García-Herreros, M. Genomic and Phenotypic Udder Evaluation for Dairy Cattle Selection: A Review. Animals (Basel) 2023, 13, 1588. [Google Scholar] [CrossRef]
- Sumon, S.M.M.R.; Parvin, M.S.; Ehsan, M.A.; Islam, M.T. Relationship between somatic cell counts and subclinical mastitis in lactating dairy cows. Vet. World 2020, 13, 1709–1713. [Google Scholar] [CrossRef]
- Williamson, J.; Callaway, T.; Rollin, E.; Ryman, V. Association of Milk Somatic Cell Count with Bacteriological Cure of Intramammary Infection—A Review. Agriculture 2022, 12, 1437. [Google Scholar] [CrossRef]
- Tommasoni, C.; Fiore, E.; Lisuzzo, A.; Gianesella, M. Mastitis in Dairy Cattle: On-Farm Diagnostics and Future Perspectives. Animals (Basel) 2023, 13, 2538. [Google Scholar] [CrossRef]
- Fernandes, J.N.; Hemsworth, P.H.; Coleman, G.J.; Tilbrook, A.J. Costs and Benefits of Improving Farm Animal Welfare. Agriculture 2021, 11, 104. [Google Scholar] [CrossRef]
- Rice, D.N. G81-556 Using the California Mastitis Test (CMT) to Detect Subclinical Mastitis. Historical Materials from University of Nebraska-Lincoln Extension 1981, 483. https://digitalcommons.unl.edu/extensionhist/483.
- Chakraborty, S.; Dhama, K.; Tiwari, R.; Iqbal Yatoo, M.; Khurana, S.K.; Khandia, R.; Munjal, A.; Munuswamy, P.; Kumar, M.A.; Singh, M.; Singh, R.; Gupta, V.K.; Chaicumpa, W. Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population-a review. Vet. Q. 2019, 39, 76–94. [Google Scholar] [CrossRef]
- Menzies, P. Udder Health for Dairy Goats. Vet. Clin. North Am. Food Anim. Pract. 2021, 37, 149–174. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Kusaba, N. Association between differential somatic cell count and California Mastitis Test results in Holstein cattle. JDS Commun. 2022, 3, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Rust, J.D.; Christian, M.J.; Vance, C.J.; Bolajoko, M.B.; Wong, J.T.; Suarez-Martinez, J.; Allan, F.K.; Peters, A.R. A study of the effectiveness of a detergent-based California mastitis test (CMT), using Ethiopian and Nigerian domestic detergents, for the detection of high somatic cell counts in milk and their reliability compared to the commercial UK CMT. Gates Open Res. 2023, 5, 146. [Google Scholar] [CrossRef] [PubMed]
- Badiuzzaman, M.; Samad, M.A.; Siddiki, S.H.M.F.; Islam, M.T.; Saha, S. Subclinical Mastitis in Lactating Cows: Comparison of Four Screening Tests and Effect of Animal Factors on Its Occurrence. Bangl. J. Vet. Med. 2015, 13, 41–50. [Google Scholar] [CrossRef]
- Tanni, N.S.; Islam, M.S.; Kabir, M.; Parvin, M.S.; Ehsan, M.A.; Islam, M.T. Evaluation of sodium lauryl sulfate for the development of cow-side mastitis screening test. Vet. World 2021, 14, 2290–2295. [Google Scholar] [CrossRef]
- Sheldrake, R.F.; Hoare, R.J. The detection of mastitis in individual quarters using electrical conductivity or somatic cell concentration. N. Z. Vet. J. 1981, 29, 211–213. [Google Scholar] [CrossRef]
- Draminski DRAMINSKI 4QMAST Mastitis Detector for 4 Quarters. Available at https://bestharveststore.com/files/Mastitis%20Detector%20Instruction%20Manual.pdf. Accessed on: 10 September 2024.




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
