Submitted:
17 December 2024
Posted:
18 December 2024
You are already at the latest version
Abstract
Essential oils (EOs) have unique properties, such as antibacterial, antioxidant, and antiviral activities, which are beneficial in various industries, including cosmetics, food, and pharmaceuticals. In this study, the antioxidant and antimicrobial activities of Pentacalia vaccinioides EOs obtained from leaves and flowers (fresh and dried plant material) were evaluated using hydrodistillation (HD), steam distillation (SD), simultaneous distillation-extraction (SDE), and solid-phase microextraction (SPME) techniques. Antimicrobial activity (minimum inhibitory concentration, MIC) and antioxidant capacity (half-maximal inhibitory concentration, IC50) were determined. The identification and quantification of the compounds present in the EOs were conducted by gas chromatography coupled to mass spectrometry (GC-MS). The main secondary metabolites identified in most samples obtained by different extraction techniques included: phenol (~18%), 1S-α-pinene (~15%), β-phellandrene (~13%), β-pinene (~12%), 4-terpineol (~10%), γ-terpinene (~10%), trans-nerolidol (~8%), limonene (~8%), and β-thujene (~6%). EOs obtained by HD, SD and SDE exhibited antioxidant activity, with IC50 values between 621.7 and 696.6 µg/mL. Additionally, the EOs demonstrated bactericidal activity against Bacillus subtilis and Staphylococcus aureus, with MIC values of 5.0 and 45 µg/mL, respectively. Escherichia coli and Pseudomonas aeruginosa did not show antimicrobial susceptibility to EOs. This study constitutes the first evaluation of Pentacalia vaccinioides EOs, demonstrating their bioactive potential and the relevance of the extraction method. The findings highlight this species as a promising source of natural compounds for therapeutic and preservative applications, depending on the type of plant material and extraction technique used.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Reagents and Equipment
2.2. Collection and Preparation of Plant Material
2.3. Obtaining the Essential Oil and Its Physicochemical Properties
2.3.1. Hydrodistillation
2.3.2. Steam Distillation
2.3.3. Simultaneous Distillation-Extraction
2.3.4. Headspace Solid-Phase Microextraction
2.4. Determination of Physical Properties
2.5. Gas Chromatography-Mass Spectrometry (GC/MS)
2.6. Antioxidant Activity Determination
2.7. Antimicrobial Activity Determination
2.7.1. Minimum Inhibitory Concentration
2.8. Statistical Analysis
3. Results
3.1. Obtaining EOs by Different Extraction Techniques and Physicochemical Parameters
3.2. Chemical Composition of the Essential Oil Obtained by Different Extraction Techniques
3.3. Antimicrobial Activity and Minimum Inhibitory Concentration
3.4. Antioxidant Activity
4. Discussion
4.1. Performance and Physical Parameters
4.2. Analysis of the Main Bioactive Compounds and Their Industrial and Pharmaceutical Applications
4.3. Comparison of Extraction Techniques
4.4. Antimicrobial Activity
4.5. Antioxidant Activity
4.6. Correlation Between Antioxidant and Antimicrobial Activities of Essential Oils: Significance and Applications
4.7. Strengths and Weaknesses of this Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Natural Product Communications 2009, 4, 1934578X0900400827. [CrossRef]
- Ni, Z.J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends in Food Science & Technology 2021, 110, 78-89. [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3. [CrossRef]
- Ishrat, N.; Sajad, G. Pharmaceutical and Therapeutic Potentials of Essential Oils. In Essential Oils, Mozaniel Santana de, O., Eloisa Helena de Aguiar, A., Eds.; IntechOpen: Rijeka, 2022; p. Ch. 7.
- Jugreet, B.S.; Suroowan, S.; Rengasamy, R.R.K.; Mahomoodally, M.F. Chemistry, bioactivities, mode of action and industrial applications of essential oils. Trends in Food Science & Technology 2020, 101, 89-105. [CrossRef]
- Frederico, C.; Franciscato, L.M.S. Essential Oils as Natural Food Additives: Stability and Safety. Arquivos de Ciências da Saúde da UNIPAR 2023, 27, 5739-5755. [CrossRef]
- Smith, R.L.; Cohen, S.M.; Doull, J.; Feron, V.J.; Goodman, J.I.; Marnett, L.J.; Portoghese, P.S.; Waddell, W.J.; Wagner, B.M.; Hall, R.L.; et al. A procedure for the safety evaluation of natural flavor complexes used as ingredients in food: essential oils. Food and Chemical Toxicology 2005, 43, 345-363. [CrossRef]
- FDA. 21CFR182.20 - GRAS: Essential oils, oleoresins (solvent-free), and natural extractives (including distillates). 2023, Volumen 3, 5.
- IFA. Essential Oils: Safety and toxicology. Available online: https://ifaroma.org/es_ES/home/explore_aromatherapy/safety (accessed on May.13).
- Bassolé, I.H.N.; Juliani, H.R. Essential Oils in Combination and Their Antimicrobial Properties. Molecules 2012, 17, 3989-4006. [CrossRef]
- Hay, Y.O.M.; Abril-Sierra, M.A.; Sequeda-Castañeda, L.G.; Bonnafous, C.; Raynaud, C. Evaluation of combinations of essential oils and essential oils with hydrosols on antimicrobial and antioxidant activities Journal of Pharmacy & Pharmacognosy Research 2018, 6, 216-230.
- Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem 2007, 55, 7879-7885. [CrossRef]
- Yasir, M.; Nawaz, A.; Ghazanfar, S.; Okla, M.K.; Chaudhary, A.; Al, W.H.; Ajmal, M.N.; AbdElgawad, H.; Ahmad, Z.; Abbas, F.; et al. Anti-bacterial activity of essential oils against multidrug-resistant foodborne pathogens isolated from raw milk. Brazilian Journal of Biology 2024, 84.
- Díaz-Piedrahita, S.; Cuatrecasas, J. Asteraceas de la Flora de Colombia: SENECIONEAE-I, Géneros Dendrophorbium y Pentacalia.; Academia Colombiana De Ciencias Exactas Fisicas Y Naturales -ACCEFYN-: Santafé de Bogotá, 1999.
- Pedrozo, J.A.; Torrenegra, R.D.; Téllez, A.N.; Granados, A. Nueva fuente de quinoles, la superficie foliar de Pentacalia ledifolia y Pentacalia corymbosa y sus propiedades antifúngicas. Revista Brasileira de Farmacognosia 2006, 16.
- Sequeda-Castañeda, L.G.; Muñoz-Realpe, C.C.; Robles-Camargo, J.E.; Cepedes-Acuña, C.L.A.; Numpaque-Rojas, G.C.; Tellez-Alfono, A.N. Evaluation of the bioconservative potential of the plant species Pentacalia corymbosa (Benth.) Cuatrec. (Asteraceae). Manuscript in preparation 2024.
- St-Gelais, A.; Maldonado, E.M.; Saavedra, G.; Siles-Alvarado, S.; Alsarraf, J.; Collin, G.; Pichette, A. Essential Oils from Bolivia. XV. Herzogole, an Original Monoterpene Benzodioxole from an Essential Oil from Pentacalia herzogii (Cabrera) Cuatrec. Molecules 2021, 26. [CrossRef]
- Barriga, H.G. Flora medicinal de Colombia: botanica medica; Instituto de ciencias naturales. Universidad Nacional: 1975.
- Rubiolo, P.; Sgorbini, B.; Liberto, E.; Cordero, C.; Bicchi, C. Essential oils and volatiles: sample preparation and analysis. A review. Flavour and Fragrance Journal 2010, 25, 282-290. [CrossRef]
- Souiy, Z. Essential Oil Extraction Process. In Essential Oils - Recent Advances, New Perspectives and Applications, Viskelis, J., Ed.; IntechOpen: 2024; p. 186.
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential - A Review. Curr Drug Metab 2018, 19, 1100-1110. [CrossRef]
- Chaintreau, A. Simultaneous distillation–extraction: from birth to maturity—review. Flavour and Fragrance Journal 2001, 16, 136-148. [CrossRef]
- Belliardo, F.; Bicchi, C.; Cordero, C.; Liberto, E.; Rubiolo, P.; Sgorbini, B. Headspace-Solid-Phase Microextraction in the Analysis of the Volatile Fraction of Aromatic and Medicinal Plants. Journal of Chromatographic Science 2006, 44, 416-429. [CrossRef]
- Lancioni, C.; Castells, C.; Candal, R.; Tascon, M. Headspace solid-phase microextraction: Fundamentals and recent advances. Advances in Sample Preparation 2022, 3, 100035. [CrossRef]
- Zhao, J.; Quinto, M.; Zakia, F.; Li, D. Microextraction of essential oils: A review. Journal of Chromatography A 2023, 1708, 464357. [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/mass Spectrometry; Allured Publishing Corporation: 2007.
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. Journal of Physical and Chemical Reference Data 2011, 40. [CrossRef]
- Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: database creation and evaluation of precision and robustness. J Sep Sci 2007, 30, 563-572. [CrossRef]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. Journal of Chromatography A 1990, 503, 1-24. [CrossRef]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; E.B.-Verlag: 1998.
- Sequeda-Castañeda, L.G.; Celis-Zambrano, C.A.; Torrenegra-Guerrero, R.D. Bioassay-guided fractionation in Anacardium excelsum (Bert. & Balb. Ex Kunth) Skeels (Anacardiaceae). PharmacologyOnline 2021, 1, 426-446.
- Ortiz-Ardila, A.E.; Correa-Cuadros, J.P.; Celis-Zambrano, C.A.; RodriguezBocanegra, M.X.; Robles-Carmargo, J.E.; Sequeda-Castañeda, L.G. Antioxidant and Antimicrobial capacity of Cecropia mutisiana Mildbr. (Cecropiaceae) leave extracts. Emirates Journal of Food and Agriculture 2017, 29. [CrossRef]
- Sequeda-Castañeda, L.G.; Muñoz-Realpe, C.C.; Celis-Zambrano, C.A.; Gutiérrez-Prieto, S.J.; Luengas-Caicedo, P.E.; Gamboa, F. Preliminary Phytochemical Analysis of Berberis goudotii Triana & Planch. ex Wedd. (Berberidaceae) with Anticariogenic and Antiperiodontal Activities. Scientia Pharmaceutica 2019, 87, 2.
- Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother 2008, 61, 1295-1301. [CrossRef]
- CLSI. M26-A - Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. 1999.
- Schwalbe, R.; Steele-Moore, L.; Goodwin, A.C. Antimicrobial Susceptibility Testing Protocols; CRC Press: 2007.
- Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 2008, 3, 163-175. [CrossRef]
- Hogg, R.V.; McKean, J.W.; Craig, A.T. Introduction to Mathematical Statistics; Pearson: 2019.
- Das, T.; Nandy, S.; Mukherjee, A.; Nongdam, P.; Dey, A. Plant Essential Oils for Combating Antimicrobial Resistance via Re-potentiating the Fading Antibiotic Arsenal. In Antimicrobial Resistance: Underlying Mechanisms and Therapeutic Approaches, Kumar, V., Shriram, V., Paul, A., Thakur, M., Eds.; Springer Nature Singapore: Singapore, 2022; pp. 419-485.
- Iseppi, R.; Mariani, M.; Condò, C.; Sabia, C.; Messi, P. Essential Oils: A Natural Weapon against Antibiotic-Resistant Bacteria Responsible for Nosocomial Infections. Antibiotics (Basel) 2021, 10. [CrossRef]
- Puzari, M.; Chetia, P. RND efflux pump mediated antibiotic resistance in Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa: a major issue worldwide. World J Microbiol Biotechnol 2017, 33, 24. [CrossRef]
- Salem, S.S.; Elsayed, H.E.; Shabana, S.; Khazaal, M.T.; Moharram, F.A. Phytochemical profile and antimicrobial activity of essential oils from two Syzygium species against selected oral pathogens. BMC Complementary Medicine and Therapies 2023, 23, 448. [CrossRef]
- Lei, G.; Song, C.; Wang, E.; Zhao, S.; Yang, C. Effects and Potential Mechanisms of Mixed-Salt Substrate on Yield, Hydrodistillation Kinetics and Essential Oil Composition of Flowers of Tree Peony ‘Taiping Hong’ (Paeoniaceae). Journal of Essential Oil Bearing Plants 2020, 23, 970-984. [CrossRef]
- Solanki, K.P.; Desai, M.A.; Parikh, J.K. Improved hydrodistillation process using amphiphilic compounds for extraction of essential oil from java citronella grass. Chemical Papers 2020, 74, 145-156. [CrossRef]
- Gonçalves, D.; Teschke, M.E.E.; Koshima, C.C.; Rodrigues, C.E.d.C. Fractionation of citrus essential oil by liquid–liquid extraction using a perforated rotating disc contactor. Separation and Purification Technology 2016, 163, 247-257. [CrossRef]
- Koshima, C.C.; Umeda, T.K.; Nakamoto, K.T.; Venâncio, L.L.; Aracava, K.K.; Rodrigues, C.E.C. (Liquid+liquid) equilibrium for systems composed of clove and allspice essential oil compounds and hydrous ethanol at T=298.2K. The Journal of Chemical Thermodynamics 2016, 95, 54-62. [CrossRef]
- Wantaek, J.; Marcel Jonathan, H.; Jongbeom, P.; Sunghwa, J.; Jongho, N.; Hyeonhyo, K. Extraction and Characterization of Essential Oil of Korean Orange Peel Obtained from Supercritical CO₂ Extraction. KSBB Journal 2018, 33, 227-236. [CrossRef]
- Toxicological review oF Phenol. 2002, 213.
- Lister, L. Antiseptic Principle Of The Practice Of Surgery. Available online: https://sourcebooks.fordham.edu/mod/1867lister.asp (accessed on Oct.7, 2024).
- NIST. Phenol. Available online: (accessed on Oct.7, 2024).
- Ghanbariasad, A.; Osanloo, M.; Hatami, S.; Khaksar, S.; Zarenezhad, E.; Ranjbar, R.; Alipanah, H. Synthesis, characterization, and development of alpha-pinene nanoemulsion as an apoptotic inducer with cytotoxicity activity on human melanoma and breast cancer. Chemical Papers 2024, 78, 1181-1191. [CrossRef]
- Nyamwihura, R.J.; Ogungbe, I.V. The pinene scaffold: its occurrence, chemistry, synthetic utility, and pharmacological importance. RSC Advances 2022, 12, 11346-11375. [CrossRef]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; L.D. Jayaweera, S.; A. Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738.
- Iwakata, S.; Asada, K.; Nishi, T.; Stepanova, R.; Shinoda, S.; Ueda, D.; Fujihashi, M.; Yasuno, Y.; Shinada, T.; Sato, T. Insight into the mechanism of geranyl-β-phellandrene formation catalyzed by Class IB terpene synthases. Bioscience, Biotechnology, and Biochemistry 2022, 86, 724-729. [CrossRef]
- NIST. β-Phellandrene. Available online: (accessed on Oct.7, 2024).
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Tiyajamorn, T.; Bharathi, M.; Chaiyasut, C. A Narrative Review on the Bioactivity and Health Benefits of Alpha-Phellandrene. Scientia Pharmaceutica 2022, 90, 57.
- ACS. β-Pinene. Available online: https://www.acs.org/molecule-of-the-week/archive/l/limonene.html (accessed on Oct.6, 2024).
- Chen-Wei, S.; Sean, T.; Hosam, S.; Anny, M.S.C.; Scheffer, C.G.T. Safety and efficacy of 4-terpineol against microorganisms associated with blepharitis and common ocular diseases. BMJ Open Ophthalmology 2018, 3, e000094. [CrossRef]
- Johansen, B.; Duval, R.E.; Sergere, J.-C. First Evidence of a Combination of Terpinen-4-ol and α-Terpineol as a Promising Tool against ESKAPE Pathogens. Molecules 2022, 27, 7472.
- Shapira, S.; Pleban, S.; Kazanov, D.; Tirosh, P.; Arber, N. Terpinen-4-ol: A Novel and Promising Therapeutic Agent for Human Gastrointestinal Cancers. PLOS ONE 2016, 11, e0156540. [CrossRef]
- EFSA. Scientific Opinion on the safety and efficacy of aliphatic and aromatic hydrocarbons (chemical group 31) when used as flavourings for all animal species. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4053 (accessed on Oct.7, 2024).
- NIST. γ-Terpinene. Available online: (accessed on Oct.7, 2024).
- Rudbäck, J.; Bergström, M.A.; Börje, A.; Nilsson, U.; Karlberg, A.T. α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure. Chem Res Toxicol 2012, 25, 713-721. [CrossRef]
- Chan, W.-K.; Tan, L.T.-H.; Chan, K.-G.; Lee, L.-H.; Goh, B.-H. Nerolidol: A Sesquiterpene Alcohol with Multi-Faceted Pharmacological and Biological Activities. Molecules 2016, 21, 529.
- Hanušová, V.; Caltová, K.; Svobodová, H.; Ambrož, M.; Skarka, A.; Murínová, N.; Králová, V.; Tomšík, P.; Skálová, L. The effects of β-caryophyllene oxide and trans-nerolidol on the efficacy of doxorubicin in breast cancer cells and breast tumor-bearing mice. Biomedicine & Pharmacotherapy 2017, 95, 828-836. [CrossRef]
- Lima, I.S.d.; Ferreira, M.O.G.; Barros, E.M.L.; Rizzo, M.d.S.; Santos, J.d.A.; Ribeiro, A.B.; Anteveli Osajima Furtini, J.; C. Silva-Filho, E.; Estevinho, L.M. Antibacterial and Healing Effect of Chicha Gum Hydrogel (Sterculia striata) with Nerolidol. International Journal of Molecular Sciences 2023, 24, 2210.
- ACS. Limonene. Available online: https://www.acs.org/molecule-of-the-week/archive/l/limonene.html (accessed on Oct.6, ).
- de Sousa, D.P.; Damasceno, R.O.S.; Amorati, R.; Elshabrawy, H.A.; de Castro, R.D.; Bezerra, D.P.; Nunes, V.R.V.; Gomes, R.C.; Lima, T.C. Essential Oils: Chemistry and Pharmacological Activities. Biomolecules 2023, 13, 1144.
- Jongedijk, E.; Cankar, K.; Buchhaupt, M.; Schrader, J.; Bouwmeester, H.; Beekwilder, J. Biotechnological production of limonene in microorganisms. Applied Microbiology and Biotechnology 2016, 100, 2927-2938. [CrossRef]
- Lin, H.; Li, Z.; Sun, Y.; Zhang, Y.; Wang, S.; Zhang, Q.; Cai, T.; Xiang, W.; Zeng, C.; Tang, J. D-Limonene: Promising and Sustainable Natural Bioactive Compound. Applied Sciences 2024, 14, 4605.
- Foreverest. The characteristics and commercial application value of α-Thujene, β-Thujene and Cedrene. Available online: https://foreverest.net/news-list/the-characteristics-and-commercial-application-value-of-alpha-thujene-beta-thujene-and-cedrene (accessed on Oct.7, 2024).
- MEC. PDR for Herbal Medicines; Medical Economics Company: 1999; p. 1244.
- NIST. β-Thujene. Available online: (accessed on Oct.7, 2024).
- Lotfy, W.A.; Mostafa, S.W.; Adel, A.A.; Ghanem, K.M. Production of di-(2-ethylhexyl) phthalate by Bacillus subtilis AD35: Isolation, purification, characterization and biological activities. Microbial Pathogenesis 2018, 124, 89-100. [CrossRef]
- Omardien, S.; Ter Beek, A.; Vischer, N.; Montijn, R.; Schuren, F.; Brul, S. Evaluating novel synthetic compounds active against Bacillus subtilis and Bacillus cereus spores using Live imaging with SporeTrackerX. Scientific Reports 2018, 8, 9128. [CrossRef]
- John Jr, J. The treatment of resistant staphylococcal infections [version 1; peer review: 3 approved]. F1000Research 2020, 9. [CrossRef]
- Mellata, M. Human and Avian Extraintestinal Pathogenic Escherichia coli: Infections, Zoonotic Risks, and Antibiotic Resistance Trends. Foodborne Pathogens and Disease 2013, 10, 916-932. [CrossRef]
- Hussein, A.-D.; Raad, D.A.-O.; Noor, A.-K. Pseudomonas aeruginosa: Diseases, Biofilm and Antibiotic Resistance. In Pseudomonas aeruginosa, Theerthankar, D., Ed.; IntechOpen: Rijeka, 2020; p. Ch. 2.
- Reyes-Jurado, F.; Franco-Vega, A.; Ramírez-Corona, N.; Palou, E.; López-Malo, A. Essential Oils: Antimicrobial Activities, Extraction Methods, and Their Modeling. Food Engineering Reviews 2015, 7, 275-297. [CrossRef]
- Aelenei, P.; Miron, A.; Trifan, A.; Bujor, A.; Gille, E.; Aprotosoaie, A.C. Essential Oils and Their Components as Modulators of Antibiotic Activity against Gram-Negative Bacteria. Medicines (Basel) 2016, 3. [CrossRef]
- Bučková, M.; Puškárová, A.; Kalászová, V.; Kisová, Z.; Pangallo, D. Essential oils against multidrug resistant gram-negative bacteria. Biologia 2018, 73, 803-808. [CrossRef]
- Yap, P.S.; Lim, S.H.; Hu, C.P.; Yiap, B.C. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 2013, 20, 710-713. [CrossRef]
- Calvo, J.; Martínez-Martínez, L. Mecanismos de acción de los antimicrobianos. Enfermedades Infecciosas y Microbiología Clínica 2009, 27, 44-52. [CrossRef]
- Chaves, B.J.; Tadi, P. Gentamicin; StatPearls Publishing, Treasure Island (FL): 2023.
- DrugBank. Gentamicin. Available online: https://go.drugbank.com/ (accessed on Oct.7, 2024).
- Tanaka, N. Mechanism of Action of Aminoglycoside Antibiotics. In Aminoglycoside Antibiotics, Umezawa, H., Hooper, I.R., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1982; pp. 221-266.
- Berger, R.G. Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability; 2007; pp. 1-648.
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471.
- de Oliveira, T.L.; Soares Rde, A.; Piccoli, R.H. A Weibull model to describe antimicrobial kinetics of oregano and lemongrass essential oils against Salmonella Enteritidis in ground beef during refrigerated storage. Meat Sci 2013, 93, 645-651. [CrossRef]
- Tang, C.; Chen, J.; Zhang, L.; Zhang, R.; Zhang, S.; Ye, S.; Zhao, Z.; Yang, D. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant staphylococcus aureus. International Journal of Medical Microbiology 2020, 310, 151435. [CrossRef]
- Aiemsaard, J.; Aiumlamai, S.; Aromdee, C.; Taweechaisupapong, S.; Khunkitti, W. The effect of lemongrass oil and its major components on clinical isolate mastitis pathogens and their mechanisms of action on Staphylococcus aureus DMST 4745. Research in Veterinary Science 2011, 91, e31-e37. [CrossRef]
- Gao, S.; Liu, G.; Li, J.; Chen, J.; Li, L.; Li, Z.; Zhang, X.; Zhang, S.; Thorne, R.F.; Zhang, S. Antimicrobial Activity of Lemongrass Essential Oil (Cymbopogon flexuosus) and Its Active Component Citral Against Dual-Species Biofilms of Staphylococcus aureus and Candida Species. Frontiers in Cellular and Infection Microbiology 2020, 10. [CrossRef]
- Carson, C.F.; Riley, T.V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. Journal of Applied Bacteriology 1995, 78, 264-269. [CrossRef]
- Griffin, S. Aspects of Antimicrobial Activity of Terpenoids and the Relationship to their Molecular Structure. Doctor, University of Western Sydney, Richmond, Australia, 1999.
- Rivera-Carriles, K.; Argaiz, A.; Palou, E.; López-Malo, A. Synergistic Inhibitory Effect of Citral with Selected Phenolics against Zygosaccharomyces bailii. Journal of Food Protection 2005, 68, 602-606. [CrossRef]
- Didry, N.; Dubreuil, L.; Pinkas, M. [Antibacterial activity of thymol, carvacrol and cinnamaldehyde alone or in combination]. Die Pharmazie 1993, 48 4, 301-304.
- Rattanachaikunsopon, P.; Phumkhachorn, P. Assessment of synergistic efficacy of carvacrol and cymene against Edwardsiella tarda in vitro and in Tilapia (Oreochromis niloticus). African Journal of Microbiology Research 2010, 4, 420-425.
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial Activity of Carvacrol toward Bacillus cereus on Rice. Journal of Food Protection 2000, 63, 620-624. [CrossRef]
- Viljoen, A.; van Vuuren, S.; Ernst, E.; Klepser, M.; Demirci, B.; Başer, H.; van Wyk, B.-E. Osmitopsis asteriscoides (Asteraceae)-the antimicrobial activity and essential oil composition of a Cape-Dutch remedy. Journal of Ethnopharmacology 2003, 88, 137-143. [CrossRef]
- Azeredo, C.M.O.; Soares, M.J. Combination of the essential oil constituents citral, eugenol and thymol enhance their inhibitory effect on Crithidia fasciculata and Trypanosoma cruzi growth. Revista Brasileira de Farmacognosia 2013, 23, 762-768. [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother 2005, 49, 2474-2478. [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 2000, 88, 170-175. [CrossRef]
- Ergüden, B. Phenol group of terpenoids is crucial for antibacterial activity upon ion leakage. Lett Appl Microbiol 2021, 73, 438-445. [CrossRef]
- Nogueira, J.O.e.; Campolina, G.A.; Batista, L.R.; Alves, E.; Caetano, A.R.S.; Brandão, R.M.; Nelson, D.L.; Cardoso, M.d.G. Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus. FEMS Microbiology Letters 2021, 368. [CrossRef]
- Negi, P.S. Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol 2012, 156, 7-17. [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review. Molecules 2020, 25. [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology 2020, 11. [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48-78.
- Rahman, M.S. Handbook of Food Preservation; CRC Press: 2020.
- Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. Journal of Controlled Release 2006, 113, 189-207. [CrossRef]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. Journal of Cosmetic Dermatology 2019, 19, 33-37. [CrossRef]
- Sharopov, F.S.; Wink, M.; Setzer, W.N. Radical scavenging and antioxidant activities of essential oil components--an experimental and computational investigation. Nat Prod Commun 2015, 10, 153-156.
- Wang, H.-F.; Yih, K.-H.; And, K.-F.; Huang, K.-F. Comparative Study of the Antioxidant Activity of Forty-five Commonly Used Essential Oils and their Potential Active Components. Journal of Food and Drug Analysis 2010, 18, 24-33. [CrossRef]
- Noriega, P.; Díaz, E.; Villegas, I.; Pozo, K.; Guerrero, P.; Guerra, P.; Larenas, C. Antioxidant activity of six essential oils and its molecules in Ecuadorian Andean medicinal plants. Nat Ther Adv 2023, 6, 11–15. [CrossRef]
- Loizzo, M.R.; Tundis, R.; Bonesi, M.; Sanzo, G.D.; Verardi, A.; Lopresto, C.G.; Pugliese, A.; Menichini, F.; Balducchi, R.; Calabrò, V. Chemical Profile and Antioxidant Properties of Extracts and Essential Oils from Citrus × limon (L.) Burm. cv. Femminello Comune. Chemistry & Biodiversity 2016, 13, 571-581. [CrossRef]
- Saleh, M.A.; Clark, S.; Woodard, B.; Deolu-Sobogun, S.A. Antioxidant and free radical scavenging activities of essential oils. Ethn Dis 2010, 20, S1-78-82.
- Gharred, N.; Dbeibia, A.; Falconieri, D.; Hammami, S.; Piras, A.; Dridi-Dhaouadi, S. Chemical composition, antibacterial and antioxidant activities of essential oils from flowers, leaves and aerial parts of Tunisian Dittrichia Viscosa. Journal of Essential Oil Research 2019, 31, 582-589. [CrossRef]
- Gopi, S.; Sukumaran, N.P.; Jacob, J.; Thomas, S. Natural Flavours, Fragrances, and Perfumes: Chemistry, Production, and Sensory Approach; Wiley: 2023.
- Southwell, I.; Russell, M.; Smith, R.L.; Brophy, J.J.; Day, J. Melaleuca teretifolia, a novel aromatic and medicinal plant from australia. 2005; pp. 79-83.
- Rieger, M. Harry's Cosmeticology: 9th Edition, Volume 1, 2, 3; Chemical Publishing Company, Incorporated: 2015.
- Sheskey, P.J.; Hancock, B.C.; Moss, G.P.; Goldfarb, D.J. Handbook of Pharmaceutical Excipients; Pharmaceutical Press: 2020; p. 1296.
- Vandamme, E.J.; Revuelta, J.L. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants; Wiley: 2016.
- El Abdouni Khiyari, M.; Kasrati, A.; Jamali, C.A.; Zeroual, S.; Markouk, M.; Bekkouche, K.; Wohlmuth, H.; Leach, D.; Abbad, A. Chemical composition, antioxidant and insecticidal properties of essential oils from wild and cultivated Salvia aucheri subsp. blancoana (Webb. & Helder)), an endemic, threatened medicinal plant in Morocco. Industrial Crops and Products 2014, 57, 106-109. [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010, 4, 118-126. [CrossRef]
- Moure, A.; Cruz, J.M.; Franco, D.; Domı́nguez, J.M.; Sineiro, J.; Domı́nguez, H.; José Núñez, M.a.; Parajó, J.C. Natural antioxidants from residual sources. Food Chemistry 2001, 72, 145-171. [CrossRef]
- Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.; Martínez, M.-A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry 2021, 353, 129488. [CrossRef]
- Olmedo, R.; Nepote, V.; Grosso, N.R. Antioxidant activity of fractions from oregano essential oils obtained by molecular distillation. Food Chemistry 2014, 156, 212-219. [CrossRef]
- Burt, S. Essential oils: their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol 2004, 94, 223-253. [CrossRef]
- Shukla, S.; Mehta, A.; Bajpai, V.K.; Shukla, S. In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Food and Chemical Toxicology 2009, 47, 2338-2343. [CrossRef]
- Frankel, E.N.; Huang, S.-W.; Aeschbach, R.; Prior, E. Antioxidant Activity of a Rosemary Extract and Its Constituents, Carnosic Acid, Carnosol, and Rosmarinic Acid, in Bulk Oil and Oil-in-Water Emulsion. Journal of Agricultural and Food Chemistry 1996, 44, 131-135. [CrossRef]
- Kähkönen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.-P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. Journal of Agricultural and Food Chemistry 1999, 47, 3954-3962. [CrossRef]
- Ninfali, P.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br J Nutr 2005, 93, 257-266. [CrossRef]
- Dixit, S. Inhibiting rancidity in soaps and cosmetics. Chemical Business 1999, 19, 33-36.
- Webster, G.K.; Craig II, R.A.; Pommerening, C.A.; Acworth, I.N. Selection of Pharmaceutical Antioxidants by Hydrodynamic Voltammetry. Electroanalysis 2012, 24, 1394-1400. [CrossRef]
| No | Method | Acronym | Mass (g) | Extraction time (h) | Solvent |
|---|---|---|---|---|---|
| 1 | Hydrodistillation dry leaf | HD-DL | 150 | 3 | 1000 mL H2O |
| 2 | Hydrodistillation wet leaf | HD-WL | 250 | 3 | 1000 mL H2O |
| 3 | Steam distillation dry leaf | SD-DL | 150 | 3 | 1000 mL H2O |
| 4 | Steam distillation wet leaf | SD-WL | 250 | 3 | 1000 mL H2O |
| 5 | Simultaneous Distillation and Extraction flowers | SDE-WF | 250 | 3 | 100 mL CH2Cl2, 1000 mL H2O |
| 6 | Simultaneous Distillation and Extraction dry leaf | SDE-DL | 150 | 3 | 100 mL CH2Cl2, 1000 mL H2O |
| 7 | Simultaneous Distillation and Extraction wet leaf | SDE-WL | 250 | 3 | 100 mL CH2Cl2, 1000 mL H2O |
| 8 | Solid-Phase Microextraction flowers | SPME-WF | 10 | 0.5 | 25 mL H2O |
| 9 | Solid-Phase Microextraction dry leaf | SPME-DL | 10 | 0.5 | 25 mL H2O |
| 10 | Solid-Phase Microextraction wet leaf | SPME-WL | 10 | 0.5 | 25 mL H2O |
| No | Acronym | % (m/m) | r (g/mL) | h | Color | Smell |
|---|---|---|---|---|---|---|
| 1 | HD-DL | 0.0014 ± 0.002 | 0.8666 ± 0.0030 | 1.611 ± 0.002 | Yellow | It is penetrating, somewhat spicy, turpentine notes. |
| 2 | HD-WL | 0.0016 ± 0.002 | ||||
| 3 | SD-DL | 0.0017 ± 0.003 | 0.8666 ± 0.0030 | 1.611 ± 0.002 | ||
| 4 | SD-WL | 0.0019 ± 0.003 | ||||
| 5 | SDE-WF | 0.0012 ± 0.002 | 0.8667 ± 0.0030 | 1.612 ± 0.001 | ||
| 6 | SDE-DL | 0.0145 ± 0.006 | ||||
| 7 | SDE-WL | 0.0156 ± 0.007 | ||||
| 8 | SPME-WF | NA | NA | NA | ||
| 9 | SPME-WL | |||||
| 10 | SPME-WL |
| No. | Compund | Type | LRI | HD | SD | SDE | SPME | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Leaf | Leaf | Leaf | Flower | Leaf | Flower | |||||||||
| Apola | Polar | Fresh | Dry | Fresh | Dry | Fresh | Dry | Fresh | Fresh | Dry | Fresh | |||
| 1 | 2-Butanone, 3-hydroxy- | * | 775 | - | 1.6 | 2.9 | 3.7 | - | 3.2 | 3.7 | 3.3 | - | - | - |
| 2 | 1-Butanol, 3-methyl- | * | 780 | - | - | - | 4.8 | - | 1.5 | 1.8 | 1.0 | - | - | - |
| 3 | 1-Octene | * | 786 | - | - | - | - | - | - | - | - | 1.4 | 1.5 | 1.5 |
| 4 | Hexanal | * | 802 | 815 | 1.8 | 5.5 | 1.0 | 1.3 | 1.4 | 2.5 | 2.7 | - | - | - |
| 5 | Furfural | * | 831 | 1078 | - | - | 1.1 | 1.1 | - | - | - | - | - | - |
| 6 | 3-Hexen-1-ol, (Z)- | * | 852 | - | 1.6 | 1.7 | 3.2 | 3.4 | 1.7 | 2.0 | 2.2 | - | - | - |
| 7 | 2-Hexenal, (E)- | * | 851 | 1249 | 2.3 | 3.4 | 2.0 | 1.3 | 1.2 | 1.2 | 1.4 | - | - | - |
| 8 | 1-Hexanol | * | 863 | - | 1.3 | 1.5 | 1.5 | 1.6 | 2.3 | 2.7 | 3.0 | 3.0 | 4.3 | 4.9 |
| 9 | Phenol | ** | 883 | 1537 | 11.4 | 9.4 | 19.2 | 18.0 | 2.9 | 3.7 | 1.0 | 3.1 | 7.1 | 3.1 |
| 10 | Cyclopropane, 1-methyl-2-pentyl- | * | 890 | 1612 | 1.2 | 1.4 | 1.4 | 1.5 | 1.8 | 1.6 | 2.0 | 2.3 | 2.1 | 2.7 |
| 11 | Propanal, 3-(methylthio)- | * | 907 | - | - | - | 1.3 | 1.4 | - | - | - | - | - | - |
| 12 | 2(5H)-Furanone | * | 915 | 1060 | 3.0 | 1.7 | 6.0 | 5.3 | - | - | - | - | - | - |
| 13 | Bicyclo [3.1.0]hexane, 4-methyl-1-(1- methylethyl)-, didehydro deriv | * | 927 | 1175 | 1.8 | 1.2 | - | - | 3.1 | 1.7 | 3.2 | 3.7 | 1.6 | 4.2 |
| 14 | 1S-.alpha.-Pinene | M | 934 | 1245 | 7.4 | 3.8 | 2.0 | 2.6 | 14.6 | 13.0 | 14.4 | 22.8 | 24.3 | 22.3 |
| 15 | Cyclohexanone, 4-methylidene- | * | 949 | 1386 | 4.4 | 2.6 | 3.1 | 2.3 | 1.2 | 1.6 | 1.8 | - | - | - |
| 16 | Benzaldehyde | * | 961 | - | 1.8 | 1.6 | 1.9 | 1.1 | 1.8 | 1.7 | 1.8 | 2.1 | 2.5 | 3.1 |
| 17 | beta.-Phellandrene | M | 974 | 1042 | 6.6 | 4.7 | 1.4 | 2.6 | 11.3 | 9.3 | 12.5 | 7.9 | 8.8 | 8.3 |
| 18 | beta.-Pinene | M | 978 | 1683 | 5.3 | 4.2 | 1.3 | 2.1 | 10.9 | 10.1 | 11.9 | 7.4 | 5.8 | 8.6 |
| 19 | beta.-Tujene | M | 991 | 1808 | 3.8 | 4.2 | 1.0 | 1.9 | 4.3 | 4.3 | 5.1 | 5.7 | 2.6 | 5.9 |
| 20 | alpha.-Phellandrene | M | 1006 | 1069 | 2.9 | 2.3 | 1.8 | 1.5 | 3.0 | 2.4 | 3.1 | 3.9 | 2.1 | 3.3 |
| 21 | o-Cymene | M | 1025 | - | 1.2 | 2.1 | 1.5 | 2.1 | 1.9 | 2.3 | 3.0 | 3.2 | 3.2 | 4.0 |
| 22 | Limonene | M | 1029 | 1323 | 6.2 | 6.3 | 3.2 | 3.5 | 7.9 | 5.4 | 6.2 | 8.3 | 8.1 | 8.4 |
| 23 | 2,4-Heptadienal, (E,E)- | * | - | - | 1.0 | 1.3 | - | - | - | - | - | - | - | - |
| 24 | Undecane | * | 1045 | 1484 | 1.4 | 1.5 | 1.9 | 1.0 | - | - | - | - | - | - |
| 25 | Gamma Terpinene | M | 1059 | 1646 | 1.7 | 2.0 | - | 1.3 | 1.7 | 1.4 | 1.8 | 9.9 | 9.0 | 8.4 |
| 26 | 1-Octanol | * | 1069 | 1760 | 1.5 | 1.6 | - | - | - | - | - | - | - | - |
| 27 | 2-Furanmethanol, 5-ethenyltetrahydro-.alpha.,.alpha.,5-trimethyl-, Cis | * | 1073 | - | - | - | - | 1.1 | - | - | - | - | - | - |
| 28 | Terpinolene | M | 1089 | 1982 | 1.5 | 1.3 | 2.2 | 1.1 | 1.2 | 1.2 | 1.0 | 2.1 | 1.1 | 1.2 |
| 29 | Linalool | MO | 1100 | 2095 | 2.6 | 2.0 | 2.8 | 2.2 | 1.2 | 1.9 | 2.2 | 2.0 | 2.4 | 3.0 |
| 30 | Nonanal | * | 1104 | 1048 | 2.4 | 2.2 | 1.2 | 1.3 | 1.4 | 2.0 | - | - | - | - |
| 31 | Phenylethyl Alcohol | * | 1114 | - | - | - | 1.6 | 1.6 | - | - | - | - | - | - |
| 32 | 2-Cyclohexen-1-ol, 1-methyl-4-(1-methylethyl)-, cis- | MO | 1123 | - | 1.2 | 1.4 | 4.7 | 6.2 | - | - | - | - | - | - |
| 33 | 4-Terpineol | MO | 1180 | 2049 | 9.4 | 6.9 | 7.4 | 8.0 | 3.8 | 2.5 | 3.0 | 6.2 | 4.0 | 4.9 |
| 34 | Alpha Terpineol | MO | 1192 | 2200 | - | - | 1.5 | 1.7 | 2.0 | 2.5 | 2.7 | - | - | - |
| 35 | Di-epi-.alpha.-cedrene-(I) | * | 1481 | 2614 | - | - | 1.7 | 1.1 | - | - | - | - | - | - |
| 36 | 1-Pentadecene | * | 1491 | 2765 | - | - | 1.0 | 1.2 | - | - | - | - | - | - |
| 37 | 2-Fluorobenzyl alcohol | * | 1532 | - | 3.3 | 1.8 | 2.3 | 3.0 | 2.3 | 2.7 | 2.9 | - | - | - |
| 38 | Trans- Nerolidol | SO | 1539 | 2560 | 7.2 | 8.0 | 6.0 | 7.1 | 5.1 | 5.4 | 5.5 | 1.0 | 1.1 | 1.1 |
| 39 | 4-(2,3,4,6-Tetramethylphenyl)-3-buten-2- one | * | 1653 | - | - | - | 1.9 | 2.0 | - | - | - | - | - | - |
| Total compounds | 29 | 29 | 33 | 33 | 26 | 26 | 25 | 18 | 18 | 18 | ||||
| Total identified (%) | 98.8 | 90.5 | 98.4 | 94.5 | 94.6 | 90.5 | 98.6 | 96.1 | 91.5 | 98.7 | ||||
| Compound family | Relative quantity (%) | |||||||||||||
| Monoterpene hydrocarbons (M) | 36.6 | 31.0 | 14.4 | 18.7 | 56.7 | 49.3 | 59.0 | 71.1 | 64.9 | 70.1 | ||||
| Oxygenated monoterpenes (MO) | 13.2 | 10.3 | 16.3 | 18.1 | 7.1 | 6.9 | 7.9 | 8.2 | 6.4 | 7.9 | ||||
| Sesquiterpene hydrocarbons (S) | - | - | - | - | - | - | - | - | - | - | ||||
| Oxygenated sesquiterpenes (SO) | 7.2 | 8.0 | 6.0 | 7.1 | 5.1 | 5.4 | 5.5 | 1.0 | 1.1 | 1.1 | ||||
| Phenol ** | 11.4 | 9.4 | 19.2 | 18.0 | 2.9 | 3.7 | 1.0 | 3.1 | 7.1 | 3.1 | ||||
| Other compounds * | 30.4 | 31.8 | 42.5 | 32.6 | 22.8 | 25.2 | 25.3 | 12.6 | 12.0 | 16.4 | ||||
| Relative Percentage of Inhibition(RI, %) | |||||||
| Microorganism | HD-DL, HD-WL - μg/mL | ||||||
| 1215 | 405 | 135 | 45 | 15 | 5.0 | 1.67 | |
| B. subtilis | 28.5 ± 4.4 | 21.4 ± 2.2 | - | - | - | - | - |
| S. aureus | 34.0 ± 2.2 | 26.2 ± 2.5 | 17.5 ± 2.7 | - | - | - | - |
| E. coli | - | - | - | - | - | - | - |
| P. aeruginosa | - | - | - | - | - | - | - |
| Microorganism | SD-DL, SD-WL - μg/mL | ||||||
| 1215 | 405 | 135 | 45 | 15 | 5.0 | 1.67 | |
| B. subtilis | 90.7 ± 3.8 | 75.2 ± 5.4 | 59.0 ± 7.7 | 37.3 ± 5.4 | 20.9 ± 2.1 | 10.1 ± 1.6 | - |
| S. aureus | 35.7 ± 4.1 | 24.5 ± 3.5 | 15.3 ± 2.8 | - | - | - | - |
| E. coli | - | - | - | - | - | - | - |
| P. aeruginosa | - | - | - | - | - | - | - |
| Microorganism | SDE-WF, SDE-DL, SDE-WL - μg/mL | ||||||
| 1215 | 405 | 135 | 45 | 15 | 5.0 | 1.67 | |
| B. subtilis | 73.7 ± 5.2 | 69.9 ± 7.6 | 53.5 ± 6.6 | 37.1 ± 5.4 | - | - | - |
| S. aureus | 49.0 ± 2.4 | 39.8 ± 3.7 | 33.6 ± 2.6 | 32.7 ± 2.1 | - | - | - |
| E. coli | - | - | - | - | - | - | - |
| P. aeruginosa | - | - | - | - | - | - | - |
| Microorganism | HD-DL | HD-WL | SD-DL | SD-WL | SDE-WF | SDE-DL | SDE-WL |
|---|---|---|---|---|---|---|---|
| B. subtilis | 405 | 405 | 5.0 | 5.0 | 45 | 45 | 45 |
| S. aureus | 135 | 135 | 135 | 135 | 45 | 45 | 45 |
| E. coli | >1215 | >1215 | >1215 | >1215 | >1215 | >1215 | >1215 |
| P. aeruginosa | >1215 | >1215 | >1215 | >1215 | >1215 | >1215 | >1215 |
| Inhibition Concentration - IC50 (μg/mL) | ||||||
| HD-DL | HD-WL | SD-DL | SD-WL | SDE-WF | SDE-DL | SDE-WL |
| 633.82 ± 20.98 | 621.62 ± 23.55 | 668.83 ± 21.28 | 658.24 ± 20.42 | 673.39 ± 26.21 | 696.59 ± 25.50 | 682.54 ± 30.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
