Submitted:
06 December 2024
Posted:
09 December 2024
You are already at the latest version
Abstract

Keywords:
1. Iron-Based Materials: Unlocking Sustainable Options for Versatile Applications
2. Codeposition of Metals and Peculiarities of Iron-Based Alloys Electrodeposition From Complexing Electrolytes
- (i)
- the equilibrium constants for all compounds added to or formed in the solutions: acids deprotonation, hydrolysis, polymerization, stability constants of metal complexes with ligands, etc.;
- (ii)
- the mass balance equations for all forms in the equilibrium mixture, and
- (iii)
- the charge balance “Cat” and “An” denote cation and anion, respectively.
- (i)
- (ii)
- the understanding of the correlation between W content in the Co-W alloys as a function of pH and forming citrate complexes of WO42- [27];
- (iii)
- the determination of conditions that allow an increase in the deposition rate of Ni-W alloys [65];
- (iv)
- the impeding of the deposition of Ni during Ni-W alloy electrodeposition [59];

- (i)
- nanocrystallinity of the electrodeposited new phases;
- (ii)
- formation of composites containing oxide-hydroxide inclusions;
- (iii)
- absorbed hydrogen at high current density.
3. Versatile Materials Based on Iron-Based Alloys
3.1. Structural Peculiarities, Mechanical, Thermal Resistance, and Magnetic Properties
3.1.1. Structural Peculiarities and Mechanical Properties

3.1.2. Thermal Resistance

3.1.3. Magnetic Properties
3.2. Wear and Corrosion Resistance
3.3. Catalysts Based on Electrodeposited Iron-Based Materials and Upgraded Systems

4. Conclusions and Future Perspectives

Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Our Common Future, Chapter 2: Towards Sustainable Development. UN Documents Gathering a Body of Global Agreements. Available online: Http://Www.Un-Documents.Net/Ocf-02.Htm (accessed on 7 November 2024).
- Fajardo, A.S.; Westerhoff, P.; Sanchez-Sanchez, C.M.; Garcia-Segura, S. Earth-Abundant Elements a Sustainable Solution for Electrocatalytic Reduction of Nitrate. Applied Catalysis B: Environmental 2021, 281, 119465. [Google Scholar] [CrossRef]
- Chirik, P.J.; Engle, K.M.; Simmons, E.M.; Wisniewski, S.R. Collaboration as a Key to Advance Capabilities for Earth-Abundant Metal Catalysis. Org. Process Res. Dev. 2023, 27, 1160–1184. [Google Scholar] [CrossRef]
- Bhatt, G.; Ghatak, A.; Murugavel, R. Futuristic Storage Devices: Single Molecular Magnets of Rare Earths versus Spin Crossover Systems of Earth-Abundant Metals. J Chem Sci 2023, 135, 40. [Google Scholar] [CrossRef]
- Cardoso, R.M.F.; Esteves Da Silva, J.C.G.; Pinto Da Silva, L. Application of Engineered Nanomaterials as Nanocatalysts in Catalytic Ozonation: A Review. Materials 2024, 17, 3185. [Google Scholar] [CrossRef]
- Docherty, J.H.; Peng, J.; Dominey, A.P.; Thomas, S.P. Activation and Discovery of Earth-Abundant Metal Catalysts Using Sodium Tert-Butoxide. Nature Chem 2017, 9, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Gąsior, G.; Szczepański, J.; Radtke, A. Biodegradable Iron-Based Materials—What Was Done and What More Can Be Done? Materials 2021, 14, 3381. [Google Scholar] [CrossRef]
- Mostavan, A.; Paternoster, C.; Tolouei, R.; Ghali, E.; Dubé, D.; Mantovani, D. Effect of Electrolyte Composition and Deposition Current for Fe/Fe-P Electroformed Bilayers for Biodegradable Metallic Medical Applications. Materials Science and Engineering: C 2017, 70, 195–206. [Google Scholar] [CrossRef]
- Huang, T.; Cheng, J.; Bian, D.; Zheng, Y. Fe–Au and Fe–Ag Composites as Candidates for Biodegradable Stent Materials. J Biomed Mater Res 2016, 104, 225–240. [Google Scholar] [CrossRef]
- Akbarzadeh, R.; Ghaedi, M.; Nasiri Kokhdan, S.; Jannesar, R.; Sadeghfar, F.; Sadri, F.; Tayebi, L. Electrochemical Hydrogen Storage, Photocatalytical and Antibacterial Activity of Fe Ag Bimetallic Nanoparticles Supported on TiO2 Nanowires. International Journal of Hydrogen Energy 2018, 43, 18316–18329. [Google Scholar] [CrossRef]
- Sun, Y.; Zangari, G. Rational Compositional Control of Electrodeposited Ag–Fe Films. Inorg. Chem. 2020, 59, 5405–5417. [Google Scholar] [CrossRef]
- Mažeika, K.; Reklaitis, J.; Nicolenco, A.; Vainoris, M.; Tsyntsaru, N.; Cesiulis, H. Magnetic State Instability of Disordered Electrodeposited Nanogranular Fe Films. Journal of Magnetism and Magnetic Materials 2021, 540, 168433. [Google Scholar] [CrossRef]
- Khazi, I.; Mescheder, U. Micromechanical Properties of Anomalously Electrodeposited Nanocrystalline Nickel-Cobalt Alloys: A Review. Mater. Res. Express 2019, 6, 082001. [Google Scholar] [CrossRef]
- Torabinejad, V.; Aliofkhazraei, M.; Sabour Rouhaghdam, A.; Allahyarzadeh, M.H. Tribological Behavior of Electrodeposited Ni-Fe Multilayer Coating. Tribology Transactions 2017, 60, 923–931. [Google Scholar] [CrossRef]
- Gamburg, Y.D.; Zangari, G. Theory and Practice of Metal Electrodeposition; Springer New York: New York, NY, 2011; ISBN 978-1-4419-9668-8. [Google Scholar]
- Shojaei, Z.; Khayati, G.R.; Darezereshki, E. Review of Electrodeposition Methods for the Preparation of High-Entropy Alloys. Int J Miner Metall Mater 2022, 29, 1683–1696. [Google Scholar] [CrossRef]
- Zangari, G. Electrodeposition of Alloys and Compounds in the Era of Microelectronics and Energy Conversion Technology. Coatings 2015, 5, 195–218. [Google Scholar] [CrossRef]
- Bertero, E.; Manzano, C.V.; Pellicer, E.; Sort, J.; Ulfig, R.M.; Mischler, S.; Michler, J.; Philippe, L. ‘Green’ Cr(iii)–Glycine Electrolyte for the Production of FeCrNi Coatings: Electrodeposition Mechanisms and Role of by-Products in Terms of Coating Composition and Microstructure. RSC Adv. 2019, 9, 25762–25775. [Google Scholar] [CrossRef]
- Białostocka, A.M.; Klekotka, M.; Klekotka, U.; Kalska-Szostko, B. Tribological Properties of the FeNi Alloys Electrodepositedwith and without External Magnetic Field Assistance. Eksploatacja i Niezawodność – Maintenance and Reliability 2022, 24, 687–694. [Google Scholar] [CrossRef]
- Schlesinger, M. Modern Electroplating; The ECS series of texts and monographs; 5th ed.; Wiley: Hoboken, 2011; ISBN 978-0-470-16778-6. [Google Scholar]
- Gonçalves, S.; Andrade, V.; Sousa, C.T.; Araújo, J.P.; Belo, J.H.; Apolinário, A. Tunable Iron–Cobalt Thin Films Grown by Electrodeposition. Magnetochemistry 2023, 9, 161. [Google Scholar] [CrossRef]
- Ying, Y.; Wang, H.; Zheng, J.; Yu, J.; Li, W.; Qiao, L.; Cai, W.; Che, S. Preparation, Microstructure, and Magnetic Properties of Electrodeposited Nanocrystalline L10 FePt Films. J Supercond Nov Magn 2020, 33, 3563–3570. [Google Scholar] [CrossRef]
- Annamalai, S.; Chelvane, A.J.; Mohanty, J. Enhancement of Magnetic and Surface Properties in Magneto-Pulse Electrodeposited Fe-Pd Alloy Thin Films at Various Deposition Potentials. Mater. Res. Express 2019, 6, 066110. [Google Scholar] [CrossRef]
- Rezaei, M.; Haghshenas, D.F.; Ghorbani, M.; Dolati, A. Electrochemical Behavior of Nanostructured Fe-Pd Alloy During Electrodeposition on Different Substrates. J. Electrochem. Sci. Technol 2018, 9, 202–211. [Google Scholar] [CrossRef]
- Nicolenco, A.; Gómez, A.; Chen, X.-Z.; Menéndez, E.; Fornell, J.; Pané, S.; Pellicer, E.; Sort, J. Strain Gradient Mediated Magnetoelectricity in Fe-Ga/P(VDF-TrFE) Multiferroic Bilayers Integrated on Silicon. Applied Materials Today 2020, 19, 100579. [Google Scholar] [CrossRef]
- Nicolenco, A.; Chen, Y.; Tsyntsaru, N.; Cesiulis, H.; Pellicer, E.; Sort, J. Mechanical, Magnetic and Magnetostrictive Properties of Porous Fe-Ga Films Prepared by Electrodeposition. Materials & Design 2021, 208, 109915. [Google Scholar] [CrossRef]
- Tsyntsaru, N.; Cesiulis, H.; Donten, M.; Sort, J.; Pellicer, E.; Podlaha-Murphy, E.J. Modern Trends in Tungsten Alloys Electrodeposition with Iron Group Metals. Surf. Engin. Appl.Electrochem. 2012, 48, 491–520. [Google Scholar] [CrossRef]
- Mukhtar, A.; Wu, K. Coupled Electrodeposition and Magnetic Properties of Ternary CoFeW Alloys. Materials Characterization 2022, 192, 112246. [Google Scholar] [CrossRef]
- Nicolenco, A.; Tsyntsaru, N.; Fornell, J.; Pellicer, E.; Reklaitis, J.; Baltrunas, D.; Cesiulis, H.; Sort, J. Mapping of Magnetic and Mechanical Properties of Fe-W Alloys Electrodeposited from Fe(III)-Based Glycolate-Citrate Bath. Materials & Design 2018, 139, 429–438. [Google Scholar] [CrossRef]
- Ghaferi, Z.; Sharafi, S.; Bahrololoom, M.E. The Role of Electrolyte pH on Phase Evolution and Magnetic Properties of CoFeW Codeposited Films. Applied Surface Science 2016, 375, 35–41. [Google Scholar] [CrossRef]
- Yermolenko, I.Yu.; Ved’, M.V.; Sakhnenko, N.D.; Shipkova, I.G.; Zyubanova, S.I. Nanostructured Magnetic Films Based on Iron with Refractory Metals. Journal of Magnetism and Magnetic Materials 2019, 475, 115–120. [Google Scholar] [CrossRef]
- Cirovic, N.; Spasojevic, P.; Ribic-Zelenovic, L.; Maskovic, P.; Spasojevic, M. Synthesis, Structure and Properties of Nickel-Iron-Tungsten Alloy Electrodeposits - Part I: Effect of Synthesis Parameters on Chemical Composition, Microstructure and Morphology. Sci Sintering 2015, 47, 347–365. [Google Scholar] [CrossRef]
- Cirovic, N.; Spasojevic, P.; Ribic-Zelenovic, L.; Maskovic, P.; Maricic, A.; Spasojevic, M. Synthesis, Structure and Properties of Nickel-Iron-Tungsten Alloy Electrodeposits - Part II: Effect of Microstructure on Hardness, Electrical and Magnetic Properties. Sci Sintering 2016, 48, 1–16. [Google Scholar] [CrossRef]
- Candidate List of Substances of Very High Concern for Authorisation. Available online: Https://Echa.Europa.Eu/Candidate-List-Table?p_p_id=disslists_WAR_disslistsportlet&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-1&p_p_col_pos=2&p_p_col_count=3&_disslists_WAR_disslistsportlet_javax.Portlet.action=searchDissListsNo (accessed on 5 November 2024).
- Mrkonjić Zajkoska, S.; Dobročka, E.; Hansal, S.; Mann, R.; Hansal, W.E.G.; Kautek, W. Tartrate-Based Electrolyte for Electrodeposition of Fe–Sn Alloys. Coatings 2019, 9, 313. [Google Scholar] [CrossRef]
- Zajkoska, S.M.; Mann, R.; Hansal, W.; Roy, S.; Kautek, W. Electrodeposition of Fe-Sn from the Chloride-Based Electrolyte. Transactions of the IMF 2019, 97, 247–253. [Google Scholar] [CrossRef]
- Giefers, H.; Nicol, M. High Pressure X-Ray Diffraction Study of All Fe–Sn Intermetallic Compounds and One Fe–Sn Solid Solution. Journal of Alloys and Compounds 2006, 422, 132–144. [Google Scholar] [CrossRef]
- García-Arribas, A.; Fdez-Gubieda, M.L.; Barandiarán, J.M. Comparative Study of the Structure and Magnetic Properties of Co-P and Fe-P Amorphous Alloys. Phys. Rev. B 2000, 61, 6238–6245. [Google Scholar] [CrossRef]
- Liu, T.; Ji, B.; Wu, Y.; Liu, Z.; Wang, W. Effects of the pH Value on the Electrodeposition of Fe–P Alloy as a Magnetic Film Material. J. Phys. Chem. C 2022, 126, 15472–15484. [Google Scholar] [CrossRef]
- Kovalska, N.; Tsyntsaru, N.; Cesiulis, H.; Gebert, A.; Fornell, J.; Pellicer, E.; Sort, J.; Hansal, W.; Kautek, W. Electrodeposition of Nanocrystalline Fe-P Coatings: Influence of Bath Temperature and Glycine Concentration on Structure, Mechanical and Corrosion Behavior. Coatings 2019, 9, 189. [Google Scholar] [CrossRef]
- Kovalska, N.; Hansal, W.E.G.; Tsyntsaru, N.; Cesiulis, H.; Gebert, A.; Kautek, W. Electrodeposition and Corrosion Behaviour of Nanocrystalline Fe–P Coatings. Transactions of the IMF 2019, 97, 89–94. [Google Scholar] [CrossRef]
- Naor, A.; Eliaz, N.; Gileadi, E. Electrodeposition of Alloys of Rhenium with Iron-Group Metals from Aqueous Solutions. ECS Trans. 2010, 25, 137–149. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Zheng, X.; Zhu, Y.; Wang, Z.; Wang, Y. One-Step Electrodeposition of Composition-Controllable Dendritic NiFe Alloy Electrocatalysts for Oxygen Evolution Reaction. Journal of Alloys and Compounds 2023, 968, 172313. [Google Scholar] [CrossRef]
- Xiong, Y.; He, P. A Review on Electrocatalysis for Alkaline Oxygen Evolution Reaction (OER) by Fe-Based Catalysts. J Mater Sci 2023. [Google Scholar] [CrossRef]
- Kutyła, D.; Skibińska, K.; Wojtysiak, M.; Salci, A.; Kołczyk-Siedlecka, K.; Wojtaszek, K.; Wojnicki, M.; Żabiński, P.; Solmaz, R. Electrochemical Preparation and Alkaline Water Splitting Activity of Ternary Co–Fe–Mo Non-Crystalline Coatings. International Journal of Hydrogen Energy 2024, 51, 1450–1459. [Google Scholar] [CrossRef]
- Ni, R.; Xu, W.; Wang, C.; Man, Z.; Cheng, X. The Application of Iron-Manganese Compounds towards Micropollutants Purification in Water: A Critical Review. Chemical Engineering Journal 2024, 493, 152553. [Google Scholar] [CrossRef]
- Xia, Q.; Jiang, Z.; Wang, J.; Yao, Z. A Facile Preparation of Hierarchical Dendritic Zero-Valent Iron for Fenton-like Degradation of Phenol. Catalysis Communications 2017, 100, 57–61. [Google Scholar] [CrossRef]
- Vainoris, M.; Nicolenco, A.; Tsyntsaru, N.; Podlaha-Murphy, E.; Alcaide, F.; Cesiulis, H. Electrodeposited Fe on Cu Foam as Advanced Fenton Reagent for Catalytic Mineralization of Methyl Orange. Front. Chem. 2022, 10, 977980. [Google Scholar] [CrossRef] [PubMed]
- Theofanidis, S.A.; Galvita, V.V.; Konstantopoulos, C.; Poelman, H.; Marin, G.B. Fe-Based Nano-Materials in Catalysis. Materials 2018, 11, 831. [Google Scholar] [CrossRef]
- Protsenko, V.S.; Danilov, F.I. Current Trends in Electrodeposition of Electrocatalytic Coatings. In Methods for Electrocatalysis; Inamuddin, Boddula, R., Asiri, A.M., Eds.; Springer International Publishing: Cham, 2020; pp. 263–299. ISBN 978-3-030-27160-2. [Google Scholar]
- Mulone, A.; Nicolenco, A.; Imaz, N.; Fornell, J.; Sort, J.; Klement, U. Effect of Heat Treatments on the Mechanical and Tribological Properties of Electrodeposited Fe–W/Al2O3 Composites. Wear 2020, 448–449, 203232. [Google Scholar] [CrossRef]
- Nicolenco, A.; Mulone, A.; Imaz, N.; Tsyntsaru, N.; Sort, J.; Pellicer, E.; Klement, U.; Cesiulis, H.; García-Lecina, E. Nanocrystalline Electrodeposited Fe-W/Al2O3 Composites: Effect of Alumina Sub-Microparticles on the Mechanical, Tribological, and Corrosion Properties. Front. Chem. 2019, 7, 241. [Google Scholar] [CrossRef] [PubMed]
- Starosta, R.; Zielinski, A. Effect of Chemical Composition on Corrosion and Wear Behaviour of the Composite Ni–Fe–Al2O3 Coatings. Journal of Materials Processing Technology 2004, 157–158, 434–441. [Google Scholar] [CrossRef]
- Jin, H.; Ji, R.; Dong, T.; Liu, S.; Zhang, F.; Zhao, L.; Ma, C.; Cai, B.; Liu, Y. Efficient Fabrication and Characterization of Ni-Fe-WC Composite Coatings with High Corrosion Resistance. Journal of Materials Research and Technology 2022, 16, 152–167. [Google Scholar] [CrossRef]
- Tsyntsaru, N.; Cesiulis, H.; Budreika, A.; Ye, X.; Juskenas, R.; Celis, J.-P. The Effect of Electrodeposition Conditions and Post-Annealing on Nanostructure of Co–W Coatings. Surface and Coatings Technology 2012, 206, 4262–4269. [Google Scholar] [CrossRef]
- Tsyntsaru, N.; Bobanova, J.; Ye, X.; Cesiulis, H.; Dikusar, A.; Prosycevas, I.; Celis, J.-P. Iron–Tungsten Alloys Electrodeposited under Direct Current from Citrate–Ammonia Plating Baths. Surface and Coatings Technology 2009, 203, 3136–3141. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, C.; Ling, Y.; Wang, J.; Xu, G. Phase Transformations and Electrochemical Characterizations of Electrodeposited Amorphous Fe–W Coatings. Surface and Coatings Technology 2016, 286, 36–41. [Google Scholar] [CrossRef]
- Wodarz, S.; Hashimoto, S.; Kambe, M.; Zangari, G.; Homma, T. Templated Electrochemical Synthesis of Fe–Pt Nanopatterns for High-Density Memory Applications. ACS Appl. Nano Mater. 2018, 1, 2317–2323. [Google Scholar] [CrossRef]
- Eliaz, N.; Gileadi, E. Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals. In Modern Aspects of Electrochemistry; Vayenas, C.G., White, R.E., Gamboa-Aldeco, M.E., Eds.; Modern Aspects of Electrochemistry; Springer New York: New York, NY, 2008; Volume 42, pp. 191–301. ISBN 978-0-387-49488-3. [Google Scholar]
- Li, X. Electrodeposition of Multi-Component Alloys: Thermodynamics, Kinetics and Mechanism. Current Opinion in Electrochemistry 2023, 39, 101289. [Google Scholar] [CrossRef]
- Survila, A. Electrochemistry of Metal Complexes: Applications from Electroplating to Oxide Layer Formation; 1. Auflage.; Wiley-VCH: Weinheim, Germany, 2015; ISBN 978-3-527-69125-8. [Google Scholar]
- Heusler, K.E. Multicomponent Electrodes. Electrochimica Acta 1996, 41, 411–418. [Google Scholar] [CrossRef]
- Nicolenco, A.; Tsyntsaru, N.; Cesiulis, H. Fe (III)-Based Ammonia-Free Bath for Electrodeposition of Fe-W Alloys. J. Electrochem. Soc. 2017, 164, D590–D596. [Google Scholar] [CrossRef]
- Mulone, A.; Nicolenco, A.; Imaz, N.; Martinez-Nogues, V.; Tsyntsaru, N.; Cesiulis, H.; Klement, U. Improvement in the Wear Resistance under Dry Friction of Electrodeposited Fe-W Coatings through Heat Treatments. Coatings 2019, 9, 66. [Google Scholar] [CrossRef]
- Cesiulis, H.; Baltutiene, A.; Donten, M.; Donten, M.; Stojek, Z. Increase in Rate of Electrodeposition and in Ni(II) Concentration in the Bath as a Way to Control Grain Size of Amorphous/Nanocrystalline Ni-W Alloys. J Solid State Electrochem 2002, 6, 237–244. [Google Scholar] [CrossRef]
- Kovalska, N.; Pfaffeneder-Kmen, M.; Tsyntsaru, N.; Mann, R.; Henrikas Cesiulis; Hansal, W. ; Kautek, W. The Role of Glycine in the Iron-Phosphorous Alloy Electrodeposition. Electrochimica Acta 2019, 309, 450–459. [Google Scholar] [CrossRef]
- Mehrizi, S.; Sohi, M.H.; Saremi, M. Effect of Sodium Citrate as Complexing on Electrochemical Behavior and Speciation Diagrams of CoFeNiCu Baths. Ionics 2013, 19, 911–918. [Google Scholar] [CrossRef]
- Fortas, G.; Ouir, S.; Manseri, A.; Djerir, W.; Smaili, F.; Gabouze, N.; Haine, N. Influence of Deposition Parameters on the Electrodeposited Ternary CoFeCu Coatings. J Mater Sci: Mater Electron 2024, 35, 1462. [Google Scholar] [CrossRef]
- Singh, A.K.; Zhou, L.; Shinde, A.; Suram, S.K.; Montoya, J.H.; Winston, D.; Gregoire, J.M.; Persson, K.A. Electrochemical Stability of Metastable Materials. Chem. Mater. 2017, 29, 10159–10167. [Google Scholar] [CrossRef]
- Brenner, A. Electrodeposition of Alloys: Principles and Practice; Academic Press: New York, 1963; ISBN 978-1-4832-2311-7. [Google Scholar]
- Podlaha, E.J.; Landolt, D. Induced Codeposition: I. An Experimental Investigation of Ni-Mo Alloys. J. Electrochem. Soc. 1996, 143, 885–892. [Google Scholar] [CrossRef]
- Zech, N.; Podlaha, E.J.; Landolt, D. Anomalous Codeposition of Iron Group Metals: I. Experimental Results. J. Electrochem. Soc. 1999, 146, 2886–2891. [Google Scholar] [CrossRef]
- V. P. Greco Rhenium Alloys - Iron Group Metals (Electrodeposition and Properties); 1971;
- Zhulikov, V.V.; Gamburg, Yu.D. Electrodeposition of Rhenium and Its Alloys. Russ J Electrochem 2016, 52, 847–857. [Google Scholar] [CrossRef]
- Electrochemical Series. In Corrosion: Materials; Cramer, S.D., Covino, B.S., Eds.; ASM International, 2005; pp. 665–671. ISBN 978-1-62708-183-2. [Google Scholar]
- Vajo, J.J.; Aikens, D.A.; Ashley, L.; Poeltl, D.E.; Bailey, R.A.; Clark, H.M.; Bunce, S.C. Facile Electroreduction of Perrhenate in Weakly Acidic Citrate and Oxalate Media. Inorg. Chem. 1981, 20, 3328–3333. [Google Scholar] [CrossRef]
- Contu, F.; Taylor, S.R. Further Insight into the Mechanism of Re–Ni Electrodeposition from Concentrated Aqueous Citrate Baths. Electrochimica Acta 2012, 70, 34–41. [Google Scholar] [CrossRef]
- Vargas-Uscategui, A.; Mosquera, E.; Cifuentes, L. Analysis of the Electrodeposition Process of Rhenium and Rhenium Oxides in Alkaline Aqueous Electrolyte. Electrochimica Acta 2013, 109, 283–290. [Google Scholar] [CrossRef]
- Baranov, S.A.; Dikusar, A.I. Kinetics of Electrochemical Nanonucleation during Induced Codeposition of Iron-Group Metals with Refractory Metals (W, Mo, Re). Surf. Engin. Appl.Electrochem. 2022, 58, 429–439. [Google Scholar] [CrossRef]
- Torabinejad, V.; Aliofkhazraei, M.; Assareh, S.; Allahyarzadeh, M.H.; Rouhaghdam, A.S. Electrodeposition of Ni-Fe Alloys, Composites, and Nano Coatings–A Review. Journal of Alloys and Compounds 2017, 691, 841–859. [Google Scholar] [CrossRef]
- Park, D.-Y.; Yoo, B.Y.; Kelcher, S.; Myung, N.V. Electrodeposition of Low-Stress High Magnetic Moment Fe-Rich FeCoNi Thin Films. Electrochimica Acta 2006, 51, 2523–2530. [Google Scholar] [CrossRef]
- Arai, S.; Tomiita, K.; Shimizu, M.; Narita, H. Electrodeposition of Fe-Ni Alloy Films Having Invar Compositions with Fe3+ as the Sole Iron Source. J. Electrochem. Soc. 2023, 170, 112506. [Google Scholar] [CrossRef]
- Liang, D.; Mallett, J.J.; Zangari, G. Electrodeposition of Fe−Pt Films with Low Oxide Content Using an Alkaline Complexing Electrolyte. ACS Appl. Mater. Interfaces 2010, 2, 961–964. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Zangari, G. Fe–Pt Magnetic Multilayers by Electrochemical Deposition. Electrochimica Acta 2011, 56, 10567–10574. [Google Scholar] [CrossRef]
- Yar-Mukhamedova, G.; Ved, M.; Sakhnenko, N.; Karakurkchi, A.; Yermolenko, I. Iron Binary and Ternary Coatings with Molybdenum and Tungsten. Applied Surface Science 2016, 383, 346–352. [Google Scholar] [CrossRef]
- Ramaprakash, M.; Jerom Samraj, A.; Neelavannan, M.G.; Rajasekaran, N. The Induced Co-Deposition of Ni–Mo–W Ternary Alloy; Coatings for Hardness and Corrosion Resistance Applications. Results in Surfaces and Interfaces 2024, 15, 100235. [Google Scholar] [CrossRef]
- He, F.; Yang, J.; Lei, T.; Gu, C. Structure and Properties of Electrodeposited Fe–Ni–W Alloys with Different Levels of Tungsten Content: A Comparative Study. Applied Surface Science 2007, 253, 7591–7598. [Google Scholar] [CrossRef]
- Wang, S.; Ling, Y.; Zhang, J.; Wang, J.; Xu, G. Microstructure and Properties of Hydrophobic Films Derived from Fe-W Amorphous Alloy. Int J Miner Metall Mater 2014, 21, 395–400. [Google Scholar] [CrossRef]
- Dobrzańska-Danikiewicz, A.D.; Wolany, W. A Rhenium Review – from Discovery to Novel Applications. Archives of Materials Science and Engineering 2016, 82, 70–78. [Google Scholar] [CrossRef]
- Jones, T. Rhenium Plating. Metal Finishing 2003, 101, 86–96. [Google Scholar] [CrossRef]
- Tsyntsaru, N.; Cesiulis, H.; Pellicer, E.; Celis, J.-P.; Sort, J. Structural, Magnetic, and Mechanical Properties of Electrodeposited Cobalt–Tungsten Alloys: Intrinsic and Extrinsic Interdependencies. Electrochimica Acta 2013, 104, 94–103. [Google Scholar] [CrossRef]
- Sriraman, K.R.; Ganesh Sundara Raman, S.; Seshadri, S.K. Synthesis and Evaluation of Hardness and Sliding Wear Resistance of Electrodeposited Nanocrystalline Ni–W Alloys. Materials Science and Engineering: A 2006, 418, 303–311. [Google Scholar] [CrossRef]
- Haché, M.J.R.; Tam, J.; Erb, U.; Zou, Y. Electrodeposited NiFeCo-(Mo,W) High-Entropy Alloys with Nanocrystalline and Amorphous Structures. Journal of Alloys and Compounds 2023, 952, 170026. [Google Scholar] [CrossRef]
- Vernickaite, E.; Tsyntsaru, N.; Sobczak, K.; Cesiulis, H. Electrodeposited Tungsten-Rich Ni-W, Co-W and Fe-W Cathodes for Efficient Hydrogen Evolution in Alkaline Medium. Electrochimica Acta 2019, 318, 597–606. [Google Scholar] [CrossRef]
- Silkin, S.A.; Gotelyak, A.V.; Tsyntsaru, N.I.; Dikusar, A.I. Electrodeposition of Alloys of the Iron Group Metals with Tungsten from Citrate and Gluconate Solutions: Size Effect of Microhardness. Surf. Engin. Appl.Electrochem. 2017, 53, 7–14. [Google Scholar] [CrossRef]
- Belevskii, S.S.; Gotelyak, A.V.; Silkin, S.A.; Dikusar, A.I. Macroscopic Size Effect on the Microhardness of Electroplated Iron Group Metal—Tungsten Alloy Coatings: Impact of Electrode Potential and Oxygen-Containing Impurities. Surf. Engin. Appl.Electrochem. 2019, 55, 46–52. [Google Scholar] [CrossRef]
- Belevskii, S.S.; Danilchuk, V.V.; Gotelyak, A.V.; Lelis, M.; Yushchenko, S.P.; Dikusar, A.I. Electrodeposition of Fe–W Alloys from Citrate Bath: Impact of Anode Material. Surf. Engin. Appl.Electrochem. 2020, 56, 1–12. [Google Scholar] [CrossRef]
- Myrzak, V.; Gotelyak, A.V.; Dikusar, A.I. Size Effects in the Surface Properties of Electroplated Alloys between Iron Group Metals and Tungsten. Surf. Engin. Appl.Electrochem. 2021, 57, 409–418. [Google Scholar] [CrossRef]
- Gamburg, Yu.D.; Zakharov, E.N. Electrodeposition of Ternary Fe–W–H Alloys. Surf. Engin. Appl.Electrochem. 2019, 55, 402–409. [Google Scholar] [CrossRef]
- Belevskii, S.S.; Bobanova, Zh.I.; Buravets, V.A.; Gotelyak, A.V.; Danil’chuk, V.V.; Silkin, S.A.; Dikusar, A.I. Electrodeposition of Co–W Coatings from Boron Gluconate Electrolyte with a Soluble Tungsten Anode. Russ J Appl Chem 2016, 89, 1427–1433. [Google Scholar] [CrossRef]
- Ledwig, P.; Kac, M.; Kopia, A.; Falkus, J.; Dubiel, B. Microstructure and Properties of Electrodeposited Nanocrystalline Ni-Co-Fe Coatings. Materials 2021, 14, 3886. [Google Scholar] [CrossRef] [PubMed]
- Chou, M.-C.; Chu, C.-F.; Wu, S.-T. Phase Transformations of Electroplated Amorphous Iron–Tungsten–Carbon Film. Materials Chemistry and Physics 2003, 78, 59–66. [Google Scholar] [CrossRef]
- Mulone, A.; Nicolenco, A.; Hoffmann, V.; Klement, U.; Tsyntsaru, N.; Cesiulis, H. In-Depth Characterization of as-Deposited and Annealed Fe-W Coatings Electrodeposited from Glycolate-Citrate Plating Bath. Electrochimica Acta 2018, 261, 167–177. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, J.-I.; Shinohara, Y.; Hagio, T.; Umehara, N.; Ichino, R. Super Hardening of Fe W Alloy Plating by Phase Transformation of Amorphous to Metal Carbides-Dispersed Nanocrystalline Alloys and Application as Promising Alternative for Hard Chromium Plating. Surface and Coatings Technology 2024, 477, 130388. [Google Scholar] [CrossRef]
- Köse, M.; Tan, S.; Algül, H.; Alp, A.; Akbulut, H.; Uysal, M. Effect of Different Heat Treatment Temperatures on Fe W Alloy Electrodeposits: Tribological and Electrochemical Analysis. Surface and Coatings Technology 2024, 485, 130852. [Google Scholar] [CrossRef]
- Marvel, C.J.; Cantwell, P.R.; Harmer, M.P. The Critical Influence of Carbon on the Thermal Stability of Nanocrystalline Ni–W Alloys. Scripta Materialia 2015, 96, 45–48. [Google Scholar] [CrossRef]
- Marvel, C.J.; Yin, D.; Cantwell, P.R.; Harmer, M.P. The Influence of Oxygen Contamination on the Thermal Stability and Hardness of Nanocrystalline Ni–W Alloys. Materials Science and Engineering: A 2016, 664, 49–57. [Google Scholar] [CrossRef]
- Mulone, A.; Nicolenco, A.; Fornell, J.; Pellicer, E.; Tsyntsaru, N.; Cesiulis, H.; Sort, J.; Klement, U. Enhanced Mechanical Properties and Microstructural Modifications in Electrodeposited Fe-W Alloys through Controlled Heat Treatments. Surface and Coatings Technology 2018, 350, 20–30. [Google Scholar] [CrossRef]
- Herzer, G. Grain Size Dependence of Coercivity and Permeability in Nanocrystalline Ferromagnets. IEEE Trans. Magn. 1990, 26, 1397–1402. [Google Scholar] [CrossRef]
- Zhang, Y.; Ivey, D.G. Electrodeposition of Nanocrystalline CoFe Soft Magnetic Thin Films from Citrate-Stabilized Baths. Materials Chemistry and Physics 2018, 204, 171–178. [Google Scholar] [CrossRef]
- Spasojevic, M.; Plazinic, M.; Lukovic, M.; Maricic, A.; Spasojevic, M. The Effect of Annealing and Frequency of the External Magnetic Field on Magnetic Properties of Nanostructured Electrodeposit of the Ni86,0Fe9,8W1,3Cu2,9 Alloy. Materials Chemistry and Physics 2020, 254, 123513. [Google Scholar] [CrossRef]
- Mehrizi, S.; Molaei, M.J.; Sohi, M.H. An Investigation on Magnetic Properties and Electrical Resistivity of Nanocrystalline CoFeNi Thick Films Synthesized through Stabilized Bath. Journal of Materials Research and Technology 2022, 21, 2547–2554. [Google Scholar] [CrossRef]
- Hernández, S.C.; Yoo, B.Y.; Stefanescu, E.; Khizroev, S.; Myung, N.V. Electrodeposition of Iron–Palladium Thin Films. Electrochimica Acta 2008, 53, 5621–5627. [Google Scholar] [CrossRef]
- Faltas, M.; Pillars, J.; Soule, L.; Meyerson, M.L.; Rodriguez, M.A.; Valdez, N.R.; Oglesby, S.; Jackson, N.; El-Kady, I. Electrodeposited NiFeCo + Tb and Dy for Enhanced Magnetostrictive Properties and Soft Magnetism. Thin Solid Films 2024, 800, 140396. [Google Scholar] [CrossRef]
- Wang, Q.; Li, M.; Weng, L.; Huang, W. Dual-Mode Sensing Based on Oriented Magnetostrictive Films by Electrodepositon. IEEE Sensors J. 2024, 24, 23667–23675. [Google Scholar] [CrossRef]
- Barbano, E.P.; Carlos, I.A.; Vallés, E. Electrochemical Synthesis of Fe-W and Fe-W-P Magnetic Amorphous Films and Fe-W Nanowires. Surface and Coatings Technology 2017, 324, 80–84. [Google Scholar] [CrossRef]
- Ren, Q.Q.; Fan, J.L.; Han, Y.; Gong, H.R. Structural, Thermodynamic, Mechanical, and Magnetic Properties of FeW System. Journal of Applied Physics 2014, 116, 093909. [Google Scholar] [CrossRef]
- Mundotiya, B.M.; Dinulovic, D.; Rissing, L.; Wurz, M.C. Fabrication and Characterization of a Ni-Fe-W Core Microtransformer for High-Frequency Power Applications. Sensors and Actuators A: Physical 2017, 267, 42–47. [Google Scholar] [CrossRef]
- M. , K.; H. B., R. Effect of Electrolytic Bath Temperature on Magnetic and Structural Properties of Electrodeposited Ni Fe W Nano Crystalline Thin Films. Orient. J. Chem 2017, 33, 2899–2904. [Google Scholar] [CrossRef]
- Ved’, M.; Yermolenko, I.; Sachanova, Yu.; Sakhnenko, N. Refractory Metals Influence on the Properties of Fe-Co-Mo(W) Electrolytic Alloys. Materials Today: Proceedings 2019, 6, 121–128. [Google Scholar] [CrossRef]
- Kannan, R.; Ganesan, S.; Selvakumari, T.M. An Investigation on Effects of Annealing on Magnetic Properties of Ni-Fe-W-S Electrodeposited Coatings in Tri Sodium Citrate Bath. Transaction A: Science 2013, 37. [Google Scholar] [CrossRef]
- Restriction Proposal on Chromium (VI) to Cover More Substances. Available online: Https://Echa.Europa.Eu/-/Restriction-Proposal-on-Chromium-vi-to-Cover-More-Substances (accessed on 9 December 2024).
- Weston, D.P.; Harris, S.J.; Shipway, P.H.; Weston, N.J.; Yap, G.N. Establishing Relationships between Bath Chemistry, Electrodeposition and Microstructure of Co–W Alloy Coatings Produced from a Gluconate Bath. Electrochimica Acta 2010, 55, 5695–5708. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Rupert, T.J.; Schuh, C.A. Sliding Wear of Nanocrystalline Ni–W: Structural Evolution and the Apparent Breakdown of Archard Scaling. Acta Materialia 2010, 58, 4137–4148. [Google Scholar] [CrossRef]
- Su, F.; Huang, P. Microstructure and Tribological Property of Nanocrystalline Co–W Alloy Coating Produced by Dual-Pulse Electrodeposition. Materials Chemistry and Physics 2012, 134, 350–359. [Google Scholar] [CrossRef]
- Bobanova, Zh.I.; Dikusar, A.I.; Cesiulis, H.; Celis, J.-P.; Tsyntsaru, N.I.; Prosycevas, I. Micromechanical and Tribological Properties of Nanocrystalline Coatings of Iron-Tungsten Alloys Electrodeposited from Citrate-Ammonia Solutions. Russ J Electrochem 2009, 45, 895–901. [Google Scholar] [CrossRef]
- Park, J.-H.; Hagio, T.; Kamimoto, Y.; Ichino, R. The Effect of Bath pH on Electrodeposition and Corrosion Properties of Ternary Fe-W-Zn Alloy Platings. J Solid State Electrochem 2021, 25, 1901–1913. [Google Scholar] [CrossRef]
- Zouch, F.; Antar, Z.; Bahri, A.; Elleuch, K.; Ürgen, M. Tribological Study of Fe–W–P Electrodeposited Coating on 316 L Stainless Steel. Journal of Tribology 2018, 140, 011301. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Xing, H.; Yue, L.; Li, Z.; Wang, Y. Study of the Process of Preparing Amorphous Fe–W(La) Alloy Plating by Induced Co-Deposition. mat express 2023, 13, 1764–1771. [Google Scholar] [CrossRef]
- Nicolenco, A.; Tsyntsaru, N.; Matijošius, T.; Asadauskas, S.; Cesiulis, H. WEAR RESISTANCE OF ELECTRODEPOSITED Fe-W ALLOY COATINGS UNDER DRY CONDITIONS AND IN THE PRESENCE OF RAPESEED OIL. Green Tribology 2018, 1, 16–23. [Google Scholar] [CrossRef]
- Bajwa, R.S.; Khan, Z.; Bakolas, V.; Braun, W. Water-Lubricated Ni-Based Composite (Ni–Al2O3, Ni–SiC and Ni–ZrO2) Thin Film Coatings for Industrial Applications. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 8–16. [Google Scholar] [CrossRef]
- Liang, J.; Wu, X.-W.; Ling, Y.; Yu, S.; Zhang, Z. Trilaminar Structure Hydrophobic Graphene Oxide Decorated Organosilane Composite Coatings for Corrosion Protection. Surface and Coatings Technology 2018, 339, 65–77. [Google Scholar] [CrossRef]
- Vainoris, M.; Cesiulis, H.; Tsyntsaru, N. Metal Foam Electrode as a Cathode for Copper Electrowinning. Coatings 2020, 10, 822. [Google Scholar] [CrossRef]
- Herraiz-Cardona, I.; Ortega, E.; Antón, J.G.; Pérez-Herranz, V. Assessment of the Roughness Factor Effect and the Intrinsic Catalytic Activity for Hydrogen Evolution Reaction on Ni-Based Electrodeposits. International Journal of Hydrogen Energy 2011, 36, 9428–9438. [Google Scholar] [CrossRef]
- Vainoris, M.; Tsyntsaru, N.; Cesiulis, H. Modified Electrodeposited Cobalt Foam Coatings as Sensors for Detection of Free Chlorine in Water. Coatings 2019, 9, 306. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, R.; Lv, W.; Wei, M.; Wang, W. One-Pot Hydrothermal Synthesis of Fe, W Co-Doped Ni3S2/NiS on Ni Foam for Bifunctional Oxygen Evolution and Urea Oxidation Reactions. International Journal of Electrochemical Science 2022, 17, 221043. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, D.; Sun, S.; Huang, S.; Wu, Y.; Zhang, L.; Dou, S.X.; Liu, H.K.; Dou, Y.; Xu, J. Iron, Tungsten Dual-Doped Nickel Sulfide as Efficient Bifunctional Catalyst for Overall Water Splitting. Small 2024, 2311770. [Google Scholar] [CrossRef] [PubMed]
- Č. Lačnjevac, M. M. Jaksic Synergetic Electrocatalytic Effects of D-Metals on the Hydrogen Evolution Reaction in Industrially Important Electrochemical Processes. J. Res. Inst. Catalysis, Hokkaido Univ 1983, 31, 7–33. [Google Scholar]
- Tharamani, C.N.; Beera, P.; Jayaram, V.; Begum, N.S.; Mayanna, S.M. Studies on Electrodeposition of Fe–W Alloys for Fuel Cell Applications. Applied Surface Science 2006, 253, 2031–2037. [Google Scholar] [CrossRef]
- Bersirova, О.L.; Bilyk, S.V.; Kublanovs’kyi, V.S. Electrochemical Synthesis of Fe–W Nanostructural Electrocatalytic Coatings. Mater Sci 2018, 53, 732–738. [Google Scholar] [CrossRef]
- Zhang, P.; Tan, W.; He, H.; Fu, Z. Binder-Free Quaternary Ni–Fe–W–Mo Alloy as a Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of Alloys and Compounds 2021, 853, 157265. [Google Scholar] [CrossRef]
- V. Bachvarov, M. Arnaudova, E. Lefterova, R. Rashkov Study of Oxygen Evolution Reaction on Iron Group-Based Electrodeposited Multicomponent Catalysts in Alkaline Media. Part i: Influence of the Composition. Journal of Chemical Technology and Metallurgy 2022, 57, 910–918. [Google Scholar]
- Zhang, J.; Ling, Y.; Gao, W.; Wang, S.; Li, J. Enhanced Photoelectrochemical Water Splitting on Novel Nanoflake WO3 Electrodes by Dealloying of Amorphous Fe–W Alloys. J. Mater. Chem. A 2013, 1, 10677. [Google Scholar] [CrossRef]
- Ved’, M.; Sakhnenko, N.; Nenastina, T.; Volobuyev, M.; Yermolenko, I. Corrosion and Mechanical Properties of Nanostructure Electrolytic Co-W and Fe-Co-W Alloys. Materials Today: Proceedings 2022, 50, 463–469. [Google Scholar] [CrossRef]
- Stojić, D.Lj.; Cekić, B.D.; Maksić, A.D.; Kaninski, M.P.M.; Miljanić, Š.S. Intermetallics as Cathode Materials in the Electrolytic Hydrogen Production. International Journal of Hydrogen Energy 2005, 30, 21–28. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, P.; Wang, C.; Yuan, W.; Yang, W.; Shang, X. Electrodeposition of Amorphous Ni–Fe–Mo Composite as a Binder-Free and High-Performance Electrocatalyst for Hydrogen Generation from Alkaline Water Electrolysis. International Journal of Hydrogen Energy 2023, 48, 33130–33138. [Google Scholar] [CrossRef]
- Zhou, D.; Li, P.; Xu, W.; Jawaid, S.; Mohammed-Ibrahim, J.; Liu, W.; Kuang, Y.; Sun, X. Recent Advances in Non-Precious Metal-Based Electrodes for Alkaline Water Electrolysis. ChemNanoMat 2020, 6, 336–355. [Google Scholar] [CrossRef]
- Vernickaitė, E.; Bersirova, O.; Cesiulis, H.; Tsyntsaru, N. Design of Highly Active Electrodes for Hydrogen Evolution Reaction Based on Mo-Rich Alloys Electrodeposited from Ammonium Acetate Bath. Coatings 2019, 9, 85. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, Y.; Zhang, Z.; Yang, L.; Zang, Q. Rapid Electrodeposited of Self-Supporting Ni-Fe-Mo Film on Ni Foam as Affordable Electrocatalysts for Oxygen Evolution Reaction. Electrochimica Acta 2021, 390, 138754. [Google Scholar] [CrossRef]
- Huang, X.; Liu, K.; Vrijburg, W.L.; Ouyang, X.; Iulian Dugulan, A.; Liu, Y.; Tiny Verhoeven, M.W.G.M.; Kosinov, N.A.; Pidko, E.A.; Hensen, E.J.M. Hydrogenation of Levulinic Acid to γ-Valerolactone over Fe-Re/TiO2 Catalysts. Applied Catalysis B: Environmental 2020, 278, 119314. [Google Scholar] [CrossRef]
- Carroll, Z.L.; Haché, M.J.R.; Wang, B.; Chen, L.; Wu, S.; Erb, U.; Thorpe, S.; Zou, Y. Electrodeposited NiFeCoMoW High-Entropy Alloys with Nanoscale Amorphous Structure as Effective Hydrogen Evolution Electrocatalysts. ACS Appl. Energy Mater. 2024, 7, 8412–8422. [Google Scholar] [CrossRef]
- Wu, K.; Liu, C.; Li, Q.; Huo, J.; Li, M.; Chang, C.; Sun, Y. Magnetocaloric Effect of Fe25Co25Ni25Mo5P10B10 High-Entropy Bulk Metallic Glass. Journal of Magnetism and Magnetic Materials 2019, 489, 165404. [Google Scholar] [CrossRef]
- Lee, C.; Song, G.; Gao, M.C.; Feng, R.; Chen, P.; Brechtl, J.; Chen, Y.; An, K.; Guo, W.; Poplawsky, J.D.; et al. Lattice Distortion in a Strong and Ductile Refractory High-Entropy Alloy. Acta Materialia 2018, 160, 158–172. [Google Scholar] [CrossRef]
- George, E.P.; Raabe, D.; Ritchie, R.O. High-Entropy Alloys. Nat Rev Mater 2019, 4, 515–534. [Google Scholar] [CrossRef]
- Bian, H.; Wang, R.; Zhang, K.; Zheng, H.; Wen, M.; Li, Z.; Li, Z.; Wang, G.; Xie, G.; Liu, X.; et al. Facile Electrodeposition Synthesis and Super Performance of Nano-Porous Ni-Fe-Cu-Co-W High Entropy Alloy Electrocatalyst. Surface and Coatings Technology 2023, 459, 129407. [Google Scholar] [CrossRef]
- Dehestani, M.; Sharafi, S.; Khayati, G.R. The Effect of Pulse Current Density on the Microstructure, Magnetic, Mechanical, and Corrosion Properties of High-Entropy Alloy Coating Fe–Co–Ni–Mo–W, Achieved through Electro Co-Deposition. Intermetallics 2022, 147, 107610. [Google Scholar] [CrossRef]
- Temiz, M.; Kara, A.Y.G.; Erdemir, D.; Dincer, I. More Efficient Way of Clean Hydrogen Production: The Synergetic Roles of Magnetic Effects and Effective Catalysts. Fuel 2024, 376, 132708. [Google Scholar] [CrossRef]
- Xiong, Z.; Ning, X.; Zhou, F.; Yang, B.; Tu, Y.; Jin, J.; Lu, W.; Liu, Z. Environment-Friendly Magnetic Fe–Ce–W Catalyst for the Selective Catalytic Reduction of NOx with NH3: Influence of Citric Acid Content on Its Activity-Structure Relationship. RSC Adv. 2018, 8, 21915–21925. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Ma, L.; An, W.; Shen, P. Stability Optimization of Iron-Based Catalysts: Application of Cr-Enriched Alloy Steel Catalyst in Ozonation Pharmaceutical Wastewater. Separation and Purification Technology 2025, 354, 129007. [Google Scholar] [CrossRef]
- Humphreys, J.; Lan, R.; Tao, S. Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Adv Energy and Sustain Res 2021, 2, 2000043. [Google Scholar] [CrossRef]
- Liu, H. Ammonia Synthesis Catalyst 100 Years: Practice, Enlightenment and Challenge. Chinese Journal of Catalysis 2014, 35, 1619–1640. [Google Scholar] [CrossRef]
- Fan, H.; Ma, Y.; Chen, W.; Tang, Y.; Li, L.; Wang, J. Facile One-Step Electrodeposition of Two-Dimensional Nickel-Iron Bimetallic Sulfides for Efficient Electrocatalytic Oxygen Evolution. Journal of Alloys and Compounds 2022, 894, 162533. [Google Scholar] [CrossRef]
- Kırlıoğlu, A.C.; Ölmez, B.; Rahbarshendi, F.; Buldu-Akturk, M.; Yürüm, A.; Alkan Gürsel, S.; Yarar Kaplan, B. Scalable Nano-Sized Fe-N-C Catalysts for Fuel Cells: Evaluating the Impact of Iron Precursors and CeO2 Addition. Materials Research Bulletin 2024, 179, 112952. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Jin, S.; An, N.; Yan, M.; Zhang, X.; Hong, Z.; Yang, S. Rational Electrochemical Design of Hierarchical Microarchitectures for SERS Sensing Applications. Nat. Synth 2024, 3, 867–877. [Google Scholar] [CrossRef]
- Jamal, A.; Haq, G.-U.; Hussain, S.; Gul, M.; Saifullah, M.; Anjum, M.A.R. Enhanced Tribological Properties of Electrodeposited Fe–W Alloy Coatings through Carburization. Langmuir 2023, 39, 16328–16335. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Xiang, W.; Amin, M.A.; Na, J.; Wang, S.; Yu, J.; Yamauchi, Y. Efficient Electrocatalysis for Oxygen Evolution: W-Doped NiFe Nanosheets with Oxygen Vacancies Constructed by Facile Electrodeposition and Corrosion. Chemical Engineering Journal 2023, 452, 139104. [Google Scholar] [CrossRef]
- Rajendiran, R.; Chinnadurai, D.; Chen, K.; Selvaraj, A.R.; Prabakar, K.; Li, O.L. Electrodeposited Trimetallic NiFeW Hydroxide Electrocatalysts for Efficient Water Oxidation. ChemSusChem 2021, 14, 1324–1335. [Google Scholar] [CrossRef] [PubMed]
- Capelli, S.; Cattaneo, S.; Stucchi, M.; Villa, A.; Prati, L. Iron as Modifier of Pd and Pt-Based Catalysts for Sustainable and Green Processes. Inorganica Chimica Acta 2022, 535, 120856. [Google Scholar] [CrossRef]
- Hosseini, J.; Abdolmaleki, M.; Pouretedal, H.R.; Keshavarz, M.H. Electrocatalytic Activity of Porous Nanostructured Fe/Pt-Fe Electrode for Methanol Electrooxidation in Alkaline Media. Chinese Journal of Catalysis 2015, 36, 1029–1034. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
