Submitted:
02 December 2024
Posted:
03 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Participations
2.2. Procedure
2.3. Intervention
2.3.1. Smart Insole-Based Virtual Reality feedback Training(SIVRT) Group
2.3.2. Conservative Treatment (CON) Group
2.4. Evaluation
2.4.1. Balance Test
2.4.2. Gait Analysis
2.5. Data Analysis
3. Results
3.1. General and Clinical Characteristics of the Patients
3.2. Comparison of Composite Spasticity Score Between the Groups
3.3. Comparison of Timed Up and Go and BioRescue Test Between the Groups
3.4. Comparison of Gait Ability Between the Groups
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Ferraris, C.; Cimolin, V.; Vismara, L.; Votta, V.; Amprimo, G.; Cremascoli, R.; Galli, M.; Nerino, R.; Mauro, A.; Priano, L. Monitoring of gait parameters in post-stroke individuals: A feasibility study using rgb-d sensors. Sensors 2021, 21, 5945. [Google Scholar] [CrossRef]
- Graef, P.; Dadalt, M.L.R.; da Silva Rodrigués, D.A.M.; Stein, C.; de Souza Pagnussat, A. Transcranial magnetic stimulation combined with upper-limb training for improving function after stroke: a systematic review and meta-analysis. Journal of the neurological sciences 2016, 369, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Verheyden, G.; Vereeck, L.; Truijen, S.; Troch, M.; LaFosse, C.; Saeys, W.; Leenaerts, E.; Palinckx, A.; De Weerdt, W. Additional exercises improve trunk performance after stroke: a pilot randomized controlled trial. Neurorehabilitation and neural repair 2009, 23, 281–286. [Google Scholar] [CrossRef]
- Winstein, C.J.; Rose, D.K.; Tan, S.M.; Lewthwaite, R.; Chui, H.C.; Azen, S.P. A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Archives of physical medicine and rehabilitation 2004, 85, 620–628. [Google Scholar] [CrossRef]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabrò, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurological Sciences 2017, 38, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.J.; Khoo, I.-H.; Demircan, E. A survey of human gait-based artificial intelligence applications. Frontiers in Robotics and AI 2022, 8, 749274. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Wang, A.; Zhuang, Y.; Tomita, M.R.; Xu, W. Smart insole: A wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Transactions on Industrial Informatics 2016, 12, 2281–2291. [Google Scholar] [CrossRef]
- Khandakar, A.; Mahmud, S.; Chowdhury, M.E.; Reaz, M.B.I.; Kiranyaz, S.; Mahbub, Z.B.; Md Ali, S.H.; Bakar, A.A.A.; Ayari, M.A.; Alhatou, M. Design and implementation of a smart insole system to measure plantar pressure and temperature. Sensors 2022, 22, 7599. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Dong, M.; Li, L.; Wang, C.; Li, J.; Liu, Y.; Bao, R.; Pan, C. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsystems & nanoengineering 2020, 6, 62. [Google Scholar]
- Lee, L.-J.; Choi, S.-Y.; Lee, H.-S.; Han, S.-W. Efficacy analysis of virtual reality-based training for activities of daily living and functional task training in stroke patients: a single-subject study. Medicine 2023, 102, e33573. [Google Scholar] [CrossRef] [PubMed]
- Lange, B.; Koenig, S.; Chang, C.-Y.; McConnell, E.; Suma, E.; Bolas, M.; Rizzo, A. Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disability and rehabilitation 2012, 34, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Demeco, A.; Zola, L.; Frizziero, A.; Martini, C.; Palumbo, A.; Foresti, R.; Buccino, G.; Costantino, C. Immersive virtual reality in post-stroke rehabilitation: a systematic review. Sensors 2023, 23, 1712. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, D.; Georgieva, I.; Gong, Z.; Nanjappan, V.; Georgiev, G. Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sci. 2021, 11, 221. [Google Scholar] [CrossRef] [PubMed]
- Patsaki, I.; Dimitriadi, N.; Despoti, A.; Tzoumi, D.; Leventakis, N.; Roussou, G.; Papathanasiou, A.; Nanas, S.; Karatzanos, E. The effectiveness of immersive virtual reality in physical recovery of stroke patients: A systematic review. Frontiers in Systems Neuroscience 2022, 16, 880447. [Google Scholar] [CrossRef] [PubMed]
- McEwen, D.; Taillon-Hobson, A.; Bilodeau, M.; Sveistrup, H.; Finestone, H. Virtual reality exercise improves mobility after stroke: an inpatient randomized controlled trial. Stroke 2014, 45, 1853–1855. [Google Scholar] [CrossRef] [PubMed]
- De Keersmaecker, E.; Van Bladel, A.; Zaccardi, S.; Lefeber, N.; Rodriguez-Guerrero, C.; Kerckhofs, E.; Jansen, B.; Swinnen, E. Virtual reality—enhanced walking in people post-stroke: effect of optic flow speed and level of immersion on the gait biomechanics. Journal of NeuroEngineering and Rehabilitation 2023, 20, 124. [Google Scholar] [CrossRef]
- Arshad, A.H.; Awan, F.N.; Ayesha Abdul, W.; Saeed, Z.; Waris, M. Post Stroke Patients Balance Improvement by Comparing VR Assisted Treadmill Training vs. Traditional Treadmill Training. Avicenna Journal of Health Sciences 2024, 1, 21–24. [Google Scholar]
- Shishi, C.; Zhang, W.; Dingyu, W.; Zhaoming, C. How robot-assisted gait training affects gait ability, balance and kinematic parameters after stroke: a systematic review and meta-analysis. EuropEan Journal of physical and rEhabilitation MEdicinE 2024, 60, 400. [Google Scholar]
- Lin, M.; Huang, J.; Fu, J.; Sun, Y.; Fang, Q. A VR-based motor imagery training system with EMG-based real-time feedback for post-stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2022, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Daran, H.; Ibrahimi, Z.K.; Rehman, M.U.; Abidin, S.Z.U.; Bilal, H.; Zeb, A. Effect of Virtual Reality Game Based training in Gait Improvement of Post Stroke Patients: A Quasi-experimental Study. Journal Riphah College of Rehabilitation Sciences 2024, 12. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. Journal of the American geriatrics Society 1991, 39, 142–148. [Google Scholar]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. The Journal of Strength & Conditioning Research 2011, 25, 556–560. [Google Scholar]
- Kelly-Hayes, M.; Beiser, A.; Kase, C.S.; Scaramucci, A.; D’Agostino, R.B.; Wolf, P.A. The influence of gender and age on disability following ischemic stroke: the Framingham study. Journal of stroke and cerebrovascular diseases 2003, 12, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Wade, D.T.; Wood, V.A.; Heller, A.; Maggs, J. Walking after stroke. Measurement and recovery over the first 3 months. Scandinavian journal of rehabilitation medicine 1987, 19, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Twist, D.J. Effects of a wrapping technique on passive range of motion in a spastic upper extremity. Physical therapy 1985, 65, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, K.; Toyama, H.; Kunita, K. Anticipatory activation of postural muscles associated with bilateral arm flexion in subjects with different quiet standing positions. Gait & Posture 2003, 17, 254–263. [Google Scholar]
- Thompson, D.M. Kinesiology of the musculoskeletal system: foundations for physical rehabilitation. Physical Therapy 2003, 83, 402. [Google Scholar]
- Jha, K.K.; Karunanithi, G.B.; Sahana, A.; Karthikbabu, S. Randomised trial of virtual reality gaming and physiotherapy on balance, gross motor performance and daily functions among children with bilateral spastic cerebral palsy. Somatosensory & Motor Research 2021, 38, 117–126. [Google Scholar]
- Abd El-Kafy, E.M.; Alshehri, M.A.; El-Fiky, A.A.-R.; Guermazi, M.A.; Mahmoud, H.M. The effect of robot-mediated virtual reality gaming on upper limb spasticity poststroke: a randomized-controlled trial. Games for health journal 2022, 11, 93–103. [Google Scholar] [CrossRef]
- Oh, Y.-B.; Kim, G.-W.; Han, K.-S.; Won, Y.H.; Park, S.-H.; Seo, J.-H.; Ko, M.-H. Efficacy of virtual reality combined with real instrument training for patients with stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation 2019, 100, 1400–1408. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, D.H. Improved Balance, Gait, and Lower Limb Motor Function in a 58-Year-Old Man with Right Hemiplegic Traumatic Brain Injury Following Virtual Reality-Based Real-Time Feedback Physical Therapy. The American journal of case reports 2023, 24, e938803–938801. [Google Scholar] [CrossRef] [PubMed]
- Song, C.G.; Kim, J.Y.; Kim, N.G. A new postural balance control system for rehabilitation training based on virtual cycling. IEEE Transactions on Information Technology in Biomedicine 2004, 8, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Duque, G.; Boersma, D.; Loza-Diaz, G.; Hassan, S.; Suarez, H.; Geisinger, D.; Suriyaarachchi, P.; Sharma, A.; Demontiero, O. Effects of balance training using a virtual-reality system in older fallers. Clinical interventions in aging 2013, 257–263. [Google Scholar] [CrossRef]
- Anwar, N.; Karimi, H.; Ahmad, A.; Mumtaz, N.; Saqulain, G.; Gilani, S.A. A novel virtual reality training strategy for poststroke patients: a randomized clinical trial. Journal of healthcare engineering 2021, 2021, 6598726. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, A.; Fung, J.; McFadyen, B.J.; Faubert, J. Modulation of walking speed by changing optic flow in persons with stroke. Journal of neuroengineering and rehabilitation 2007, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-R.; Tsai, M.-P.; Chuang, T.-Y.; Sung, W.-H.; Wang, R.-Y. Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait & posture 2008, 28, 201–206. [Google Scholar]
- Zhang, B.; Li, D.; Liu, Y.; Wang, J.; Xiao, Q. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: A systematic review and meta-analysis. Journal of advanced nursing 2021, 77, 3255–3273. [Google Scholar] [CrossRef]
- Barbeau, H.; Visintin, M. Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Archives of physical medicine and rehabilitation 2003, 84, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Sana, V.; Ghous, M.; Kashif, M.; Albalwi, A.; Muneer, R.; Zia, M. Effects of vestibular rehabilitation therapy versus virtual reality on balance, dizziness, and gait in patients with subacute stroke: A randomized controlled trial. Medicine 2023, 102, e33203. [Google Scholar] [CrossRef] [PubMed]
| SIVRT group (n=17) |
Control group (n=18) |
t/x2 (p) | |
| Age (year) | 53.35 ± 9.54 | 54.22 ± 7.61 | -0.299(0.767) |
| Height (cm) | 166.75 ± 4.09 | 167.43 ± 5.25 | -0.425(0.673) |
| Weight (kg) | 69.50 ± 10.23 | 72.23 ± 9.50 | -0.819(0.418) |
| MMSE-K (score) | 26.41 ± 0.51 | 26.72 ± 0.83 | -1.330(0.193) |
| Gender(Male/Female) | 10//7 | 12/6 | 0.230(0.631) |
| Stroke type (Hemorrhage / Infarction) |
9/8 | 8/10 | 0.253(0.615) |
| Affected side (Right/Left) | 6/11 | 10/8 | 1.446(0.229) |
| Measures | SIVRT group (n=17) |
Control group (n=18) |
ES | t(p) |
| Spasticity (score) | ||||
| Pre | 11.18 ± 0.81 | 11.28 ± 0.83 | 0.1219422 | -0.336(0.717) |
| post | 10.06 ± 0.66 | 10.67 ± 0.69 | ||
| change | -1.12 ± 0.70 | -0.61 ± 0.61 | 0.7767949 | -2.296(0.028*) |
| t(p) | 6.615(0.000*) | 4.267(0.001*) | ||
| Measures | SIVRT group (n=17) |
Control group (n=18) |
ES | t(p) |
| Timed up and go test (sec) | ||||
| Pre | 17.86 ± 5.69 | 18.32 ± 4.63 | 0.08868072 | -0.263(0.794) |
| post | 14.46 ± 3.82 | 16.42 ±4.12 | ||
| change | -3.40 ± 2.63 | -1.90 ± 0.90 | 0.7631389 | -2.242(0.037*) |
| t(p) | 5.339(0.000*) | 8.944(0.000*) | ||
| Romberg`s eye open surface area (mm2) | ||||
| Pre | 130.76±39.81 | 126.01±31.00 | 0.1331354 | 0.396(0.695) |
| post | 119.29±38.49 | 119.46±28.97 | ||
| change | -11.47±5.03 | -6.54±5.10 | 0.9733233 | -2.875(0.007*) |
| t(p) | 9.409(0.000*) | 5.453(0.000*) | ||
| Romberg`s eye open average speed ( cm/s) | ||||
| Pre | 1.03±0.27 | 1.08±0.28 | 0.1817881 | -0.493(0.625) |
| post | 0.81±0.15 | 0.96±0.21 | ||
| change | -0.22±0.14 | -0.12±0.11 | 0.7943015 | -2.338(0.026*) |
| t(p) | 6.477(0.000*) | 4.526(0.000*) | ||
| Measures | SIVRT group (n=17) |
Control group (n=18) |
ES | t(p) |
| Affected step length, (cm) | ||||
| Pre | 37.01 ± 6.56 | 36.68 ± 6.47 | 0.05065113 | 0.152(0.880) |
| post | 40.50 ± 5.26 | 38.77 ±6.67 | ||
| change | 3.48 ± 2.05 | 2.09 ± 1.00 | 0.8618343 | 2.578(0.015*) |
| t(p) | -6.999(0.000*) | -8.838(0.000*) | ||
| Stride length (cm) | ||||
| Pre | 66.60±7.02 | 64.04±8.08 | 0.3382405 | 0.997(0.326) |
| post | 71.16±6.22 | 66.44±7.63 | ||
| change | 4.57±2.78 | 2.40±2.94 | 0.7584446 | 2.239(0.032*) |
| t(p) | -6.766(0.000*) | -3.460(0.003*) | ||
| Total double support (%) | ||||
| Pre | 33.61±2.03 | 33.35±1.57 | 0.1432795 | 0.414(0.682) |
| post | 31.03±1.64 | 31.66±1.44 | ||
| change | -2.58±1.05 | -1.69±1.01 | 0.8639148 | -2.2543(0.016*) |
| t(p) | 10.149(0.000*) | 7.127(0.000*) | ||
| Cadence(step/sec) | ||||
| Pre | 0.58±0.07 | 0.58±0.06 | 0 | 0.189(0.851) |
| post | 0.62±0.07 | 0.60±0.06 | ||
| change | 0.03±0.02 | 0.02±0.02 | 0.5 | 2.377(0.023*) |
| t(p) | -8.234(0.000*) | -5.398(0.000*) | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
