Submitted:
27 November 2024
Posted:
28 November 2024
You are already at the latest version
Abstract
Impact of the green revolution genes on rice and wheat productivity under rainfed environments has been debated since past few decades. Here we made an attempt to assess the impact of two major green revolution genes Rht B1 and Rht D1 on grain yield under drought stress. A total of four recombinant inbred line (RIL) populations were analyzed for this objective including PBW343 × Muu, PBW343 × Kingbird, PBW343 × Kenyaswara and Jal 95.4.3 × Kachu/Kiritati/Kachu. These populations segregated for either or both the Rht gene alleles. Our results revealed an invariable non-association of tall/ dwarf alleles of Rht B1 and Rht D1 genes with grain yield under drought stress. Tightly linked sequence tags with Rht and Vrn genes were identified for future application in wheat breeding. A genetic linkage map of 1170 DArt-seq markers covering 2870 cM was constructed in Jal 95.4.3 × Ka-chu/Kiritati/Kachu RIL population and QTLs for yield related traits were identified. Study provides an insight for researchers involved in developing the next generation climate resilient wheat varieties that can cope well with rainfed/ drought prone en-vironments.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Phenotyping for Different Irrigation Regimes
2.3. DNA Extraction and DArT Sequencing
2.4. Diagnostic Marker Analysis for Phenological Traits
2.5. Statistical Analysis
3. Linkage Map Construction and QTL Mapping:
4. Results
4.1. Phenotypic Evaluation of RILs Under Drought and Well-Watered Conditions
4.2. Linkage Map of Jal 95.4.3 × Kachu/Kiritati/Kachu Population
4.3. QTL Mapping
4.4. Rht Gene Segregation Pattern in RIL Populations
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evenson, R.E.; Gollin, D. editors. Crop variety improvement and its effect on productivity: The impact of international agricultural research. Cabi Publishing. 2003.
- Trethowan, R.M.; Reynolds, M. Drought resistance: Genetic approaches for improving productivity under stress. InWheat Production in Stressed Environments: Proceedings of the 7th International Wheat Conference, 27 November–2 December 2005, Mar del Plata, Argentina 2007 Nov (289-299). Dordrecht: Springer Netherlands.
- Gale, M.D.; Youssefian, S.; Russell, G.E. Dwarfing genes in wheat. Progress in plant breeding. 1985, 1, 1–35. [Google Scholar]
- Allan, U.S. Model for hydrocarbon migration and entrapment within faulted structures. AAPG bulletin. 1989, 73, 803–811. [Google Scholar] [CrossRef]
- Gent, M.P.; Kiyomoto, R.K. Physiological and agronomic consequences of Rht genes in wheat. J. Crop Prod. 1997, 1, 27–46. [Google Scholar] [CrossRef]
- Hedden, P. The genes of the Green Revolution. Journal TiG. 2003, 19, 5–9. [Google Scholar] [CrossRef]
- Peng, S.; Cassman, K.G.; Virmani, S.S.; Sheehy, J.; Khush, G.S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Science. 1999, 39, 1552–1559. [Google Scholar] [CrossRef]
- Sakamoto, T.; Matsuoka, M. Generating high-yielding varieties by genetic manipulation of plant architecture. COBIOT. 2004, 15, 144–147. [Google Scholar] [CrossRef]
- Jackson, M.T. Integrating and mobilizing rice knowledge to improve and stabilize crop productivity to achieve household food security in diverse and less favorable rainfed areas of Asia (IRRI Ref. No.: DPPC2003-42). Technical Assistance Completion Report submitted to the Asian Development Bank (ADB). 2008.
- Fischer, R.A.; Maurer, R.. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research. 1978, 29, 897-912. [CrossRef]
- Monneveux, P.; Jing, R.; Misra, S.C. Phenotyping for drought adaptation in wheat using physiological traits. Frontiers in physiology. 2012, 3, 429. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, F.; Yan, X.; Zhang, X.; Dong, Z.; Cui, D.; Chen, F. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant biotechnology journal. 2017, 18, 953–969. [Google Scholar] [CrossRef]
- Budak, H.; Kantar, M.; Yucebilgili, Kurtoglu, K. Drought tolerance in modern and wild wheat. The Scientific World Journal. 2013, 1, 548246. [CrossRef]
- Langridge, P.; Reynolds, M.P. Genomic tools to assist breeding for drought tolerance. Current opinion in biotechnology. 2015, 32, 130–135. [Google Scholar] [CrossRef]
- Divashuk, M.G.; Vasilyev, A.V.; Bespalova, L.A.; Karlov, G.I. Identity of the Rht-11 and Rht-B1e reduced plant height genes. Russian Journal of Genetics. 2012, 48, 761–763. [Google Scholar] [CrossRef]
- Kadam, S.; Singh, K.; Shukla, S.; Goel, S.; Vikram, P.; Pawar, V.; Gaikwad, K.; Khanna-Chopra, R.; Singh, N. Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Functional & integrative genomics, 2012, 12, 447–464. [Google Scholar] [CrossRef]
- McCartney, C.A.; Somers, D.J.; Humphreys, D.G.; Lukow, O.; Ames, N.; Noll, J.; Cloutier, S.; McCallum, B.D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 9 ‘AC Domain’. Genome, 2005, 48, 870–883. [Google Scholar] [CrossRef] [PubMed]
- Dashti, H.; Yazdi-Samadi, B.; Ghannada, M.; Naghavi, M.R.; Quarri, S. QTL analysis for drought resistance in wheat using doubled haploid lines. Int J Agric Biol, 2007, 9, 98–101. [Google Scholar]
- Pinto, R.S.; Reynolds, M.P.; Mathews, K.L.; McIntyre, C.L.; Olivares-Villegas, J.J.; Chapman, S.C. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet, 2010, 121, 1001–1021. [Google Scholar] [CrossRef] [PubMed]
- Kilian, A.; Wenzl, P.; Huttner, E.; Carling, J.; Xia, L.; Blois, H.; Uszynski, G. Diversity arrays technology: A generic genome profiling technology on open platforms. Data production and analysis in population genomics: Methods and protocols, 2012, 67-89. [CrossRef]
- Wenzl, P.; Carling, J.; Kudrna, D.; Jaccoud, D.; Huttner, E.; Kleinhofs, A.; Kilian, A. Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proceedings of the National Academy of Sciences, 2004, 101, 9915–9920. [Google Scholar] [CrossRef]
- Sansaloni, C.; Petroli, C.; Jaccoud, D.; Carling, J.; Detering, F.; Grattapaglia, D.; Kilian, A. Diversity Arrays Technology (DArT) and next-generation sequencing combined: Genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. In BMC proceedings, 2011, 5, 54. London: BioMed Central.
- Elshire, R. J.; Glaubitz, J. C.; Sun, Q.; Poland, J. A.; Kawamoto, K.; Buckler, E. S.; Mitchell, S. E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 2011, 6, e19379. [Google Scholar] [CrossRef]
- Vikram, P.; Swamy, B. M.; Dixit, S.; Singh, R.; Singh, B. P.; Miro, B.; Kumar, A. Drought susceptibility of modern rice varieties: An effect of linkage of drought tolerance with undesirable traits. Scientific reports, 2015, 5, 14799. [Google Scholar] [CrossRef]
- Singh, N.; Wu, S.; Raupp, W. J.; Sehgal, S.; Arora, S.; Tiwari, V.; Poland, J. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Scientific reports, 2019, 9, 650. [Google Scholar] [CrossRef]
- R, Core Team. R A language and environment for statistical computing, Vienna, Austria: Foundation for Statistical Computing. 2019.
- Kosambi, D. D. The estimation of map distances from recombination values. DD Kosambi: Selected works in mathematics and statistics, 2016, 125-130.
- Voorrips, R. MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of heredity, 2002, 93, 77–78. [Google Scholar] [CrossRef]
- Reynolds, M.; Dreccer, F.; Trethowan, R. Drought-adaptive traits derived from wheat wild relatives and landraces. J. Exp. Bot. 2007, 58, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change, 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P. A. Global synthesis of drought effects on maize and wheat production. PLoS ONE, 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P. A. Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management, 2017, 179, 18–33. [Google Scholar] [CrossRef]
- Nandini, G.A.; Chitranshi, A.; Gampa, M.; Goswami, S.; Dalal, M.; Kumar, S.; Tyagi, A.; Kumar, R. Unraveling the effect of drought and heat stresses on grain quality of wheat (Triticum aestivum). The Indian Journal of Agricultural Sciences, 2024, 94, 489–494. [Google Scholar] [CrossRef]
- Ehdaie, B.; Layne, A. P.; Waines, J. G. Root system plasticity to drought influences grain yield in bread wheat. Euphytica, 2012, 186, 219–232. [Google Scholar] [CrossRef]
- Dong, B.; Zheng, X.; Liu, H.; Able, J. A.; Yang, H.; Zhao, H., Liu, M. Effects of drought stress on pollen sterility, grain yield, abscisic acid and protective enzymes in two winter wheat cultivars. Front. Plant Sci., 2017, 8, 1008. [CrossRef]
- Ma, J.; Li, R.; Wang, H.; Li, D.; Wang, X.; Zhang, Y.; Li, Y. Transcriptomics analyses reveal wheat responses to drought stress during reproductive stages under field conditions. Front. Plant Sci., 2017, 8, 592. [Google Scholar] [CrossRef]
- Li, A. L.; Geng, S. F.; Zhang, L. Q.; Liu, D. C.; Mao, L. Making the bread: Insights from newly synthesized allohexaploid wheat. Molecular Plant, 2015, 8, 847–859. [Google Scholar] [CrossRef]
- Chen, H.; Bemister, D. H.; Iqbal, M.; Strelkov, S. E.; Spaner, D. M. Mapping genomic regions controlling agronomic traits in spring wheat under conventional and organic managements. Crop Science, 2020, 60, 2038–2052. [Google Scholar] [CrossRef]
- Rathan, N. D.; Krishnappa, G.; Singh, A. M.; Govindan, V. Mapping QTL for phenological and grain-related traits in a mapping population derived from high-zinc-biofortified wheat. Plants, 2023, 12, 220. [Google Scholar] [CrossRef]
- Butler, J. D.; Byrne, P. F.; Mohammadi, V.; Chapman, P. L.; Haley, S. D. Agronomic performance of Rht alleles in a spring wheat population across a range of moisture levels. Crop Science, 2005, 45, 939–947. [Google Scholar] [CrossRef]
- Perez-Lara, E.; Semagn, K.; Chen, H.; Iqbal, M.; N'Diaye, A.; Kamran, A.; Spaner, D. QTLs associated with agronomic traits in the cutler × AC Barrie spring wheat mapping population using single nucleotide polymorphic markers. PLoS ONE, 2016, 11, e0160623. [Google Scholar] [CrossRef] [PubMed]
- Flintham, J. E.; Börner, A.; Worland, A. J.; Gale, M. D. Optimizing wheat grain yield: Effects of Rht (gibberellin-insensitive) dwarfing genes. Journal of Agricultural Science, 1997, 128, 11–25. [Google Scholar] [CrossRef]
- Li, M.; Dong, L.; Li, B.; Wang, Z.; Xie, J.; Qiu, D.; Liu, Z. A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytologist, 2020, 228, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, J. S.; Singh, D.; Gill, H. S.; Brar, N. K.; Qiu, Y.; Halder, J.; Sehgal, S. K. Genome-wide association study uncovers novel genomic regions associated with coleoptile length in hard winter wheat. Front. Genetics, 2020, 10, 1345. [Google Scholar] [CrossRef]
- Xu, D.; Hao, Q.; Yang, T.; Lv, X.; Qin, H.; Wang, Y.; Jia, C.; Liu, W.; Dai, X.; Zeng, J.; Zhang, H.; He, Z.; Xia, X.; Cao, S.; Ma, W. Impact of “Green Revolution” gene Rht-B1b on coleoptile length of wheat. Front. Plant Sci. 2023, 14, 1147019. [Google Scholar] [CrossRef]
- Jatayev, S.; Sukhikh, I.; Vavilova, V.; Smolenskaya, S. E.; Goncharov, N. P.; Kurishbayev, A. Green revolution 'stumbles' in a dry environment: Dwarf wheat with Rht genes fails to produce higher grain yield than taller plants under drought. Plant Cell Environ. 2020, 43, 2355–2364. [Google Scholar] [CrossRef]
- Nilsen, K. T.; Walkowiak, S.; Xiang, D.; Gao, P.; Quilichini, T. D.; Willick, I. R. Copy number variation of TdDof controls solid-stemmed architecture in wheat. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 28708–28718. [Google Scholar] [CrossRef]
| S. No. | Chromosome | Genome | Positions | Unique Positions | Genetic Distance Coverage |
| 1 | 1A | A | 15 | 10 | 13.30 |
| 2 | 1B | B | 56 | 52 | 168.43 |
| 3 | 1D | D | 24 | 19 | 148.98 |
| 4 | 2A | A | 90 | 69 | 165.38 |
| 5 | 2B | B | 144 | 115 | 203.36 |
| 6 | 2D | D | 34 | 27 | 113.01 |
| 7 | 3A | A | 37 | 30 | 118.99 |
| 8 | 3B | B | 65 | 45 | 122.11 |
| 9 | 3D | D | 19 | 13 | 83.76 |
| 10 | 4A | A | 66 | 51 | 133.43 |
| 11 | 4B | B | 31 | 30 | 137.03 |
| 12 | 4D | D | 12 | 10 | 64.53 |
| 13 | 5A | A | 27 | 25 | 56.99 |
| 14 | 5B | B | 110 | 91 | 189.09 |
| 15 | 5D | D | 30 | 21 | 132.77 |
| 16 | 6A | A | 107 | 88 | 218.46 |
| 17 | 6B | B | 54 | 43 | 177.13 |
| 18 | 6D | D | 19 | 14 | 42.34 |
| 19 | 7A | A | 124 | 106 | 238.41 |
| 20 | 7B | B | 73 | 53 | 125.32 |
| 21 | 7D | D | 33 | 29 | 217.75 |
| A | 466 | 379 | 945 | ||
| B | 533 | 429 | 1122 | ||
| D | 171 | 133 | 803 | ||
| Env | Trait | Chromosome | QTL Name | Left Marker | Right Marker | Interval (cM) | LOD | PVE (%) |
| D | DTH | 5A | qDWW-5A.1 | 984717 | 3064415 | 3.52 | 6.93 | 12.63 |
| WW | DTH | 5A | qDWW-5A.1 | 984717 | 3064415 | 3.52 | 8.56 | 10.46 |
| WW | DTH | 5A | qWW-5A.2 | 2260918 | 1229860 | 4.36 | 14.07 | 18.89 |
| D | NDVI | 5A | qWW-5A.2 | 2260918 | 1229860 | 4.36 | 7.65 | 7.61 |
| D | PHT | 4B | qD-4B.1 | 1020824 | 2253894 | 4.05 | 7.46 | 4.11 |
| D | PHT | 4B | qDWW-4B.2 | 985312 | 3064743 | 1.74 | 4.89 | 2.63 |
| D | PHT | 4D | qDWW-4D.1 | 1107919 | 1201923 | 6.24 | 21.85 | 13.19 |
| D | PHT | 7A | qD-7A.1 | 1114034 | 1118816 | 2.11 | 7.87 | 4.18 |
| WW | PHT | 4B | qDWW-4B.2 | 985312 | 3064743 | 1.73 | 12.23 | 6.24 |
| WW | PHT | 4D | qDWW-4D.1 | 1107919 | 1201923 | 6.24 | 22.35 | 12.75 |
| WW | PHT | 7A | qWW-7A.1 | 1114034 | 1118816 | 2.11 | 6.68 | 3.18 |
| Pop | Env | Year | Trait | Chr | QTL Name | Left Marker | Right Marker | LOD | PV% |
| PBW/Muu | D | 16-17 | GY | 1B | qDWW-1B.1 | 1075810 | 1210942 | 3.2237 | 11.0349 |
| PBW/Muu | WW | 15-16 | GY | 1B | qDWW-1B.1 | 1075810 | 1210942 | 3.0906 | 10.4667 |
| PBW/Muu | D | 15-16 | DTM | 2B | qDWW-2B.1 | 1154106 | 1106933 | 2.8731 | 9.92 |
| PBW/Muu | D | 16-17 | DTM | 2B | qDWW-2B.1 | 1154106 | 1106933 | 3.6819 | 12.6579 |
| PBW/Muu | WW | 16-17 | DTH | 2B | qDWW-2B.1 | 1154106 | 1106933 | 3.5651 | 12.0144 |
| PBW/Kenyaswara | D | 16-17 | DTH | 2D | qD-2D.1 | 1113937 | 1115695 | 2.4139 | 11.065 |
| PBW/Muu | WW | 16-17 | PHT | 4B | qDWW-4B.1 | 1862215 | 1861567 | 3.1659 | 11.2503 |
| PBW/Muu | WW | 15-16 | PHT | 4B | qDWW-4B.1 | 1862215 | 1861567 | 4.1364 | 13.7898 |
| PBW/Kenyaswara | D | 15-16 | DTH | 5A | qDWW-5A.1 | 1050383 | 1258755 | 2.6066 | 12.1755 |
| PBW/Kenyaswara | D | 16-17 | DTH | 5A | qDWW-5A.1 | 1050383 | 1258755 | 4.2562 | 19.1985 |
| PBW/Kenyaswara | WW | 15-16 | DTH | 5A | qDWW-5A.1 | 1050383 | 1258755 | 2.2242 | 10.5583 |
| PBW/Kenyaswara | WW | 16-17 | DTH | 5A | qDWW-5A.1 | 1050383 | 1258755 | 2.4211 | 11.4671 |
| Population | Rht-Alleles | Grain Yield under WW | Grain Yield under D | ||
| 2015-16 | 2016-17 | 2015-16 | 2016-17 | ||
| PBW × Kingbird | Rht-B1-TT | 6514 | 1712 | 4483 | 1528 |
| Rht-B1-CC | - | - | - | - | |
| Rht-D1-TT | - | - | - | - | |
| Rht-D1-GG | 6514 | 1712 | 4483 | 1528 | |
| PBW × Kenyaswara | Rht-B1-TT | 6300 | 1291 | 5002 | 1189 |
| Rht-B1-CC | 5493 | 1275 | 3496 | 1142 | |
| Rht-D1-TT | - | - | - | - | |
| Rht-D1-GG | 5919 | 1277 | 4077 | 1154 | |
| PBW × Muu | Rht-B1-TT | 5664 | 1979 | 4671 | 1720 |
| Rht-B1-CC | 6466 | 1806 | 4678 | 1730 | |
| Rht-D1-TT | 6237 | 1895 | 4327 | 1575 | |
| Rht-D1-GG | 6534 | 1920 | 4864 | 1805 | |
| Jal 95.4.3 × Kachu/Kiritati/Kachu | Rht-B1-TT | 4005 | - | 2726 | - |
| Rht-B1-CC | 4028 | - | 2826 | - | |
| Rht-D1-TT | 4171 | - | 2714 | - | |
| Rht-D1-GG | 4115 | - | 2815 | - | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
