Submitted:
26 November 2024
Posted:
27 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Sphaleron Process in Schwarzschild Space-Time
3. Horizon Singularities
4. Higgs Vacuum at the Horizon
5. Dynamic Chern-Simons
6. Early Galaxies Growth and the Low-Mass Gap
7. Conclusions
Author Contributions
Abbreviations
| MDPI | Multidisciplinary Digital Publishing Institute |
| BH | Black hole |
| SNBH | Supermassive black hole |
| IMBH | Intermediate-mass black hole |
| SM | Standard model |
| EW | Electroweak |
| JWST | James Webb Space Telescope |
References
- A. Riotto and M. Trodden, “Recent progress in baryogenesis,” Ann. Rev. Nucl. Part. Sci. 49 (1999) 35, [arXiv: hep-ph/9901362]. [CrossRef]
- T. Banks and N. Seiberg, “Symmetries and strings in field theory and gravity,” Phys. Rev. D 83 (2011) 084019, doi: 10.1103/PhysRevD.83.084019 [arXiv: 1011.5120 [hep-th]]. [CrossRef]
- V. Antunes, I. Bediaga and M. Novello, “Gravitational baryogenesis without CPT violation,” JCAP 10 (2019) 076, [arXiv: 1909.03034 [gr-qc]]. [CrossRef]
- P. Burda, R. Gregory and I. Moss, “Gravity and the stability of the Higgs vacuum,” Phys. Rev. Lett. 115 (2015) 071303, [arXiv: 1501.04937 [hep-th]]. [CrossRef]
- P. Burda, R. Gregory and I. Moss, “Vacuum metastability with black holes,” JHEP 08 (2015) 114, [arXiv: 1503.07331 [hep-th]]. [CrossRef]
- N. Tetradis, “Black holes and Higgs stability,” JCAP 09 (2016) 036, [arXiv: 1606.04018 [hep-ph]]. [CrossRef]
- D. Gorbunov, D. Levkov and A. Panin, “Fatal youth of the Universe: black hole threat for the electroweak vacuum during preheating,” JCAP 10 (2017) 016, [arXiv: 1704.05399 [astro-ph.CO]]. [CrossRef]
- D. Canko, I. Gialamas, G. Jelic-Cizmek, A. Riotto and N. Tetradis, “On the catalysis of the electroweak vacuum decay by black holes at high temperature,” Eur. Phys. J. C 78 (2018) 328, [arXiv: 1706.01364 [hep-th]]. [CrossRef]
- K. Mukaida and M. Yamada, “False vacuum decay catalyzed by black holes,” Phys. Rev. D 96 (2017) 103514, [arXiv: 1706.04523 [hep-th]]. [CrossRef]
- K. Kohri and H. Matsui, “Electroweak vacuum collapse induced by vacuum fluctuations of the Higgs field around evaporating black holes,” Phys. Rev. D 98 (2018) 123509, [arXiv: 1708.02138 [hep-ph]]. [CrossRef]
- D. C. Dai, R. Gregory and D. Stojkovic, “Connecting the Higgs potential and primordial black holes,” Phys. Rev. D 101 (2020) 125012, [arXiv: 1909.00773 [hep-ph]]. [CrossRef]
- G. ’t Hooft, “On the quantum structure of a black hole,” Nucl. Phys. B 256 (1985) 727. [CrossRef]
- K. Ghosh, “Near-horizon geometry and the entropy of a minimally coupled scalar field in the Schwarzschild black hole,” J. Phys. Soc. Jap. 85 (2016) 014101, [arXiv: 0902.1601 [gr-qc]]. [CrossRef]
- S. Mukohyama and W. Israel, “Black holes, brick walls and the Boulware state,” Phys. Rev. D 58 (1998) 104005, [arXiv: gr-qc/9806012 [gr-qc]]. [CrossRef]
- S. Banerjee, S. Das, M. Dorband and A. Kundu, “Brickwall, normal modes, and emerging thermality,” Phys. Rev. D 109 (2024) 126020, [arXiv: 2401.01417 [hep-th]]. [CrossRef]
- J. E. Greene, J. Strader and L. C. Ho, “Intermediate-mass black holes,” Ann. Rev. Astron. Astrophys. 58 (2020) 257, [arXiv: 1911.09678 [astro-ph.GA]]. [CrossRef]
- L. Ferrarese and H. Ford, “Supermassive black holes in galactic nuclei: Past, present and future research,” Space Sci. Rev. 116 (2005) 523, [arXiv: astro-ph/0411247 [astro-ph]]. [CrossRef]
- K. Gultekin, et al. “The M-sigma and M-L relations in galactic bulges and determinations of their intrinsic scatter,” Astrophys. J. 698 (2009) 198, [arXiv: 0903.4897 [astro-ph.GA]]. [CrossRef]
- J. Kormendy and L. C. Ho, “Coevolution (or not) of supermassive black holes and host galaxies,” Ann. Rev. Astron. Astrophys. 51 (2013) 511, [arXiv: 1304.7762 [astro-ph.CO]]. [CrossRef]
- R. Blandford, D. Meier and A. Readhead, “Relativistic jets from active galactic nuclei,” Ann. Rev. Astron. Astrophys. 57 (2019) 467, [arXiv: 1812.06025 [astro-ph.HE]]. [CrossRef]
- S. Komissarov and O. Porth, “Numerical simulations of jets,” New. Astr. Rev. 92 (2021) 101610. [CrossRef]
- I. Labbe, et al. “A population of red candidate massive galaxies ~600 Myr after the big bang,” Nature 616 (2023) 266, [arXiv: 2207.12446 [astro-ph.GA]]. [CrossRef]
- Y. Harikane, et al. “A Comprehensive study of galaxies at z ∼ 9–16 found in the early JWST data: Ultraviolet luminosity functions and cosmic star formation history at the pre-reionization epoch,” Astrophys. J. Suppl. 265 (2023) 5, [arXiv: 2208.01612 [astro-ph.GA]]. [CrossRef]
- R. Maiolino, et al. “JADES. The diverse population of infant black holes at 4<z<11: Merging, tiny, poor, but mighty,” [arXiv: 2308.01230 [astro-ph.GA]].
- J. E. Greene, et al. “UNCOVER spectroscopy confirms the surprising ubiquity of active galactic nuclei in red sources at z > 5,” Astrophys. J. 941 (2022) 106, doi: 10.3847/1538-4357/ad1e5f. [CrossRef]
- B. Liu and V. Bromm, “Accelerating early massive galaxy formation with primordial black holes,” Astrophys. J. Lett. 937 (2022) L30, [arXiv: 2208.13178 [astro-ph.CO]]. [CrossRef]
- X. Fan, E. Banados and R. A. Simcoe, “Quasars and the intergalactic medium at cosmic dawn,” Annu. Rev. Astron. Astrophys.61 (2023) 373, [arXiv: 2212.06907 [astro-ph.GA]]. [CrossRef]
- R. L. Larson et al. [CEERS Team], “A CEERS discovery of an accreting supermassive black hole 570 Myr after the big bang: Identifying a progenitor of massive z > 6 quasars,” Astrophys. J. Lett. 953 (2023) L29, [arXiv: 2303.08918 [astro-ph.GA]]. [CrossRef]
- H. Übler, et al. “GA-NIFS: JWST discovers an offset AGN 740 million years after the big bang,” Mon. Not. Roy. Astron. Soc. 531 (2024) 355, [arXiv: 2312.03589 [astro-ph.GA]]. [CrossRef]
- M. Onoue, et al. “A Candidate for the least-massive black hole in the first 1.1 billion years of the universe,” Astrophys. J. Lett. 942 (2023) L17, [arXiv: 2209.07325 [astro-ph.GA]]. [CrossRef]
- R. Maiolino, et al. “A small and vigorous black hole in the early Universe,” Nature 627 (2024) 59, [erratum: Nature 630 (2024) E2] [arXiv: 2305.12492 [astro-ph.GA]]. [CrossRef]
- M. Xiao, et al. “Accelerated formation of ultra-massive galaxies in the first billion years,” Nature 635 (2024) 311. [CrossRef]
- A. Bogdan, et al. “Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar,” Nature Astron. 8 (2024) 126, [arXiv: 2305.15458 [astro-ph.GA]]. [CrossRef]
- L. J. Furtak, et al. “A high black hole to host mass ratio in a lensed AGN in the early Universe,” Nature 628 (2024) 57, [arXiv: 2308.05735 [astro-ph.GA]]. [CrossRef]
- O. E. Kovacs, et al. “A Candidate supermassive black hole in a gravitationally lensed galaxy at z ≈ 10,” Astrophys. J. Lett. 965 (2024) L21, [arXiv: 2403.14745 [astro-ph.GA]]. [CrossRef]
- C. D. Bailyn, R. K. Jain, P. Coppi and J. A. Orosz, “The Mass distribution of stellar black holes,” Astrophys. J. 499 (1998) 367, [arXiv: astro-ph/9708032 [astro-ph]]. [CrossRef]
- F. Ozel, D. Psaltis, R. Narayan and J. E. McClintock, “The Black hole mass distribution in the galaxy,” Astrophys. J. 725 (2010) 1918, [arXiv: 1006.2834 [astro-ph.GA]]. [CrossRef]
- W. M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C. D. Bailyn, I. Mandel and V. Kalogera, “The Mass distribution of stellar-mass black holes,” Astrophys. J. 741 (2011) 103, [arXiv: 1011.1459 [astro-ph.GA]]. [CrossRef]
- K. Belczynski, G. Wiktorowicz, C. Fryer, D. Holz and V. Kalogera, “Missing Black Holes unveil the supernova explosion mechanism,” Astrophys. J. 757 (2012) 91, [arXiv: 1110.1635 [astro-ph.GA]]. [CrossRef]
- S. L. Adler, “Axial vector vertex in spinor electrodynamics,” Phys. Rev. 177 (1969) 2426. [CrossRef]
- J. S. Bell and R. Jackiw, “A PCAC puzzle: π0→γγ in the σ model,” Nuovo Cim. A 60 (1969) 47, doi: 10.1007/BF02823296. [CrossRef]
- G. ’t Hooft, “Symmetry breaking through Bell-Jackiw anomalies,” Phys. Rev. Lett. 37 (1976) 8. [CrossRef]
- V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, “On the anomalous electroweak baryon number nonconservation in the early universe,” Phys. Lett. B 155 (1985) 36. [CrossRef]
- M. Fukugita and T. Yanagida, “Baryogenesis without grand unification,” Phys. Lett. B 174 (1986) 45. [CrossRef]
- M. E. Shaposhnikov, “Baryon asymmetry of the universe in standard electroweak theory,” Nucl. Phys. B 287 (1987) 757. [CrossRef]
- L. D. Landau and E. M. Lifschitz, The Classical Theory of Fields (Pergamon Press, Oxford 1975).
- N. S. Manton, “Topology in the Weinberg-Salam theory,” Phys. Rev. D 28 (1983) 2019. [CrossRef]
- F. R. Klinkhamer and N. S. Manton, “A Saddle point solution in the Weinberg-Salam theory,” Phys. Rev. D 30 (1984) 2212. [CrossRef]
- V. De Luca, G. Franciolini, A. Kehagias and A. Riotto, “Standard model baryon number violation seeded by black holes,” Phys. Lett. B 819 (2021) 136454, [arXiv: 2102.07408 [astro-ph.CO]]. [CrossRef]
- R. Gregory, I. G. Moss and B. Withers, “Black holes as bubble nucleation sites,” JHEP 03 (2014) 081, [arXiv: 1401.0017 [hep-th]]. [CrossRef]
- S. R. Coleman and F. De Luccia, “Gravitational effects on and of vacuum decay,” Phys. Rev. D 21 (1980) 3305. [CrossRef]
- F. Mellor and I. Moss, “Black holes and gravitational instantons,” Class. Quant. Grav. 6 (1989) 1379. [CrossRef]
- F. Dowker, J. P. Gauntlett, D. A. Kastor and J. H. Traschen, “Pair creation of dilaton black holes,” Phys. Rev. D 49 (1994) 2909, [arXiv: hep-th/9309075 [hep-th]]. [CrossRef]
- S. W. Hawking and N. Turok, “Open inflation without false vacua,” Phys. Lett. B 425 (1998) 25, [arXiv: hep-th/9802030 [hep-th]]. [CrossRef]
- S. R. Coleman, “The Fate of the false cacuum. 1. Semiclassical theory,” Phys. Rev. D 15 (1977) 2929, [erratum: Phys. Rev. D 16 (1977) 1248]. [CrossRef]
- S. Chandrasekhar, The Mathematical Theory of Black Holes (Clarendon, New York 1983).
- S. Carroll, Spacetime and Geometry: An Introduction to General Relativity (Addison-Wesley, San Francisco 2004).
- E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge University Press, Cambridge 2004).
- R. M. Wald, General Relativity (University of Chicago Press, Chicago 1984).
- C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (Freeman, San Francisco 1973).
- M. Gogberashvili, “Einstein’s hole argument and Schwarzschild singularities,” Annals Phys. 452 (2023) 169274, [arXiv: 2303.10348 [gr-qc]]. [CrossRef]
- J. F. Colombeau, New Generalized Functions and Multiplication of Distributions (North Holland, Amsterdam 1984).
- J. F. Colombeau, Elementary Introduction to New Generalized Functions (North Holland, Amsterdam 1985).
- I. M. Gelfand and G. E. Schilov, Generalized Functions. Vol. I: Properties and Operations (Academic Press, New York - London 1964).
- N. R. Pantoja and H. Rago, “Energy-momentum tensor valued distributions for the Schwarzschild and Reissner-Nordstrom geometries,” [arXiv: gr-qc/9710072 [gr-qc]].
- J. M. Heinzle and R. Steinbauer, “Remarks on the distributional Schwarzschild geometry,” J. Math. Phys. 43 (2002) 1493, [arXiv: gr-qc/0112047 [gr-qc]]. [CrossRef]
- J. Foukzon, A. Potapov and E. Menkova, “Was Polchinski wrong? Colombeau distributional Rindler space-time with distributional Levi-Civitá connection induced vacuum dominance. Unruh effect revisited,” JHEPGC 4 (2018) 361. [CrossRef]
- J. Foukzon, E. R. Men’kova, A. A. Potapov and S. A. Podosenov, “Was Polchinski wrong? Colombeau distributional Rindler space-time with distributional Levi-Cività connection induced vacuum dominance. Unruh effect revisited,” J. Phys. Conf. Ser. 1141 (2018) 012100. [CrossRef]
- S. B. Giddings, “Black hole information, unitarity, and nonlocality,” Phys. Rev. D 74 (2006) 106005, [arXiv: hep-th/0605196 [hep-th]]. [CrossRef]
- J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch. Phys. 61 (2013) 781, [arXiv: 1306.0533 [hep-th]]. [CrossRef]
- R. P. Kerr, “Do black holes have singularities?,” [arXiv: 2312.00841 [gr-qc]].
- V. Cardoso and P. Pani, “Testing the nature of dark compact objects: a status report,” Living Rev. Rel. 22 (2019) 4, [arXiv: 1904.05363 [gr-qc]]. [CrossRef]
- S. Ansoldi, “Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources,” [arXiv: 0802.0330 [gr-qc]].
- D. Malafarina, “Classical collapse to black holes and quantum bounces: A review,” Universe 3 (2017) 48, [arXiv: 1703.04138 [gr-qc]]. [CrossRef]
- M. Gogberashvili and L. Pantskhava, “Black hole information problem and wave bursts,” Int. J. Theor. Phys. 57 (2018) 1763, [arXiv: 1608.04595 [physics.gen-ph]]. [CrossRef]
- M. Gogberashvili, “Can quantum particles cross a horizon?,” Int. J. Theor. Phys. 58 (2019) 3711, [arXiv: 1712.02637 [gr-qc]]. [CrossRef]
- R. Beradze, M. Gogberashvili and L. Pantskhava, “Reflective black holes,” Mod. Phys. Lett. A 36 (2021) 2150200. [CrossRef]
- K. W. Howard and P. Candelas, “Quantum stress tensor in Schwarzschild space-time,” Phys. Rev. Lett. 53 (1984) 403. [CrossRef]
- S. D. Mathur, “The Fuzzball proposal for black holes: An Elementary review,” Fortsch. Phys. 53 (2005) 793, [arXiv: hep-th/0502050 [hep-th]]. [CrossRef]
- A. Almheiri, D. Marolf, J. Polchinski and J. Sully, “Black holes: Complementarity or firewalls?,” JHEP 02 (2013) 062, [arXiv: 1207.3123 [hep-th]]. [CrossRef]
- A. Einstein, “On a stationary system with spherical symmetry consisting of many gravitating masses,” Ann. Math. 40 (1939) 922.
- K. Schwarzschild, “On the gravitational field of a mass point according to Einstein’s theory,” Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl. (1916) 189.
- T. Asaka, D. Grigoriev, V. Kuzmin and M. Shaposhnikov, “Late reheating, hadronic jets and baryogenesis,” Phys. Rev. Lett. 92 (2004) 101303, [arXiv: hep-ph/0310100 [hep-ph]]. [CrossRef]
- P. B. Arnold and L. D. McLerran, “Sphalerons, small fluctuations and baryon number violation in electroweak theory,” Phys. Rev. D 36 (1987) 581. [CrossRef]
- P. B. Arnold, D. Son and L. G. Yaffe, “The Hot baryon violation rate is O (alpha-w**5 T**4),” Phys. Rev. D 55 (1997) 6264, [arXiv: hep-ph/9609481 [hep-ph]]. [CrossRef]
- G. D. Moore, “Sphaleron rate in the symmetric electroweak phase,” Phys. Rev. D 62 (2000) 085011, [arXiv: hep-ph/0001216 [hep-ph]]. [CrossRef]
- M. D’Onofrio, K. Rummukainen and A. Tranberg, “Sphaleron rate in the minimal standard model,” Phys. Rev. Lett. 113 (2014) 141602, [arXiv: 1404.3565 [hep-ph]]. [CrossRef]
- M. Chitishvili, M. Gogberashvili, R. Konoplich and A. S. Sakharov, “Higgs field-induced triboluminescence in binary black hole mergers,” Universe 9 (2023) 301, [arXiv: 2111.07178 [astro-ph.HE]]. [CrossRef]
- S. R. Coleman and E. J. Weinberg, “Radiative corrections as the origin of spontaneous symmetry breaking,” Phys. Rev. D 7 (1973) 1888. [CrossRef]
- M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Perseus Books, Reading 1995).
- M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge University Press, Cambridge 2014).
- S. H. H. Tye and S. S. C. Wong, “The Chern-Simons number as a dynamical variable,” Ann. Math. Sci. Appl. 01 (2016) 123, [arXiv: 1601.00418 [hep-th]]. [CrossRef]
- M.-Y. Zhuang and L. C. Ho, “Evolutionary paths of active galactic nuclei and their host galaxies,” Nature Astronomy 7 (2023) 1376, [arXiv: 2308.08603 [astro-ph.GA]]. [CrossRef]
- L. J. Furtak, et al. “A high black-hole-to-host mass ratio in a lensed AGN in the early Universe,” Nature 628 (2024) 57. [CrossRef]
- A. Ricarte, R. Narayan and B. Curd, “Recipes for jet feedback and spin evolution of black holes with strongly magnetized super-Eddington accretion disks,” Astrophys. J. Lett. 954 (2023) L22, [arXiv: 2307.04621 [astro-ph.HE]]. [CrossRef]
- K. Akiyama, et al. [Event Horizon Telescope Collaboration], “First Sagittarius A* Event Horizon Telescope Results. VIII. Physical interpretation of the polarized ring,” Astrophys. J. Lett. 964 (2024) L26. [CrossRef]
- K. Inayoshi, E. Visbal and Z. Haiman, “The assembly of the first massive black holes,” Ann. Rev. Astron. Astrophys. 58 (2020) 27, [arXiv: 1911.05791 [astro-ph.GA]]. [CrossRef]
- M. Volonteri, M. Habouzit and M. Colpi, “The origins of massive black holes,” Nature Rev. Phys. 3 (2021) 732, [arXiv: 2110.10175 [astro-ph.GA]]. [CrossRef]
- M. Volonteri, G. Lodato and P. Natarajan, “The evolution of massive black hole seeds,” Mon. Not. Roy. Astron. Soc. 383 (2008) 1079, [arXiv: 0709.0529 [astro-ph]]. [CrossRef]
- F. Marulli, S. Bonoli, E. Branchini, L. Moscardini and V. Springel, “Modeling the cosmological co-evolution of supermassive black holes and galaxies. 1. BH scaling relations and the AGN luminosity function,” Mon. Not. Roy. Astron. Soc. 385 (2008) 1846, [arXiv: 0711.2053 [astro-ph]]. [CrossRef]
- P. Dayal, E. M. Rossi, B. Shiralilou, O. Piana, T. R. Choudhury and M. Volonteri, “The hierarchical assembly of galaxies and black holes in the first billion years: predictions for the era of gravitational wave astronomy,” Mon. Not. Roy. Astron. Soc. 486 (2019) 2336, [arXiv: 1810.11033 [astro-ph.GA]]. [CrossRef]
- O. Piana, P. Dayal, M. Volonteri and T. R. Choudhury, “The mass assembly of high-redshift black holes,” Mon. Not. Roy. Astron. Soc. 500 (2020) 2146, [arXiv: 2009.13505 [astro-ph.GA]]. [CrossRef]
- A. Trinca, R. Schneider, R. Valiante, L. Graziani, L. Zappacosta and F. Shankar, “The low-end of the black hole mass function at cosmic dawn,” Mon. Not. Roy. Astron. Soc. 511 (2022) 616, [arXiv: 2201.02630 [astro-ph.GA]]. [CrossRef]
- A. Toubiana, et al. “Reconciling PTA and JWST and preparing for LISA with POMPOCO: a Parametrisation Of the Massive black hole POpulation for Comparison to Observations,” [arXiv: 2410.17916 [astro-ph.GA]].
- D. J. Croton, et al. “The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies,” Mon. Not. Roy. Astron. Soc. 365 (2006) 11, [erratum: Mon. Not. Roy. Astron. Soc. 367 (2006) 864] [arXiv: astro-ph/0602065 [astro-ph]]. [CrossRef]
- J. Schaye, et al. “The EAGLE project: Simulating the evolution and assembly of galaxies and their environments,” Mon. Not. Roy. Astron. Soc. 446 (2015) 521, [arXiv: 1407.7040 [astro-ph.GA]]. [CrossRef]
- D. Sijacki, et al. “The Illustris simulation: the evolving population of black holes across cosmic time,” Mon. Not. Roy. Astron. Soc. 452 (2015) 575, [arXiv: 1408.6842 [astro-ph.GA]]. [CrossRef]
- J. Ellis, M. Fairbairn, J. Urrutia and V. Vaskonen, “What is the origin of the JWST SMBHs?,” [arXiv: 2410.24224 [astro-ph.CO]].
- F. Pacucci, B. Nguyen, S. Carniani, R. Maiolino and X. Fan, “JWST CEERS and JADES active galaxies at z = 4–7 violate the local M• - M★ relation at >3σ: Implications for low-mass black holes and seeding models,” Astrophys. J. Lett. 957 (2023) L3, [arXiv: 2308.12331 [astro-ph.GA]]. [CrossRef]
- F. Pacucci, A. Loeb and I. Juodžbalis, “The Host galaxy of a dormant, overmassive black hole at z = 6.7 may be restarting star formation,” Res. Notes AAS 8 (2024) 105, [arXiv: 2404.11643 [astro-ph.GA]]. [CrossRef]
- M. B. Gavela, P. Hernandez, J. Orloff and O. Pene, “Standard model CP violation and baryon asymmetry,” Mod. Phys. Lett. A 9 (1994) 795, [arXiv: hep-ph/9312215 [hep-ph]]. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).