Submitted:
12 November 2024
Posted:
13 November 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Thin Films and Devices: Fabrication and Characterization
3. Results
3.1. Thin Films Properties
3.1.1. Properties of TiO2 Layer
3.1.2. Properties of NiO:(LNb,N) Thin Films
3.2. NiO-Based Heterostructure Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezaei, S.D.; Shannigrahi, S.; Ramakrishna, S. A review of conventional, advanced, and smart glazing technologies and materials for improving indoor environment. Solar Energy Materials & Solar Cells 2017, 159, 26–51. [Google Scholar] [CrossRef]
- Svensson, J.S.E.M.; Granqvist, C.G. Electrochromic tungsten oxide films for energy efficient windows. Solar Energy Mater 1984, 11, 29–34. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, Y.; Zhang, Z.; Luo, H.; Cao, C.; Chen, Z.; Dai, L.; Liu, X. VO2 thermochromic smart window for energy savings and generation. Scientific Reports 2013, 3, 3029. [Google Scholar] [CrossRef] [PubMed]
- Tuukkanen, S.; Välimäki, M. , Lehtimäki, S.; Vuorinen T.; Lupo, D. Behaviour of one-step spray-coated carbon nanotube supercapacitor in ambient light harvester circuit with printed organic solar cell and electrochromic display. Scientific Reports 2016, 6, 22967. [Google Scholar] [CrossRef]
- Davy, N.C.; Melda, S.-E.; Gao, J.; Lin, X.; Liu, A.; Yao, N.; Kahn, A.; Loo, Y.-L. Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat. Energy 2017, 2, 17104. [Google Scholar] [CrossRef]
- Tong, Z.; Tian, Y.; Zhang, H.; Li, X.; Ji, J.; Qu, H.; Li, N.; Zhao, J.; Li, Y. Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic Devices. Sci China Chem 2017, 60, 13–37. [Google Scholar] [CrossRef]
- Kim, S.; Patel, M.; Nguyen, T.T.; Kumar, N.; Bhatnagar, P.; Kim, J. Highly Transparent Bidirectional Transparent Photovoltaics for On-Site Power Generators. ACS Appl. Mater. Interfaces 2022, 14, 706–716. [Google Scholar] [CrossRef]
- Lunt, R. R. Theoretical limits for visibly transparent photovoltaics. Appl. Phys. Lett. 2012, 101, 043902. [Google Scholar] [CrossRef]
- Wen, C.-K.; Xin, Y.-Q.; Chen, S.-C.; Chuang, T.-H.; Chen, P.-J.; Sun, H. Comparison of microstructural and optoelectronic properties of NiO:Cu thin films deposited by ion-beam assisted rf sputtering in different gas atmospheres. Thin Solid Films 2019, 677, 103–108. [Google Scholar] [CrossRef]
- Abdullah, A.R.; El-Ashry, M.Y.; Duraia, E.M.; Mahmoud, W.E. The doping effect on the linear and nonlinear optical behaviors of nickel oxide films for multiple optoelectronic applications. Micro and Nanostructures 2024, 188, 207785. [Google Scholar] [CrossRef]
- Aivalioti, Ch.; Manidakis, E.G.; Pelekanos, N.T.; Androulidaki, M.; Tsagaraki, K. Viskadourakis, Z.; Spanakis, E.; Aperathitis, E. Niobium-doped NiO as p-type nanostructured layer for transparent photovoltaics. Thin Solid Films 2023, 778, 139910. [Google Scholar] [CrossRef]
- Aivalioti, Ch.; Papadakis, A.; Manidakis, E.; Kayambaki, M.; Androulidaki, M.; Tsagaraki, K.; Pelekanos, N.T.; Stoumpos, C.; Modreanu, M.; Craciun, G.; Romanitan, C.; Aperathitis, E. An Assessment of Sputtered Nitrogen-Doped Nickel Oxide for all-Oxide Transparent Optoelectronic Applications: The Case of Hybrid NiO:N/TiO2 Heterostructure. Recent Trends in Chemical and Material Sciences Chap. 8. 2022, 6, 86–111. [Google Scholar] [CrossRef]
- Nath, D.; Singh, F.; Das, R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mat. Chem. and Phys. 2020, 239, 122021. [Google Scholar] [CrossRef]
- Pankove, J. Optical Processes in Semiconductors; Ch. 4; Dover Publications: NY,, 1971; p. 87. [Google Scholar]
- Davis, E.A.; Mott, N.F. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine 1970, 22, 0903–0922. [Google Scholar] [CrossRef]
- Reeves, G.K.; Harrison, H. B. Obtaining the specific contact resistance from transmission line model measurements. IEEE Electron Device Letters 1982, 3, 111–113. [Google Scholar] [CrossRef]
- Kambilafka, V.; Kostopoulos, A.; Androulidaki, M.; Tsagaraki, K.; Modreanu, M.; Aperathitis, E. Transparent p/n diode device from a single zinc nitride sputtering target. Thin Solid Films 2011, 520, 1202–1206. [Google Scholar] [CrossRef]
- Cao, H.; Nong, M.; Li, J.; Tang, X.; Liu, T.; Liu, Z.; Sarkar, B.; Lai, Z.; Wu, Y.; Li, X. Low contact resistivity at the 10−4 Ω cm2 level fabricated directly on n-type AlN. Appl. Phys. Lett. 2024, 125, 081602. [Google Scholar] [CrossRef]
- Ukoba, K.O.; Inambao, F.L.; Eloka-Eboka, A.C. Fabrication of Affordable and Sustainable Solar Cells Using NiO/TiO2 P-N Heterojunction. International Journal of Photoenergy 2018, 6062390. [Google Scholar] [CrossRef]
- Xu, J.; Cao, R.; Shi, S.; Li, L.; Zhu, K.; Su, Y. Self-powered ultraviolet photodetectors based on match like quasi one- dimensional n-TiO2/p-NiO core-shell heterojunction arrays with NiO layer sputtered at different power. J. Alloys and Compounds 2022, 928, 167126. [Google Scholar] [CrossRef]
- Peng, W.B.; Zhou, Y.J.; Xiang, G.J.; Liu, Y.; Zhang, J.H.; Zhang, J.M.; Huang, H.X.; Mei, M.Y.; Wang, H.; Zhao, Y. Preparation of AlN thin film and the impacts of AlN buffer layer on the carrier transport properties of p-NiO/n-InN heterojunction by magnetron sputtering. Mat. Sci. in Semiconductor Processing 2022, 141, 106417. [Google Scholar] [CrossRef]
- Gong, H.; Chen, X.; Xu, Y.; Chen, Y.; Ren, F.; Liu, B.; Gu, S.; Zhang, R.; Ye, J. Band Alignment and Interface Recombination in NiO/β-Ga2O3 Type-II p-n Heterojunctions. IEEE Trans. Electron Devices 2020, 67, 3341. [Google Scholar] [CrossRef]
- Bhat, P.; Salunkhe, P.; Murari, M.S.; Kekuda, D. Self-powered transparent ultraviolet photo-sensors based on bilayer p-NiO/n-Zn(1-x) Sn(x)O heterojunction. Sensors & Actuators: A. Physical 2022, 338, 113479. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Patel, M.; Kim, J. All-inorganic metal oxide transparent solar cells. Solar Energy Materials & Solar Cells 2020, 217, 110708. [Google Scholar] [CrossRef]
- Abbas, S.; Kim, J. All-metal oxide transparent photodetector for broad responses. Sensors and Actuators A 2020, 303, 111835. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Patel, M.; Kim, S.; Mir, R.A.; Yi, J.; Dao, V.-A.; Kim, J. Transparent photovoltaic cells and self-powered photodetectors by TiO2/NiO heterojunction. J. Power Sources 2021, 481, 228865. [Google Scholar] [CrossRef]
- Sun, H.; Liao, M.-H.; Chen, S.-C.; Li, Z.-Y.; Lin, P.-C.; Song, S.-M. Synthesis and characterization of n-type NiO:Al thin films for fabrication of p-n NiO homojunctions. J. Phys. D: Appl. Phys. 2018, 51, 105109. [Google Scholar] [CrossRef]
- Tyagi, M.; Tomar, M.; Gupta, V. P-N Junction of NiO Thin Film for Photonic Devices. IEEE Electron Device Lett. 2013, 34, 81. [Google Scholar] [CrossRef]
- Karsthof, R.; Grundmann, M.; Anton, A.M.; Kremer, F. Polaronic interacceptor hopping transport in intrinsically doped nickel oxide. Phys. Rev. B 2019, 99, 235201. [Google Scholar] [CrossRef]
- Sze, S.M. Physics of Semiconductor Devices, ISBN-13: 978-0471098379, 2nd ed.; John Wiley and Sons Ltd.: New York, 1981. [Google Scholar]
- Aivalioti, Ch.; Papadakis, A.; Manidakis, E.; Kayambaki, M.; Androulidaki, M.; Tsagaraki, K.; Pelekanos, N.T.; Stoumpos, C.; Modreanu, M.; Crăciun, G.; Romanitan, C.; Aperathitis, E. Transparent All-Oxide Hybrid NiO:N/TiO2 Heterostructure for Optoelectronic Applications. Electronics 2021, 10, 988. [Google Scholar] [CrossRef]
- Jin, S.; Guan, W.; Tsang, C.-W.; Yan, D.Y.S.; Chan, C.-Y.; Liang, C. Enhanced Hydroconversion of Lignin-Derived Oxygen-Containing Compounds Over Bulk Nickel Catalysts Though Nb2O5 Modification. Catal. Lett. 2017, 147, 2215–2224. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, S.; Huang, J.; Wang, C.; Zhao, R.; Qu, F.; Wang, P.; Yang, M. Highly selective and sensitive xylene sensors based on Nb-doped NiO nanosheets. Sensors & Actuators: B. Chemical 2020, 308, 127520. [Google Scholar] [CrossRef]
- Popescu, I.; Skoufa, Z.; Heracleous, E.; Lemonidou, A.; Marcu, I.-C. A study by electrical conductivity measurements of the semiconductive and redox properties of Nb-doped NiO catalysts in correlation with the oxidative dehydrogenation of ethane. Phys. Chem. Chem. Phys. 2015, 17, 8138–8147. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-H.; Jeong, S.-Y.; Moon, Y.K.; Lee, J.-H. Dual-mode gas sensor for ultrasensitive and highly selective detection of xylene and toluene using Nb-doped NiO hollow spheres. Sensors & Actuators: B. Chemical 2019, 301, 127140. [Google Scholar] [CrossRef]
- Moss, T.S. The Interpretation of the Properties of Indium Antimonide. Proc. Phys. Soc. B 1945, 67, 775. [Google Scholar] [CrossRef]
- Burstein, E. Anomalous Optical Absorption Limit in InSb. Physical Review 1945, 93, 632–633. [Google Scholar] [CrossRef]
- Diao, C.-C.; Huang, C.-Y.; Yang, C.-F.; Wu, C.-C. Morphological, Optical, and Electrical Properties of p-Type Nickel Oxide Thin Films by Nonvacuum Deposition. Nanomaterials 2020, 10, 636. [Google Scholar] [CrossRef]
- Hassan, A.; Jin, Y.; Irfan, M.; Jiang, Y. Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films. AIP Advances 2028, 8, 035212. [Google Scholar] [CrossRef]
- Hwang, J.D.; Jiang, C.I.; Hwang, S.B. P-NiO/n-ZnO heterojunction photodiodes with an MgZnO/ZnO quantum well insertion layer. Mater. Sci. Semicond. Process. 2020, 105, 104711. [Google Scholar] [CrossRef]
- Dawidowski, W.; Sciana, B.; Bielak, K.; Mikolášek, M.; Drobn., J.; Serafinczuk, J.; Lombardero, I.; Radziewicz, D.; Kijaszek, W.; Kósa, A.; Algora, C.; Stuchlíková, L. Analysis of Current Transport Mechanism in AP-MOVPE Grown GaAsN p-i-n Solar Cell. Energies 2021, 14, 4651. [Google Scholar] [CrossRef]
- Benaissa, M.; Abdelkader, H.S.; Abdulkareem, A.I.; Al-Dujaili, A.Q.; Humaidi, A.J.H.; Menni., Y. Comparative analysis of the substitutional and interstitial Li-, Na-doped, and Li∖Na-Codoped Cu2O via density functional calculations. Modern Physics Letters B 2023, 37, 2350084. [Google Scholar] [CrossRef]
- Dhonde, K.S.; Dhonde, M.; Murty, V.V.S. Novel synergistic combination of Al/N Co-doped TiO2 nanoparticles for highly efficient dye-sensitized solar cells. Solar Energy 2018, 173, 551–557. [Google Scholar] [CrossRef]
- Zhang, J. ; Ma. P.; Shi, T.; Shao, X. Nd-Cr co-doped BiFeO3 thin films for photovoltaic devices with enhanced photovoltaic performance. Thin Solid Films 2020, 698, 137852. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, C.; Qi, Y.; Zhou, W.; Kou, D.; Zhou, Z.; Han, L.; Meng, Y.; Yuan, S.; Wu, S. Li/Ag Co-Doping Synergistically Boosts the Efficiency of Kesterite Solar Cells Through Effective SnZn Defect Passivation. Adv. Mater. Interfaces 2022, 9, 2201677. [Google Scholar] [CrossRef]
- Miao, C.; Ma, M.; Sui, Y.; Cui, Y.; Wang, Z.; a, Yang, L.; Wang, F.; Liu, X.; a, Yao, B. Realization of grain growth and suppressed bulk defects for efficient solution-processed Cu2ZnSn (S, Se)4 solar cells via co-doping strategy. Journal of Alloys and Compounds 2025, 1010, 177153. [Google Scholar] [CrossRef]







| NiO Films Sputtering conditions | NiO:Nb—Film AN | NiO:(Nb,N) | ||
|---|---|---|---|---|
| Film AN1 | Film AN2 | Film AN3 | ||
| Target | Ni-Nb | Ni-Nb | Ni-Nb | Ni-Nb |
| Gases flow rates (%) | Ar:O2:N2 = 50:50:0 |
Ar:O2:N2 = 94:3:3 |
Ar:O2:N2 = 50:25:25 |
Ar:O2:N2 = 6:47:47 |
| Deposition rate (nm/min) | 1.59 | 1.61 | 1.45 | 1.30 |
| Thickness (nm) | 175 | 161 | 164 | 186 |
| at.% Nb (Nb/(Ni+Nb)) | 3.5 | 3.8 | 2.4 | 1.4 |
| Substrates | Si (100) pieces, fused silica (1 mm thick), TiO2/FTO/glass | |||
|
As-prepared Films |
Deposition conditions |
Structural properties |
Optical properties |
|||||||
| Flow rates (%) | (200) peak 2θ (degree) |
D (nm) |
εL (x10-3) |
RMS roughness (nm) | Direct Egap (eV) | EU (meV) | ||||
| Ar | O2 | N2 | ||||||||
| NiO:Nb | AN | 50 | 50 | 0 | 42.58 | 4.7 | 20,9 | 2.11 | 3.25 | 2,734 |
| NiO:(Nb,N) | AN1 | 94 | 3 | 3 | 42.86 | 5.2 | 18.1 | 2.08 | 3.14 | 1,231 |
| AN2 | 50 | 25 | 25 | 42.69 | 8.9 | 9.2 | 2.75 | 3.67 | 557 | |
| AN3 | 6 | 47 | 47 | 42.72 | 7.7 | 12.2 | 5.47 | 3.21 | 812 | |
| NiO/TiO2 Diodes |
Jd(f)/Jd(r) (at ± 3 V) |
JS (A/cm2) |
RS (Ohm) |
n | φb (eV) |
|---|---|---|---|---|---|
| NiO:Nb/TiO2 | 7.2 | 1.8x10-3 | 13 | 7.0 | 0.58 |
| NiO:(Nb,N)/TiO2 | 19.1 | 1.0x10-5 | 351 | 8.2 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
