Submitted:
11 November 2024
Posted:
12 November 2024
You are already at the latest version
Abstract
The genus Vaccinium, which includes approximately 450 species, features economically significant berries such as bilberries (Vaccinium myrtillus) and blueberries (Vaccinium corymbosum). Bilberries flourish in acidic, well-drained soils, typically found in heathlands and coniferous forests, while blueberries benefit from a broader range of soil types and intensive agricultural practices. Sus-tainable cultivation strategies, including organic fertilization and efficient water management, are vital for optimizing production and addressing the environmental challenges posed by climate change. Both berries are rich in antioxidants and other nutrients, driving consumer interest and market growth despite competition from alternative crops. Additionally, tailored fertilization techniques are crucial for maximizing yield and fruit quality. By implementing circular economy principles, the production of bilberries and blueberries can enhance sustainability and profitability, ensuring their long-term success in agricultural systems.

Keywords:
1. Introduction
2. Botanical Description and Distribution
3. Agronomic Requirements
4. Harvesting Process of Bilberries and Blueberries
5. Climate Change Effects on Bilberries
6. Differences Between Cultivated and Wild Bilberries
7. Pest and Disease Management
8. Chemical Composition and Nutritional Value
9. Yield and Production Analysis
10. Economics and Market Potential
11. Future Prospects and Challenges
12. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Song, G.Q.; Hancock, J.F. Vaccinium. In: Wild Crop Relatives: Genomic and Breeding Resources: Temperate Fruits; Springer, 2010; pp. 197–221.
- Martău, G.A.; Bernadette-Emőke, T.; Odocheanu, R.; Soporan, D.A.; Bochiș, M.; Simon, E. et al. Vaccinium Species (Ericaceae): Phytochemistry and Biological Properties of Medicinal Plants. Molecules 2023, 28. [Google Scholar] [CrossRef] [PubMed]
- Edger, P.P.; Iorizzo, M.; Bassil, N.V.; Benevenuto, J.; Ferrão, L.F.V.; Giongo, L. et al. There and Back Again; Historical Perspective and Future Directions for Vaccinium Breeding and Research Studies. Hortic. Res. 2022, 9. [Google Scholar] [CrossRef]
- Migicovsky, Z.; Amyotte, B.; Ulrich, J.; Smith, T.W.; Turner, N.J.; Pico, J. et al. Berries as a Case Study for Crop Wild Relative Conservation, Use, and Public Engagement in Canada. Plants People Planet 2022, 4, 558–78. [Google Scholar] [CrossRef]
- Rakkar, M.; Jungers, J.M.; Sheaffer, C.; Bergquist, G.; Grossman, J.; Li, F. et al. Soil Health Improvements from Using a Novel Perennial Grain During the Transition to Organic Production. Agric. Ecosyst. Environ. 2023, 341. [Google Scholar] [CrossRef]
- van der Sluijs, J.P.; Vaage, N.S. Pollinators and Global Food Security: The Need for Holistic Global Stewardship. Food Ethics 2016, 1. [Google Scholar] [CrossRef]
- Poudel, D.; Bashyal, S.; Gautam, B. A Review on Cultural Practice as an Effective Pest Management Approach under Integrated Pest Management. Trop. Agroecosyst. 2022, 3. [Google Scholar] [CrossRef]
- Zhou, W.; Arcot, Y.; Medina, R.F.; Bernal, J.; Cisneros-Zevallos, L.; Akbulut, M.E.S. Integrated Pest Management: An Update on the Sustainability Approach to Crop Protection. ACS Omega 2024. [Google Scholar] [CrossRef]
- Ray, S.; Majumder, S. Water Management in Agriculture: Innovations for Efficient Irrigation. 2024.
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P. et al. Role of Organic Farming for Achieving Sustainability in Agriculture. Farming System 2023, 1. [Google Scholar] [CrossRef]
- Al-Shammary, A.A.G.; Al-Shihmani, L.S.S.; Fernández-Gálvez, J.; Caballero-Calvo, A. Optimizing Sustainable Agriculture: A Comprehensive Review of Agronomic Practices and Their Impacts on Soil Attributes. J. Environ. Manage. 2024, 364. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Andersson, G.K.S.; Requier, F.; Fijen, T.P.M.; Hipólito, J.; Kleijn, D. et al. Complementarity and Synergisms Among Ecosystem Services Supporting Crop Yield. Glob. Food Sec. 2018, 17. [Google Scholar]
- Benitez-Alfonso, Y.; Soanes, B.K.; Zimba, S.; Sinanaj, B.; German, L.; Sharma, V. et al. Enhancing Climate Change Resilience in Agricultural Crops. Curr. Biol. 2023, 33. [Google Scholar] [CrossRef] [PubMed]
- Wakweya, R.B. Challenges and Prospects of Adopting Climate-Smart Agricultural Practices and Technologies: Implications for Food Security. J. Agric. Food Res. 2023, 14. [Google Scholar] [CrossRef]
- Segovia-Villarreal, M.; Florez-Lopez, R.; Ramon-Jeronimo, J.M. Berry Supply Chain Management: An Empirical Approach. Sustainability (Switzerland) 2019, 11. [Google Scholar] [CrossRef]
- Antonella, S.; Barreca, D.; Giuseppina, L.; Ersilia, B.; Domenico, T. Bilberry (Vaccinium myrtillus L.). In: Nonvitamin and Nonmineral Nutritional Supplements; Elsevier, 2018; pp. 159–63.
- Chu, W.K.; Cheung, S.C.; Lau, R.A.; Benzie, I.F. Bilberry (Vaccinium myrtillus L.). In: Herbal Medicine; CRC Press, 2011; pp. 55–71.
- Zoratti, L.; Klemettilä, H.; Jaakola, L. Bilberry (Vaccinium myrtillus L.) Ecotypes. In: Nutritional Composition of Fruit Cultivars; Elsevier, 2015; pp. 83–99.
- Padmanabhan, P.; Correa-Betanzo, J.; Paliyath, G. Berries and Related Fruits. In: Encyclopedia of Food and Health; 2015.
- Vaneková, Z.; Rollinger, J.M. Bilberries: Curative and Miraculous – A Review on Bioactive Constituents and Clinical Research. Front. Pharmacol. 2022, 13. [Google Scholar] [CrossRef]
- Ehlenfeldt, M.K. Domestication of the Highbush Blueberry at Whitesbog, New Jersey, 1911-1916. Acta Hortic. 2009, 810. [Google Scholar]
- Prodorutti, D.; Pertot, I.; Giongo, L.; Gessler, C. Highbush Blueberry: Cultivation, Protection, Breeding, and Biotechnology. Eur. J. Plant Sci. Biotechnol. Global Science Books, 2007. Available online: http://faostat.fao.org.
- Samuel-Peterson, N. Cultural Competence in the Prevention and Treatment of Cancer: The Case of Blueberries in North America. Adv. Anthropol. 2013, 3. [Google Scholar] [CrossRef]
- Kayes, I.; Mallik, A. Boreal Forests: Distributions, Biodiversity, and Management. 2021.
- Nguyen, M.P.; Lehosmaa, K.; Toth, K.; Koskimäki, J.J.; Häggman, H.; Pirttilä, A.M. Weather in Two Climatic Regions Shapes the Diversity and Drives the Structure of Fungal Endophytic Community of Bilberry (Vaccinium myrtillus L.) Fruit. Environ. Microbiome 2024, 19. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Wang, D.; Li, Q.; Wang, C.; Wu, L. Comparative Study on the Effects of Different Soil Improvement Methods in Blueberry Soil. Agronomy 2024, 14. [Google Scholar] [CrossRef]
- Vaneková, Z.; Vanek, M.; Škvarenina, J.; Nagy, M. The Influence of Local Habitat and Microclimate on the Levels of Secondary Metabolites in Slovak Bilberry (Vaccinium myrtillus L.) Fruits. Plants 2020, 9. [Google Scholar] [CrossRef]
- Kuepper, G.L.; Diver, S. Blueberries: Organic Production. Hortic. Prod. Guide 2004, 6, 1–26. [Google Scholar]
- Caspersen, S.; Svensson, B.; Håkansson, T.; Winter, C.; Khalil, S.; Asp, H. Blueberry—Soil Interactions from an Organic Perspective. Sci. Hortic. 2016, 208, 78–91. [Google Scholar] [CrossRef]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy 2020, 10. [Google Scholar] [CrossRef]
- Kaur, H.; Nelson, K.A.; Singh, G.; Veum, K.S.; Davis, M.P.; Udawatta, R.P. et al. Drainage Water Management Impacts Soil Properties in Floodplain Soils in the Midwestern, USA. Agric. Water Manag. 2023, 279. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zhang, X.; Gao, X.; Shao, T.; Long, X. et al. Effects of Soil Properties and Microbiome on Highbush Blueberry (Vaccinium corymbosum) Growth. Agronomy 2022, 12. [Google Scholar] [CrossRef]
- Li, T.; Bi, G. Container Production of Southern Highbush Blueberries Using High Tunnels. HortScience 2019, 54. [Google Scholar] [CrossRef]
- Kingston, P.H.; Scagel, C.F.; Bryla, D.R. Suitability of Sphagnum Moss, Coir, and Douglas Fir Bark as Soilless Substrates for Container Production of Highbush Blueberry. HortScience 2017, 52. [Google Scholar] [CrossRef]
- Braha, S.; Kullaj, E. Effects of the Growing Systems on Growth and Yield of High-Bush Blueberries (V. corymbosum L.). Bulgarian J. Agric. Sci. 2024, 30. [Google Scholar]
- Johansson, M.B. Biomass, Decomposition, and Nutrient Release of Vaccinium myrtillus Leaf Litter in Four Forest Stands. Scand. J. For. Res. 1993, 8. [Google Scholar] [CrossRef]
- Hejcman, M.; Dvorak, I.J.; Kocianova, M.; Pavlu, V.; Nezerkova, P.; Vitek, O.; et al. Snow Depth and Vegetation Pattern in a Late-Melting Snowbed Analyzed by GPS and GIS in the Giant Mountains, Czech Republic. Arct. Antarct. Alp. Res. 2006, 38. [Google Scholar] [CrossRef]
- Frak, E.; Ponge, J.F. The Influence of Altitude on the Distribution of Subterranean Organs and Humus Components in Vaccinium myrtillus Carpets. Journal of Vegetation Science 2002, 17–26. [Google Scholar] [CrossRef]
- Zeidler, M.; Banaš, M. Bilberry Expansion in the Changing Subalpine Belt. Plants 2024, 13. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, A.A.D.; Bahn, M.; Pritchard, W.J.; Newbold, L.K.; Goodall, T.; Guinta, A. et al. Shrub Expansion Modulates Belowground Impacts of Changing Snow Conditions in Alpine Grasslands. Ecol. Lett. 2022, 25. [Google Scholar] [CrossRef] [PubMed]
- Pato, J.; Obeso, J.R. Fruit Mass Variability in Vaccinium myrtillus as a Response to Altitude, Simulated Herbivory, and Nutrient Availability. Basic Appl. Ecol. 2012, 13. [Google Scholar] [CrossRef]
- Bokhorst, S.; Bjerke, J.W.; Davey, M.P.; Taulavuori, K.; Taulavuori, E.; Laine, K. et al. Impacts of Extreme Winter Warming Events on Plant Physiology in a Sub-Arctic Heath Community. Physiol. Plant. 2010, 140. [Google Scholar] [CrossRef] [PubMed]
- Nestby, R.; Krogstad, T.; Joner, E.; Vohník, M. The Effect of NP Fertilization on European Blueberry (Vaccinium myrtillus L.) Development on Cultivated Land in Mid-Norway. J. Berry Res. 2014, 4. [Google Scholar] [CrossRef]
- Taulavuori, K.; Laine, K.; Taulavuori, E.; Pakonen, T.; Saari, E. Accelerated Dehardening in Bilberry (Vaccinium myrtillus L.) Induced by a Small Elevation in Air Temperature. Environmental Pollution 1997, 98. [Google Scholar] [CrossRef]
- Taulavuori, K.; Laine, K.; Taulavuori, E. Experimental Studies on Vaccinium myrtillus and Vaccinium vitis-idaea in Relation to Air Pollution and Global Change at Northern High Latitudes: A Review. Environ. Exp. Bot. 2013, 87. [Google Scholar] [CrossRef]
- Nestby, R.; Martinussen, I.; Krogstad, T.; Uleberg, E. Effect of Fertilization, Tiller Cutting, and Environment on Plant Growth and Yield of European Blueberry (Vaccinium myrtillus L.) in Norwegian Forest Fields. J. Berry Res. 2014, 4. [Google Scholar] [CrossRef]
- Zydlik, Z.; Cieśliński, S.; Mai, V.C.; Kafkas, E.; Morkunas, I. Soil Preparation, Running Highbush Blueberry (Vaccinium corymbosum L.) Plantation and Biological Properties of Fruits. 2019.
- Campa, A.; Ferreira, J.J. Genetic Diversity Assessed by Genotyping by Sequencing (GBS) and for Phenological Traits in Blueberry Cultivars. PLoS One 2018, 13. [Google Scholar] [CrossRef]
- Gauthier, N.W.; Kaiser, C. Midwest Blueberry Production Guide. ID-210. Lexington: University of Kentucky Cooperative Extension 2013.
- Manzanero, B.R.; Kulkarni, K.P.; Vorsa, N.; Reddy, U.K.; Natarajan, P.; Elavarthi, S. et al. Genomic and Evolutionary Relationships Among Wild and Cultivated Blueberry Species. BMC Plant Biol. 2023, 23. [Google Scholar] [CrossRef]
- Thornton, J.M.; Palazzi, E.; Pepin, N.C.; Cristofanelli, P.; Essery, R.; Kotlarski, S. et al. Toward a Definition of Essential Mountain Climate Variables. One Earth 2021, 4. [Google Scholar] [CrossRef]
- Körner, C. The Use of “Altitude” in Ecological Research. Trends Ecol. Evol. 2007, 22, 569–74. [Google Scholar] [CrossRef] [PubMed]
- Boscutti, F.; Casolo, V.; Beraldo, P.; Braidot, E.; Zancani, M.; Rixen, C. Shrub Growth and Plant Diversity Along an Elevation Gradient: Evidence of Indirect Effects of Climate on Alpine Ecosystems. PLoS One 2018, 13. [Google Scholar] [CrossRef] [PubMed]
- Nestby, R.; Percival, D.; Martinussen, I.; Opstad, N.; Rohloff, J. The European Blueberry (Vaccinium myrtillus L.) and the Potential for Cultivation. Eur. J. Plant Sci. Biotechnol. 2011, 5, 5–16. [Google Scholar]
- Ru, S.; Sanz-Saez, A.; Leisner, C.P.; Rehman, T.; Busby, S. Review on Blueberry Drought Tolerance from the Perspective of Cultivar Improvement. Front. Plant Sci. 2024, 15. [Google Scholar] [CrossRef]
- Shah, I.H.; Jinhui, W.; Li, X.; Hameed, M.K.; Manzoor, M.A.; Li, P. et al. Exploring the Role of Nitrogen and Potassium in Photosynthesis: Implications for Sugar Accumulation and Translocation in Horticultural Crops. Sci. Hortic. 2024, 327. [Google Scholar] [CrossRef]
- Fang, Y.; Williamson, J.; Darnell, R.; Li, Y.; Liu, G. Optimizing Nitrogen Fertigation Rates for Young Southern Highbush Blueberry. Agronomy 2020, 10. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Adams, H.D.; Wang, A.; Wu, J.; Jin, C. et al. Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits. Front. Plant Sci. 2018, 9. [Google Scholar]
- Lähdesmäki, P.; Pakonen, T.; Saari, E.; Laine, K.; Tasanen, L.; Havas, P. Changes in Total Nitrogen, Protein, Amino Acids, and NH₄⁺ in Tissues of Bilberry, Vaccinium myrtillus, During the Growing Season. Ecography 1990, 13. [Google Scholar] [CrossRef]
- Hart, A.T.; Landhäusser, S.M.; Wiley, E. Tracing Carbon and Nitrogen Reserve Remobilization During Spring Leaf Flush and Growth Following Defoliation. Tree Physiol 2024. [Google Scholar] [CrossRef]
- Fontaine, N.; Gauthier, P.; Caillon, S.; Thompson, J.D.; Boulangeat, I. Sustainability of Artemisia umbelliformis Gathering in the Wild: An Integration of Ecological Conditions and Harvesting Exposure. Glob Ecol Conserv 2024, 51. [Google Scholar] [CrossRef]
- Vári, Á.; Arany, I.; Kalóczkai, Á.; Kelemen, K.; Papp, J.; Czúcz, B. Berries, Greens, and Medicinal Herbs - Mapping and Assessing Wild Plants as an Ecosystem Service in Transylvania (Romania). J Ethnobiol Ethnomed 2020, 16. [Google Scholar] [CrossRef] [PubMed]
- Tadić, V.M.; Nešić, I.; Martinović, M.; Rój, E.; Brašanac-Vukanović, S.; Maksimović, S. et al. Old Plant, New Possibilities: Wild Bilberry (Vaccinium myrtillus L., Ericaceae) in Topical Skin Preparation. Antioxidants 2021, 10. [Google Scholar] [CrossRef]
- Cid, B.; Hilker, F.M.; Liz, E. Harvest Timing and Its Population Dynamic Consequences in a Discrete Single-Species Model. Math Biosci 2014, 248. [Google Scholar] [CrossRef] [PubMed]
- Ghaffariyan, M.R.; Dupuis, E. Analysing the Impact of Harvesting Methods on the Quantity of Harvesting Residues: An Australian Case Study. Forests 2021, 12. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.S.; Vanguelova, E.; Stupak, I.; Evans, A. et al. Sustainable Forest Biomass: A Review of Current Residue Harvesting Guidelines. Energy Sustain Soc 2021, 11. [Google Scholar]
- Lõhmus, A.; Remm, L. Disentangling the Effects of Semi-Natural Forestry on an Ecosystem Good: Bilberry (Vaccinium myrtillus) in Estonia. For Ecol Manage 2017, 404. [Google Scholar] [CrossRef]
- Hellström, J.; Karhu, S.; Karhu, J.; Järvenpää, E.; Välimaa, A.L. Phenolic Profiles Differentiate Wild Bilberry and Cultivated Blueberry Fruit. LWT 2024, 199. [Google Scholar] [CrossRef]
- Kaur, B.; Mansi, *!!! REPLACE !!!*; Dimri, S.; Singh, J.; Mishra, S.; Chauhan, N.; et al. Insights into the Harvesting Tools and Equipment for Horticultural Crops: From Then to Now. J Agric Food Res 2023, 14. [Google Scholar]
- Bohlin, I.; Maltamo, M.; Hedenås, H.; Lämås, T.; Dahlgren, J.; Mehtätalo, L. Predicting Bilberry and Cowberry Yields Using Airborne Laser Scanning and Other Auxiliary Data Combined with National Forest Inventory Field Plot Data. For Ecol Manage 2021, 502. [Google Scholar] [CrossRef]
- Kubov, M.; Fleischer, P.; Tomes, J.; Mukarram, M.; Janík, R.; Turyasingura, B. et al. Differential Responses of Bilberry (Vaccinium myrtillus) Phenology and Density to a Changing Environment: A Study from Western Carpathians. Plants 2024, 13, 2406. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel Approaches and Practices to Sustainable Agriculture. J Agric Food Res 2022, 10. [Google Scholar] [CrossRef]
- Remm, L.; Rünkla, M.; Lõhmus, A. How Bilberry Pickers Use Estonian Forests: Implications for Sustaining a Non-Timber Value. Balt For 2018, 24. [Google Scholar]
- Manninen, O.H.; Peltola, R. Effects of Picking Methods on the Berry Production of Bilberry (Vaccinium myrtillus), Lingonberry (V. vitis-idaea), and Crowberry (Empetrum nigrum ssp. hermaphroditum) in Northern Finland. Silva Fennica 2013, 47. [Google Scholar] [CrossRef]
- Brondino, L.; Borra, D.; Giuggioli, N.R.; Massaglia, S. Mechanized Blueberry Harvesting: Preliminary Results in the Italian Context. Agriculture (Switzerland) 2021, 11. [Google Scholar] [CrossRef]
- Brondino, L.; Briano, R.; Massaglia, S.; Giuggioli, N.R. Influence of Harvest Method on the Quality and Storage of Highbush Blueberry. J Agric Food Res 2022, 10. [Google Scholar] [CrossRef]
- Malfasi, F.; Cannone, N. Climate Warming Persistence Triggered Tree Ingression After Shrub Encroachment in a High Alpine Tundra. Ecosystems 2020, 23. [Google Scholar] [CrossRef]
- Rohloff, J.; Uleberg, E.; Nes, A.; Krogstad, T.; Nestby, R.; Martinussen, I. Nutritional Composition of Bilberries (Vaccinium myrtillus L.) from Forest Fields in Norway: Effects of Geographic Origin, Climate, Fertilization, and Soil Properties. Journal of Applied Botany and Food Quality 2015, 88. [Google Scholar]
- Selås, V.; Sønsteby, A.; Heide, O.M.; Opstad, N. Climatic and Seasonal Control of Annual Growth Rhythm and Flower Formation in Vaccinium myrtillus (Ericaceae), and the Impact on Annual Variation in Berry Production. Plant Ecol Evol 2015, 148. [Google Scholar] [CrossRef]
- Zeppel, M.J.B.; Wilks, J.V.; Lewis, J.D. Impacts of Extreme Precipitation and Seasonal Changes in Precipitation on Plants. Biogeosciences 2014, 11. [Google Scholar] [CrossRef]
- Subedi, B.; Poudel, A.; Aryal, S. The Impact of Climate Change on Insect Pest Biology and Ecology: Implications for Pest Management Strategies, Crop Production, and Food Security. J Agric Food Res 2023, 14. [Google Scholar] [CrossRef]
- Jiang, W.; Li, N.; Zhang, D.; Meinhardt, L.; Cao, B.; Li, Y. et al. Elevated Temperature and Drought Stress Significantly Affect Fruit Quality and Activity of Anthocyanin-Related Enzymes in Jujube (Ziziphus jujuba Mill. cv. 'Lingwuchangzao'). PLoS One 2020, 15. [Google Scholar] [CrossRef]
- Gérard, M.; Vanderplanck, M.; Wood, T.; Michez, D. Global Warming and Plant-Pollinator Mismatches. Emerg Top Life Sci 2020, 4. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions Under the Impact of Climate Change. Agronomy 2020, 10. [Google Scholar] [CrossRef]
- Alaba, O.A.; Bechami, S.; Chen, Y.Y.; Gara, T.W.; Perkins, B.; Zhang, Y.J. Will Global Warming Reduce the Nutritional Quality of Wild Blueberries? Climate Change Ecology 2024, 8. [Google Scholar] [CrossRef]
- Cristea, G.; Dehelean, A.; Puscas, R.; Covaciu, F.D.; Hategan, A.R.; Müller Molnár, C. et al. Characterization and Differentiation of Wild and Cultivated Berries Based on Isotopic and Elemental Profiles. Applied Sciences (Switzerland) 2023, 13. [Google Scholar]
- Klavins, L.; Klavins, M. Cuticular Wax Composition of Wild and Cultivated Northern Berries. Foods 2020, 9. [Google Scholar] [CrossRef]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K. et al. Essential Metals in Health and Disease. Chem Biol Interact 2022, 367. [Google Scholar] [CrossRef]
- Dróżdż, P.; Šėžienė, V.; Pyrzynska, K. Mineral Composition of Wild and Cultivated Blueberries. Biol Trace Elem Res 2018, 181. [Google Scholar] [CrossRef]
- Karlsons, A.; Osvalde, A.; Čekstere, G.; Ponnale, J. Research on the Mineral Composition of Cultivated and Wild Blueberries and Cranberries. Agronomy Research 2018, 16. [Google Scholar]
- Gibb, T. Making Management Recommendations Using IPM. In: Contemporary Insect Diagnostics. 2015.
- Matyjaszczyk, E. Products Containing Microorganisms as a Tool in Integrated Pest Management and the Rules of Their Market Placement in the European Union. Pest Manag Sci 2015, 71. [Google Scholar] [CrossRef]
- Montesinos, E.; Bonaterra, A. Pesticides, Microbial. In: Reference Module in Life Sciences. Amsterdam, The Netherlands: Elsevier 2017.
- Tariq, M.; Khan, A.; Asif, M.; Khan, F.; Ansari, T.; Shariq, M. et al. Biological Control: A Sustainable and Practical Approach for Plant Disease Management. Acta Agric Scand B Soil Plant Sci 2020. [Google Scholar]
- Heimpel, G.E.; Mills, N.J. Biological Control 2017.
- Ghorbanpour, M.; Omidvari, M.; Abbaszadeh-Dahaji, P.; Omidvar, R.; Kariman, K. Mechanisms Underlying the Protective Effects of Beneficial Fungi Against Plant Diseases. Biological Control 2018, 117. [Google Scholar] [CrossRef]
- Bell, S.R.; Hernández Montiel, L.G.; González Estrada, R.R.; Gutiérrez Martínez, P. Main Diseases in Postharvest Blueberries, Conventional and Eco-Friendly Control Methods: A Review. LWT 2021, 149. [Google Scholar] [CrossRef]
- Petrasch, S.; Knapp, S.J.; van Kan, J.A.L.; Blanco-Ulate, B. Grey Mould of Strawberry, a Devastating Disease Caused by the Ubiquitous Necrotrophic Fungal Pathogen Botrytis cinerea. Mol Plant Pathol 2019, 20, 877–892. [Google Scholar] [CrossRef]
- Neugebauer, K.A.; Mattupalli, C.; Hu, M.; Oliver, J.E.; VanderWeide, J.; Lu, Y. et al. Managing Fruit Rot Diseases of Vaccinium corymbosum. Front Plant Sci 2024, 15. [Google Scholar] [CrossRef]
- Jacobs, M.; Thompson, S.; Platts, A.E.; Body, M.J.A.; Kelsey, A.; Saad, A. et al. Uncovering Genetic and Metabolite Markers Associated with Resistance Against Anthracnose Fruit Rot in Northern Highbush Blueberry. Hortic Res 2023, 10. [Google Scholar] [CrossRef]
- Vanderweide, J.; Falchi, R.; Calderan, A.; Peterlunger, E.; Vrhovsek, U.; Sivilotti, P. et al. Juxtaposition of the Source-to-Sink Ratio and Fruit Exposure to Solar Radiation on cv. Merlot (Vitis vinifera L.) Berry Phenolics in a Cool versus Warm Growing Region. J Agric Food Chem 2022, 70. [Google Scholar] [CrossRef]
- Abbey, J.A.; Percival, D.; Abbey, Lord; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as Alternative to Synthetic Fungicide Control of Grey Mould (Botrytis cinerea) – Prospects and Challenges. Biocontrol Sci Technol 2019, 29.
- Nicot, P.C.; Stewart, A.; Bardin, M.; Elad, Y. Biological Control and Biopesticide Suppression of Botrytis-Incited Diseases. In: Botrytis - The Fungus, the Pathogen and its Management in Agricultural Systems. Springer International Publishing; 2015, pp. 165–187.
- O’Neal, M.E.; Zontek, E.L.; Szendrei, Z.; Landis, D.A.; Isaacs, R. Ground Predator Abundance Affects Prey Removal in Highbush Blueberry (Vaccinium corymbosum) Fields and Can Be Altered by Aisle Ground Covers.
- Dupre, M.E.; Weaver, D.K.; Seipel, T.F.; Menalled, F.D. Impacts of Dryland Cropping Systems on Ground Beetle Communities (Coleoptera: Carabidae) in the Northern Great Plains. Journal of Insect Science 2021, 21. [Google Scholar] [CrossRef] [PubMed]
- Angon, P.B.; Mondal, S.; Jahan, I.; Datto, M.; Antu, U.B.; Ayshi, F.J. et al. Integrated Pest Management (IPM) in Agriculture and Its Role in Maintaining Ecological Balance and Biodiversity. Advances in Agriculture 2023, 2023. [Google Scholar] [CrossRef]
- Rendon, D.; Hamby, K.A.; Arsenault-Benoit, A.L.; Taylor, C.M.; Evans, R.K.; Roubos, C.R. et al. Mulching as a Cultural Control Strategy for Drosophila suzukii in Blueberry. Pest Manag Sci 2020, 76. [Google Scholar] [CrossRef]
- Renkema, J.M.; Parent, J.P. Mulches Used in Highbush Blueberry and Entomopathogenic Nematodes Affect Mortality Rates of Third-Instar Popillia japonica. Insects 2021, 12. [Google Scholar] [CrossRef]
- Sharma, S. Cultivating Sustainable Solutions: Integrated Pest Management (IPM) for Safer and Greener Agronomy. Corporate Sustainable Management Journal 2023, 1. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.C.; Qian, L.H.; Zhang, Y.H.; Gong, P.X.; Li, H.J. Comparison of Health-Relevant Polyphenolic Component Content and Bioavailability of Bilberry (Vaccinium myrtillus L.), Blueberry (Vaccinium sect. Cyanococcus Rydb.), and Chokeberry (Aronia melanocarpa (Michx.) Elliott). Food Science and Engineering 2022. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Jęcek, M.; Nowak, P. et al. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023, 15. [Google Scholar] [CrossRef]
- Do Socorro Chagas, M.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-De-Albuquerque, C.F. Flavonols and Flavones as Potential Anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxid Med Cell Longev 2022, 2022. [Google Scholar]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Iahtisham-Ul-Haq; Patel, S.; Pan, X., et al. Proanthocyanidins: A Comprehensive Review. Biomedicine and Pharmacotherapy 2019, 116.
- Murai, T.; Matsuda, S. The Chemopreventive Effects of Chlorogenic Acids, Phenolic Compounds in Coffee, Against Inflammation, Cancer, and Neurological Diseases. Molecules 2023, 28. [Google Scholar] [CrossRef]
- Ashique, S.; Mukherjee, T.; Mohanty, S.; Garg, A.; Mishra, N.; Kaushik, M. et al. Blueberries in Focus: Exploring the Phytochemical Potentials and Therapeutic Applications. J Agric Food Res 2024, 18. [Google Scholar]
- Burdulis, D.; Šarkinas, A.; Jasutiene, I.; Stackevičiene, E.; Nikolajevas, L.; Janulis, V. Comparative Study of Anthocyanin Composition, Antimicrobial and Antioxidant Activity in Bilberry (Vaccinium myrtillus L.) and Blueberry (Vaccinium corymbosum L.) Fruits. Acta Poloniae Pharmaceutica - Drug Research 2009, 66. [Google Scholar]
- Banerjee, S.; Nayik, G.A.; Kour, J.; Nazir, N. Blueberries. In: Antioxidants in Fruits: Properties and Health Benefits. Springer; 2020, pp. 593–614.
- Kumar, L.; Chhogyel, N.; Gopalakrishnan, T.; Hasan, M.K.; Jayasinghe, S.L.; Kariyawasam, C.S. et al. Climate Change and Future of Agri-Food Production. In: Future Foods: Global Trends, Opportunities, and Sustainability Challenges. 2021.
- Mirón, I.J.; Linares, C.; Díaz, J. The Influence of Climate Change on Food Production and Food Safety. Environ Res 2023, 216. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential Use of Bacillus spp. as an Effective Biostimulant Against Abiotic Stresses in Crops—A Review. Curr Res Biotechnol 2023, 5. [Google Scholar] [CrossRef]
- Ngoune Liliane, T.; Shelton, C.M. Factors Affecting Yield of Crops. In: Agronomy - Climate Change and Food Security. 2020.
- Baltes, N.J.; Gil-Humanes, J.; Voytas, D.F. Genome Engineering and Agriculture: Opportunities and Challenges. In: Progress in Molecular Biology and Translational Science. 2017.
- Barizza, E.; Guzzo, F.; Fanton, P.; Lucchini, G.; Sacchi, G.A.; Lo Schiavo, F. et al. Nutritional Profile and Productivity of Bilberry (Vaccinium myrtillus L.) in Different Habitats of a Protected Area of the Eastern Italian Alps. J Food Sci 2013, 78. [Google Scholar]
- Zhang, X.; Li, S.; An, X.; Song, Z.; Zhu, Y.; Tan, Y. et al. Effects of Nitrogen, Phosphorus, and Potassium Formula Fertilization on the Yield and Berry Quality of Blueberry. PLoS One 2023, 18. [Google Scholar]
- Uleberg, E.; Rohloff, J.; Jaakola, L.; Trôst, K.; Junttila, O.; Häggman, H. et al. Effects of Temperature and Photoperiod on Yield and Chemical Composition of Northern and Southern Clones of Bilberry (Vaccinium myrtillus L.). J Agric Food Chem 2012, 60, 10406–14. [Google Scholar] [CrossRef]
- González-Villagra, J.; Ávila, K.; Gajardo, H.A.; Bravo, L.A.; Ribera-Fonseca, A.; Jorquera-Fontena, E. et al. Diurnal High Temperatures Affect the Physiological Performance and Fruit Quality of Highbush Blueberry (Vaccinium corymbosum L.) cv. Legacy. Plants 2024, 13. [Google Scholar] [CrossRef]
- Almutairi, K.F.; Bryla, D.R.; Strik, B.C. Sensitivity of Northern Highbush Blueberry Cultivars to Soil Water Deficits During Various Stages of Fruit Development. HortScience 2021, 56, 154–62. [Google Scholar] [CrossRef]
- Zydlik, Z.; Zydlik, P.; Kafkas, N.E.; Yesil, B.; Cieśliński, S. Foliar Application of Some Macronutrients and Micronutrients Improves Yield and Fruit Quality of Highbush Blueberry (Vaccinium corymbosum L.). Horticulturae 2022, 8. [Google Scholar] [CrossRef]
- Obsie, E.Y.; Qu, H.; Drummond, F. Wild Blueberry Yield Prediction Using a Combination of Computer Simulation and Machine Learning Algorithms. Comput Electron Agric 2020, 178. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Caleja, C.; Santos-Buelga, C.; Barros, L.; Ferreira, I.C.F.R. Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications - A Review. Curr Pharm Des 2020, 26, 1917–28. [Google Scholar] [CrossRef] [PubMed]
- Dare, A.P.; Günther, C.S.; Grey, A.C.; Guo, G.; Demarais, N.J.; Cordiner, S. et al. Resolving the Developmental Distribution Patterns of Polyphenols and Related Primary Metabolites in Bilberry (Vaccinium myrtillus) Fruit. Food Chem 2022, 374. [Google Scholar] [CrossRef] [PubMed]
- Alsubhi, M.; Blake, M.; Nguyen, T.; Majmudar, I.; Moodie, M.; Ananthapavan, J. Consumer Willingness to Pay for Healthier Food Products: A Systematic Review. Obesity Reviews 2023, 24. [Google Scholar] [CrossRef] [PubMed]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of Climate Change on the Livestock Food Supply Chain; A Review of the Evidence. Glob Food Sec 2021, 28. [Google Scholar] [CrossRef]
- de Castro Moura Duarte, A.L.; Picanço Rodrigues, V.; Bonome Message Costa, L. The Sustainability Challenges of Fresh Food Supply Chains: An Integrative Framework. Environ Dev Sustain 2024. [Google Scholar] [CrossRef]
- Knaut, A.; Paschmann, M. Price Volatility in Commodity Markets with Restricted Participation. Energy Econ 2019, 81. [Google Scholar] [CrossRef]
- Herbon, A. Shelf-Life Extension Under Implementation Costs. Comput Ind Eng 2023, 180. [Google Scholar] [CrossRef]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ Perspective on Circular Economy Strategy for Reducing Food Waste. Sustainability 2017, 9. [Google Scholar] [CrossRef]
- Brandão, A.S.; Gonçalves, A.; Santos, J.M.R.C.A. Circular Bioeconomy Strategies: From Scientific Research to Commercially Viable Products. J Clean Prod 2021, 295. [Google Scholar] [CrossRef]
- Kara, S.; Hauschild, M.; Sutherland, J.; McAloone, T. Closed-Loop Systems to Circular Economy: A Pathway to Environmental Sustainability? CIRP Annals 2022, 71. [Google Scholar] [CrossRef]
- Vega, E.N.; García-Herrera, P.; Ciudad-Mulero, M.; Dias, M.I.; Matallana-González, M.C.; Cámara, M. et al. Wild Sweet Cherry, Strawberry, and Bilberry as Underestimated Sources of Natural Colorants and Bioactive Compounds with Functional Properties. Food Chem, 2023; 414. [Google Scholar]
- Tian, Y.; Yang, B. Phenolic Compounds in Nordic Berry Species and Their Application as Potential Natural Food Preservatives. Crit Rev Food Sci Nutr 2023, 63. [Google Scholar] [CrossRef] [PubMed]
- Ștefănescu, R.; Marian, R. Bilberry Anthocyanins - Possible Applications in Skincare Products. Acta Biol Marisiensis 2023, 6. [Google Scholar] [CrossRef]
- Klavins, L.; Mezulis, M.; Nikolajeva, V.; Klavins, M. Composition, Sun Protective and Antimicrobial Activity of Lipophilic Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.) Extract Fractions. LWT 2021, 138. [Google Scholar] [CrossRef]
- Ćeran, M.; Miladinović, D.; Đorđević, V.; Trkulja, D.; Radanović, A.; Glogovac, S. et al. Genomics-Assisted Speed Breeding for Crop Improvement: Present and Future. Front Sustain Food Syst 2024. [Google Scholar] [CrossRef]
- Edgerton, M.D. Increasing Crop Productivity to Meet Global Needs for Feed, Food, and Fuel. Plant Physiol 2009, 149. [Google Scholar] [CrossRef]
- Trejo-Pech, C.O.; Rodríguez-Magaña, A.; Briseño-Ramírez, H.; Ahumada, R. A Monte Carlo Simulation Case Study on Blueberries from Mexico. International Food and Agribusiness Management Review 2024, 27. [Google Scholar] [CrossRef]
| Aspect | Manual Harvesting | Mechanical Harvesting |
|---|---|---|
| Pros | Higher fruit quality and lower damage | Significant labor cost reduction |
| Greater selectivity in fruit picking | Increased harvesting efficiency | |
| Ability to harvest in diverse conditions | Faster harvest time | |
| Minimal need for specialized equipment | Potential for reduced dependency on seasonal labor | |
| Cons | High labor costs | Potential for increased fruit damage |
| Time consuming process | Lower fruit quality, especially for fresh market | |
| Labor availability issues | Requires investment in machinery | |
| Limited harvesting speed | May require adaptation on farming practices |
| Nutrients | Bilberries | Blueberries |
|---|---|---|
| Carbohydrate | ||
| Sugar | 14.7 g | 9.96 g |
| Dietary Fiber | 3.6 g | 2.4 g |
| Starch | 0 | 0.03 g |
| Sucrose | 163 mg | 0.11 g |
| Glucose | 7222 mg | 5 g |
| Fructose | 7355 g | 5 g |
| Galactose | 0 | 0 |
| Maltose | 0 | 0 |
| Amino Acids | ||
| Tryptophan | 3 mg | 3 mg |
| Isoleucine | 23 mg | 23 mg |
| Threonine | 20 mg | 20 mg |
| Lysine | 13 mg | 13 mg |
| Leucine | 44 mg | 44 mg |
| Cysteine | 8 mg | 8.8 mg |
| Tyrosine | 9 mg | 9 mg |
| Valine | 31 mg | 31m g |
| Glutamic acid | 91 mg | 91 mg |
| Aspartic acid | 57 mg | 58 mg |
| Glycine | 31 mg | 31 mg |
| Alanine | 31 mg | 31 mg |
| Phenylalanine | 26 mg | 25 mg |
| Histidine | 11 mg | 11 mg |
| Vitamins | ||
| B1 | 0 | 0.037 mg |
| B2 | 0 | 0.041 mg |
| B3 | 0.4 mg | 0.418 mg |
| B5 | 0.1 mg | 0.124 mg |
| B6 | - | 0.052 mg |
| B9 | 6 mg | 0.005 mg |
| A | 54 I.U. | 54 I.U. |
| Acorbic acid | 9.7 mg | 9.7 mg |
| Choline | 6 mg | 6 mg |
| Betaine | 0.2 mg | 0.2 mg |
| Minerals | ||
| Fe | 0.3 mg | 0.28 mg |
| Ca | 6 mg | 6 mg |
| P | 12 mg | 12 mg |
| Mg | 6 mg | 6 mg |
| Na | 1 mg | 1 mg |
| K | 77 mg | 77 mg |
| Zn | 0.2 mg | 0.16 mg |
| Mn | 0.3 mg | 0.34 mg |
| Se | 0.1 mg | 0.1 mg |
| Cu | 0.1 mg | 0.06 mg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
