Submitted:
23 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction

2. Potential Pathways and Evidence Framework
3. Temperature-Mediated Effects
4. Moisture and Circulation Effects
5. Condensation-Driven Dynamics: The Biotic Pump
6. Aerosols
7. Landfall and Track Modification
8. Context
9. Synthesis: Weighing the Evidence
10. Conclusion and Implications
Author Contributions
Funding Information
Data Availability Statement
Acknowledgements
Conflicts of Interest
Glossary


References
- Akinyoola, J. A.; Afolabi, O. O.; Ogunbanjo, O. A.; Akinola, O. E. A review of atmospheric aerosol impacts on regional extreme weather and climate events. Aerosol Sci. Eng. 2024, 8, 249–274. [Google Scholar] [CrossRef]
- Alkama, R.; Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 2016, 351, 600–604. [Google Scholar] [CrossRef]
- Andersen, T.; Shepherd, M. Inland tropical cyclones and the 'brown ocean' concept. In Hurricane Risk; Springer: Cham, Switzerland, 2017; pp. pp 117–134. [Google Scholar] [CrossRef]
- Andrich, M. A.; Imberger, J. The effect of land clearing on rainfall and fresh water resources in Western Australia: A multi-functional sustainability analysis. Int. J. Sustain. Dev. World Ecol. 2013, 20, 549–563. [Google Scholar] [CrossRef]
- Artaxo, P. Amazon deforestation implications in local/regional climate change. Proc. Natl. Acad. Sci. USA 2023, 120, e2317456120. [Google Scholar] [CrossRef]
- Artaxo, P.; Pöhlker, C.; Pöhlker, M. L.; Saturno, J.; Machado, L. A. T.; Andreae, M. O.; Pöschl, U. Tropical and boreal forest–atmosphere interactions: a review. Tellus B 2022, 74, 24–163. [Google Scholar] [CrossRef]
- Austin, K. G.; González-Roglich, M.; Schaffer-Smith, D.; Schwantes, A. M.; Swenson, J. J. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett. 2017, 12, 054009. [Google Scholar] [CrossRef]
- Baudena, M.; Tuinenburg, O. A.; Ferdinand, J. P.; van Ek, R.; Staal, A. Effects of land-use change in the Amazon on precipitation are likely underestimated. Glob. Change Biol. 2021, 27, 5580–5587. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K.; Baker, A.; Yang, W.; Vecchi, G.; Knutson, T.; Murakami, H.; Kossin, J.; Hodges, K.; Dixon, K.; Bronselaer, B.; Whitmore, C. A potential explanation for the global increase in tropical cyclone rapid intensification. Nat. Commun. 2022, 13, 6626. [Google Scholar] [CrossRef]
- Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 2022, 26, 5015–5033. [Google Scholar] [CrossRef]
- Boers, N.; Marwan, N.; Barbosa, H. M. J.; Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 2017, 7, 41489. [Google Scholar] [CrossRef] [PubMed]
- Bonan, G. Ecological Climatology: Concepts and Applications, 3rd ed.; Cambridge University Press: Cambridge, UK, 2016; ISBN 9781107043770. [Google Scholar]
- Carslaw, K. S.; Boucher, O.; Spracklen, D. V.; Mann, G. W.; Rae, J. G. L.; Woodward, S.; Kulmala, M. Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 2013, 503, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Carslaw, K.; Boucher, O.; Spracklen, D.; Mann, G.; Rae, J.; Woodward, S.; Kulmala, M. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 2010, 10, 1701–1737. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. Mediterranean tropical-like cyclones in present and future climate. J. Clim. 2014, 27, 7493–7501. [Google Scholar] [CrossRef]
- Chand, S. S.; Walsh, K. J. E.; Camargo, S. J.; Kossin, J. P.; Tory, K. J.; Wehner, M. F.; Chan, J. C. L.; Klotzbach, P. J.; Dowdy, A. J.; Bell, S. S.; Ramsay, H. A.; Murakami, H. Declining tropical cyclone frequency under global warming. Nat. Clim. Change 2022, 12, 655–661. [Google Scholar] [CrossRef]
- Chen, J.; Chavas, D. R. The transient responses of an axisymmetric tropical cyclone to instantaneous surface roughening and drying. J. Atmos. Sci. 2020, 77, 2807–2834. [Google Scholar] [CrossRef]
- Das, S.; Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. USA 2009, 106, 7357–7360. [Google Scholar] [CrossRef]
- Després, V. R.; Huffman, J. A.; Burrows, S. M.; Hoose, C.; Safatov, A. S.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M. O.; Pöschl, U.; Jaenicke, R. Primary biological aerosol particles in the atmosphere: a review. Tellus B 2012, 64, 15598. [Google Scholar] [CrossRef]
- Drumond, A.; Nieto, R.; Gimeno, L. On the contribution of the Tropical Western Hemisphere Warm Pool source of moisture to the Northern Hemisphere precipitation through a Lagrangian approach. J. Geophys. Res. 2011, 116, D00Q04. [Google Scholar] [CrossRef]
- Duque-Gardeazabal, N.; Friedman, A. R.; Brönnimann, S. An Atlantic influence on evapotranspiration in the Orinoco and Amazon basins. Hydrol. Earth Syst. Sci. 2025, 29, 3277–3295. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C. E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I. F.; Pokorny, J.; Gaveau, D.; Spracklen, D. V.; Tobella, A. B.; Ilstedt, U.; Teuling, A. J.; Gebrehiwot, S. G.; Sands, D. C.; Muys, B.; Verbist, B.; Springgay, E.; Sugandi, Y.; Sullivan, C. A. Trees, forests and water: cool insights for a hot world. Glob. Environ. Change 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Ellison, D.; Pokorný, J.; Wild, M. Even cooler insights: on the power of forests to (water the Earth and) cool the planet. Glob. Change Biol. 2024, 30, e17195. [Google Scholar] [CrossRef]
- Emanuel, K. 100 years of progress in tropical cyclone research. Meteorol. Monogr. 2018, 59, 15.1–15.68. [Google Scholar] [CrossRef]
- Emanuel, K. An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–605. [Google Scholar] [CrossRef]
- Emanuel, K. Divine Wind: The History and Science of Hurricanes; Oxford University Press: New York, NY, USA, 2005; ISBN 9780195149418. [Google Scholar]
- Emanuel, K. Evidence that hurricanes are getting stronger. Proc. Natl. Acad. Sci. USA 2020, 117, 13194–13195. [Google Scholar] [CrossRef] [PubMed]
- Emanuel, K. Tropical cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. [Google Scholar] [CrossRef]
- Emanuel, K.; Callaghan, J.; Otto, P. A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Weather Rev. 2008, 136, 3863–3872. [Google Scholar] [CrossRef]
- Emanuel, K.; Camargo, S. J.; Sobel, A. H. Response of global tropical cyclone activity to increasing CO₂: results from downscaling CMIP6 models. J. Clim. 2021, 34, 57–70. [Google Scholar] [CrossRef]
- Fahrenbach, N. L. S.; Wills, R. C. J.; De Hertog, S. J. Mechanistic insights into tropical circulation and hydroclimate responses to future forest cover change. Weather Clim. Dyn. 2025, 6, 1461–1477. [Google Scholar] [CrossRef]
- Fan, J.; Rosenfeld, D.; Zhang, Y.; Giangrande, S. E.; Li, Z.; Machado, L. A. T.; Martin, S. T.; Yang, Y.; Wang, J.; Artaxo, P.; Barbosa, H. M. J.; Braga, R. C.; Comstock, J. M.; Feng, Z.; Gao, W.; Gomes, H. B.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Pöschl, U.; de Souza, R. A. F. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 2018, 359, 411–418. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, R.; Li, G.; Tao, W.-K. Effects of aerosols and relative humidity on cumulus clouds. J. Geophys. Res.: Atmos. 2007, 112, D14204. [Google Scholar] [CrossRef]
- Findell, K. L.; Yin, Z.; Seo, E.; Dirmeyer, P. A.; Arnold, N. P.; Chaney, N.; Fowler, M. D.; Huang, M.; Lawrence, D. M.; Ma, P.-L.; Santanello, J. A., Jr. Accurate assessment of land–atmosphere coupling in climate models requires high-frequency data output. Geosci. Model Dev. 2024, 17, 1869–1883. [Google Scholar] [CrossRef]
- Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M. M.; Gaertner, M. A.; Hatzaki, M.; Homar, V.; Khodayar, S.; Korres, G.; Kotroni, V. Mediterranean cyclones: Current knowledge and open questions on dynamics, prediction, climatology and impacts. Weather Clim. Dyn. 2022, 3, 173–208. [Google Scholar] [CrossRef]
- Franco, M. A.; Rizzo, L. V.; Teixeira, M. J.; Artaxo, P.; Azevedo, T.; Lelieveld, J.; Nobre, C. A.; Pöhlker, C.; Pöschl, U.; Shimbo, J.; Xu, X.; Machado, L. A. T. How climate change and deforestation interact in the transformation of the Amazon rainforest. Nat. Commun. 2025, 16, Article number, 7944. [Google Scholar] [CrossRef]
- Gentine, P.; Massmann, A.; Lintner, B. R.; Alemohammad, S. H.; Fu, R.; Green, J. K.; Kennedy, D.; Vilà-Guerau de Arellano, J. Land–atmosphere interactions in the tropics – a review. Hydrol. Earth Syst. Sci. 2019, 23, 4171–4197. [Google Scholar] [CrossRef]
- Ghazoul, J.; Sheil, D. Tropical Rain Forest Ecology, Diversity, and Conservation; Oxford University Press: Oxford, UK, 2010; ISBN 9780199285884. [Google Scholar]
- Gies, E. Is deforestation supercharging cyclones? Hakai Magazine. 21 October 2024. Available online: https://hakaimagazine.com/news/is-deforestation-supercharging-cyclones/ (accessed on 21 January 2026).
- Global Forest Watch. Global Deforestation Rates & Statistics by Country. Available online: https://www.globalforestwatch.org/dashboards/global/ (accessed on 21 January 2026).
- Gorja, M. M. K.; Vissa, N. K.; Viswanadhapalli, Y. Moisture sources for the genesis of tropical cyclones over the Bay of Bengal using the Lagrangian FLEXPART model. Clim. Dyn. 2024, 62, 7127–7147. [Google Scholar] [CrossRef]
- Gray, W. M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Hallegatte, S.; Vogt-Schilb, A.; Rozenberg, J.; Bangalore, M.; Beaudet, C. From poverty to disaster and back: a review of the literature. Econ. Disasters Clim. Change 2020, 4, 223–247. [Google Scholar] [CrossRef]
- Hansen, M. C.; Potapov, P. V.; Moore, R.; Hancher, M.; Turubanova, S. A.; Tyukavina, A.; Thau, D.; Stehman, S. V.; Goetz, S. J.; Loveland, T. R.; Kommareddy, A.; Egorov, A.; Chini, L.; Justice, C. O.; Townshend, J. R. G. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Hlywiak, J.; Nolan, D. S. The response of the near-surface tropical cyclone wind field to inland surface roughness length and soil moisture content during and after landfall. J. Atmos. Sci. 2021, 78, 983–1000. [Google Scholar] [CrossRef]
- Hochard, J. P.; Hamilton, S. E.; Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl. Acad. Sci. USA 2019, 116, 12232–12237. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; Lin, L.-Y.; Huang, S.-Y.; Liu, S.-C. The influence of island topography on typhoon track deflection. Mon. Weather Rev. 2011, 139, 1708–1727. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; p. 184 pp. [Google Scholar] [CrossRef]
- IPCC. Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; Chapter 8, 2021. [Google Scholar] [CrossRef]
- IPCC. Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; p. Chapter 11. [Google Scholar] [CrossRef]
- Jasechko, S.; Sharp, Z. D.; Gibson, J. J.; Birks, S. J.; Yi, Y.; Fawcett, P. J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef]
- Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitayama, K.; Popp, A.; Sirin, A.; Sukumar, R.; Verchot, L. Land–climate interactions. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK, 2019; pp. pp 133–206. [Google Scholar] [CrossRef]
- Jian, G.-J.; Wu, C.-C. A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Weather Rev. 2008, 136, 598–615. [Google Scholar] [CrossRef]
- Sustainable Development Goals: Their Impacts on Forests and People; Katila, P., de Jong, W., Galloway, G., Pacheco, P., Mery, G., Eds.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Keys, P. W.; van der Ent, R. J.; Gordon, L. J.; Hoff, H.; Nikoli, R.; Savenije, H. H. G. Analyzing precipitationsheds to understand the vulnerability of rainfall dependent regions. Biogeosciences 2012, 9, 733–746. [Google Scholar] [CrossRef]
- Knutson, T.; Camargo, S. J.; Chan, J. C. L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.; Wu, L. Tropical cyclones and climate change assessment: Part II. Bull. Am. Meteorol. Soc. 2020, 101, E303–E322. [Google Scholar] [CrossRef]
- Kossin, J. P. A global slowdown of tropical-cyclone translation speed. Nature 2018, 558, 104–107. [Google Scholar] [CrossRef]
- Kossin, J. P.; Knapp, K. R.; Olander, T. L.; Velden, C. S. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc. Natl. Acad. Sci. USA 2020, 117, 11975–11980. [Google Scholar] [CrossRef]
- Kreidenweis, S. M.; Petters, M.; Lohmann, U. 100 years of progress in cloud physics, aerosols, and aerosol chemistry research. Meteorol. Monogr. 2019, 59, 11.1–11.72. [Google Scholar] [CrossRef]
- Krichene, H.; Vogt, T.; Piontek, F. The social costs of tropical cyclones. Nat. Commun. 2023, 14, 7294. [Google Scholar] [CrossRef]
- Kriebel, D.; Tickner, J.; Epstein, P.; Lemons, J.; Levins, R.; Loechler, E.L.; Quinn, M.; Rudel, R.; Schettler, T.; Stoto, M. The precautionary principle in environmental science. Environmental Health Perspectives 2001, 109(9), 871–876. [Google Scholar] [CrossRef]
- Lackmann, G. M.; Yablonsky, R. M. The importance of the precipitation mass sink in tropical cyclones and other heavily precipitating systems. J. Atmos. Sci. 2004, 61, 1674–1692. [Google Scholar] [CrossRef]
- Lawrence, D.; Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 2015, 5, 27–36. [Google Scholar] [CrossRef]
- Lee, J.; Hohenegger, C. Weaker land–atmosphere coupling in global storm-resolving simulation. Proc. Natl. Acad. Sci. USA 2024, 121, e2314265121. [Google Scholar] [CrossRef]
- Lélé, M. I.; Leslie, L. M.; Lamb, P. J. Analysis of low-level atmospheric moisture transport associated with the West African monsoon. J. Clim. 2015, 28, 4414–4430. [Google Scholar] [CrossRef]
- Lettau, H. Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J. Appl. Meteorol. 1969, 8, 828–832. [Google Scholar] [CrossRef]
- Li, L.; Chakraborty, P. Slower decay of landfalling hurricanes in a warming world. Nature 2020, 587, 230–234. [Google Scholar] [CrossRef]
- Li, M.; Toumi, R. Can tropical cyclones exist near the Equator? Q. J. R. Meteorol. Soc. 2025, e70014. [Google Scholar] [CrossRef]
- Li, X.; Wu, T.; Xia, K.; Tang, H.; Wang, X.; Wang, S.; Lyne, V.; Zu, Y. Forest loss intensifies meteorological drought in more than half of Earth’s climate zones. Sci. Adv. 2026, 12, eadv7998. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Zhang, Y.; Song, J.; Wang, F. Recent increases in tropical cyclone rapid intensification events in global offshore regions. Nat. Commun. 2023, 14, 5466. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Manganello, J. V.; Xie, S.-P.; Deng, Z.; Stevens, B. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef]
- Lin, J.; Qian, T.; Klotzbach, P. Tropical Cyclones. Atmos.-Ocean 2022, 60, 360–398. [Google Scholar] [CrossRef]
- Lin, T.-C.; Hogan, G. D.; Ma, X.; Chang, C.-T. Tropical cyclone ecology: a scale-link perspective. Trends Ecol. Evol. 2020, 35, 594–604. [Google Scholar] [CrossRef]
- Liswanti, N.; Sheil, D.; Basuki, I.; Padmanaba, M.; Mulcahy, G. Falling back on forests: how forest-dwelling people cope with catastrophe in a changing landscape. Int. For. Rev. 2011, 13, 442–455. [Google Scholar] [CrossRef]
- Lok, C. C. F.; Chan, J. C. L.; Wang, Y. Tropical cyclones near landfall can induce their own intensification through feedbacks on radiative forcing. Commun. Earth Environ. 2021, 2, 184. [Google Scholar] [CrossRef]
- Makarieva, A. M.; Gorshkov, V. G. Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol. Earth Syst. Sci. 2007, 11, 1013–1033. [Google Scholar] [CrossRef]
- Makarieva, A. M.; Gorshkov, V. G. Condensation-induced dynamic gas fluxes in a mixture of condensable and non-condensable gases. Phys. Rev. E 2009, 80, 046315. [Google Scholar] [CrossRef]
- Makarieva, A. M.; Gorshkov, V. G. The biotic pump: condensation, atmospheric dynamics and climate. Int. J. Water 2010, 5, 365–385. [Google Scholar] [CrossRef]
- Makarieva, A. M.; Gorshkov, V. G.; Li, B.-L. Revisiting forest impact on atmospheric water vapor transport and precipitation. Theor. Appl. Climatol. 2013b, 111, 79–96. [Google Scholar] [CrossRef]
- Makarieva, A. M.; Gorshkov, V. G.; Nefiodov, A. V.; Chikunov, A. V.; Sheil, D.; Nobre, A. D.; Bunyard, P.; Li, B.-L. Empirical evidence for the condensational theory of hurricanes. Phys. Lett. A 2015, 379, 2396–2398. [Google Scholar] [CrossRef]
- Makarieva, A. M.; Gorshkov, V. G.; Nefiodov, A. V.; Chikunov, A. V.; Sheil, D.; Nobre, A. D.; Bunyard, P.; Li, B.-L. Fuel for cyclones: the water vapor budget of a hurricane as dependent on its movement. Atmos. Res. 2017, 193, 216–230. [Google Scholar] [CrossRef]
- Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. Atmos. Chem. Phys. 2013a, 13, 1039–1056. [Google Scholar] [CrossRef]
- Makarieva, A. M.; Nefiodov, A. V.; Vozbrannaya, A. E.; Chikunov, A. V.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Bunyard, P. The role of ecosystem transpiration in creating alternate moisture regimes by influencing atmospheric moisture convergence. Glob. Change Biol. 2023, 29, 2536–2556. [Google Scholar] [CrossRef] [PubMed]
- McAlpine, C. A.; Johnson, A.; Salazar, A.; Syktus, J.; Wilson, K.; Meijaard, E.; Seabrook, L.; Dargusch, P.; Nordin, H.; Sheil, D. Forest loss and Borneo's climate. Environ. Res. Lett. 2018, 13, 044009. [Google Scholar] [CrossRef]
- McTaggart-Cowan, R.; Bosart, L. F.; Davis, C. A.; Atallah, E. H.; Gyakum, J. R.; Emanuel, K. A. Analysis of Hurricane Catarina (2004). Mon. Weather Rev. 2006, 134, 3029–3053. [Google Scholar] [CrossRef]
- Mo, L.; Zohner, C. M.; Reich, P. B.; Liang, J.; de Miguel, S.; Nabuurs, G.-J.; Renner, S. S.; van den Hoogen, J.; Araza, A.; Herold, M.; et al. Integrated global assessment of the natural forest carbon potential. Nature 2023, 624, 92–101. [Google Scholar] [CrossRef]
- Montgomery, M. T.; Smith, R. K. Paradigms for tropical-cyclone intensification. Q. J. R. Meteorol. Soc. 2014, 140, 1233–1247. [Google Scholar] [CrossRef]
- Montgomery, M. T.; Smith, R. K. Recent developments in the fluid dynamics of tropical cyclones. Annu. Rev. Fluid Mech. 2017, 49, 541–574. [Google Scholar] [CrossRef]
- Nambiar, E. S. Tamm review: re-imagining forestry and wood business: pathways to rural development, poverty alleviation and climate change mitigation in the tropics. For. Ecol. Manage. 2019, 448, 160–173. [Google Scholar] [CrossRef]
- NASA Global Precipitation Measurement (GPM) Mission. NASA Global Precipitation Measurement (GPM) Mission IMERG precipitation estimates for Cyclone Senyar, November 25-26, 2025. Available online: https://gpm.nasa.gov (accessed on 21 January 2026).
- Pérez-Alarcón, A.; Fernández-Alvarez, J. C.; Sorí, R.; Nieto, R.; Gimeno, L. Moisture source identification for precipitation associated with tropical cyclone development over the Indian Ocean: a Lagrangian approach. Clim. Dyn. 2023, 60, 2735–2758. [Google Scholar] [CrossRef]
- Pérez-Alarcón, A.; Sorí, R.; Fernández-Alvarez, J. C.; Nieto, R.; Gimeno, L. Where does the moisture for North Atlantic tropical cyclones come from? J. Hydrometeorol. 2022, 23, 457–472. [Google Scholar] [CrossRef]
- Pezza, A. B.; Simmonds, I. The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett. 2005, 32, L15712. [Google Scholar] [CrossRef]
- Portmann, R.; Beyerle, U.; Davin, E.; Fischer, E. M.; De Hertog, S.; Schemm, S. Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation. Nat. Commun. 2022, 13, 5569. [Google Scholar] [CrossRef]
- Pöschl, U.; Martin, S. T.; Sinha, B.; Chen, Q.; Gunthe, S. S.; Huffman, J. A.; Borrmann, S.; Farmer, D. K.; Garland, R. M.; Helas, G.; Jimenez, J. L.; King, S. M.; Manzi, A.; Mikhailov, E.; Pauliquevis, T.; Petters, M. D.; Prenni, A. J.; Roldin, P.; Rose, D.; Schneider, J.; Su, H.; Zorn, S. R.; Artaxo, P.; Andreae, M. O. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon. Science 2010, 329, 1513–1516. [Google Scholar] [CrossRef]
- Qin, Y.; Xiao, Y.; Swenson, J. J.; Lawrence, D.; Zeng, Y.; Tuinenburg, O. A.; Fang, Y.; Wang, Y.; Zhang, X. Impact of Amazonian deforestation on precipitation reverses between seasons. Nature 2025, 639, 102–108. [Google Scholar] [CrossRef]
- Rappaport, E. N. Fatalities in the United States from Atlantic tropical cyclones: New data and interpretation. Bull. Am. Meteorol. Soc. 2014, 95, 341–346. [Google Scholar] [CrossRef]
- Rios-Berrios, R.; Finocchio, P. M.; Alland, J. J.; Chen, X.; Fischer, M. S.; Stevenson, S. N.; Tao, D. A review of the interactions between tropical cyclones and environmental vertical wind shear. J. Atmos. Sci. 2024, 81, 713–741. [Google Scholar] [CrossRef]
- Romdhani, O.; Zarzycki, C. M.; Chavas, D. R.; Davis, C. A. Hurricane track trends and environmental flow patterns under surface temperature changes and roughness length variations. Geophys. Res. Lett. 2024, 51, e2024GL109133. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Bellouin, N.; Field, P.; Forster, P.; Quaas, J.; Myhre, G.; Lohmann, U.; Samset, B. H. Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys. 2014, 52, 750–808. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G. B.; O'Dowd, C. D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M. O. Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys. 2007, 7, 3411–3424. [Google Scholar] [CrossRef]
- Sabuwala, T.; Gioia, G.; Chakraborty, S. Effect of rainpower on hurricane intensity. Geophys. Res. Lett. 2015, 42, 3024–3029. [Google Scholar] [CrossRef]
- Saha, K. K.; Wasimi, S. A. Statistical modelling of tropical cyclones' longevity after landfall in Australia. Aust. Meteorol. Oceanogr. J. 2015, 65, 376–386. Available online: https://web.archive.org/web/20180602060216id_/http://www.bom.gov.au/jshess/docs/2015/saha.pdf. [CrossRef]
- Savenije, H. H. G. The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol. Process. 2004, 18, 1507–1511. [Google Scholar] [CrossRef]
- Schenkel, B. A.; Noble, C.; Chavas, D.; Chan, K. T.; Barlow, S. J.; Singh, A.; Musgrave, K. Recent progress in research and forecasting of tropical cyclone outer size. Trop. Cyclone Res. Rev. 2023, 12, 151–164. [Google Scholar] [CrossRef]
- Schlesinger, W. H.; Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189, 115–117. [Google Scholar] [CrossRef]
- Seo, K. H.; Choi, J.; Lee, S. S.; Lau, W. K. M.; Miyakawa, T.; Jin, H.-G. Aerosol effects on Maritime Continent precipitation: Oceanic intensification and land diurnal cycle delay. npj Clim. Atmos. Sci. 2025, 8, 326. [Google Scholar] [CrossRef]
- Sheil, D. Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. For. Ecosys. 2018, 5, 19. [Google Scholar] [CrossRef]
- Sheil, D. How plants water our planet: advances and imperatives. Trends Plant Sci. 2014, 19, 209–211. [Google Scholar] [CrossRef]
- Sheil, D.; Burslem, D. F. R. P. Disturbing hypotheses in tropical forests. Trends Ecol. Evol. 2003, 18, 18–26. [Google Scholar] [CrossRef]
- Sheil, D.; Murdiyarso, D. How forests attract rain: an examination of a new hypothesis. BioScience 2009, 59, 341–347. [Google Scholar] [CrossRef]
- Sheil, D. Forests versus hurricanes. Forests News. 18 Sep 2017. Available online: https://www.forestsnews.org/51566/forests-versus-hurricanes?fnl=en (accessed on 21 January 2026).
- Smith, C.; Baker, J. C. A.; Spracklen, D. V. Tropical deforestation causes large reductions in observed precipitation. Nature 2023, 615, 270–275. [Google Scholar] [CrossRef]
- Spracklen, D. V.; Arnold, S. R.; Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 2012, 489, 282–286. [Google Scholar] [CrossRef]
- Spracklen, D. V.; Bonn, B.; Carslaw, K. S.; Kulmala, M.; Kerminen, V.-M.; Sihto, S.-L.; Riipinen, I.; Merikanto, J.; Mann, G. W.; Chipperfield, M. P.; Wiedensohler, A.; Birmili, W.; Lihavainen, H. Contribution of particle formation to global cloud condensation nuclei concentrations. Geophys. Res. Lett. 2008, 35, L06808. [Google Scholar] [CrossRef]
- Spracklen, D. V.; Jimenez, J. L.; Carslaw, K. S.; Worsnop, D. R.; Evans, M. J.; Mann, G. W.; Zhang, Q.; Canagaratna, M. R.; Allan, J.; Coe, H.; McFiggans, G.; Rap, A.; Forster, P. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos. Chem. Phys. 2011, 11, 12109–12136. [Google Scholar] [CrossRef]
- Stier, P.; van den Heever, S. C.; Christensen, M. W.; Gryspeerdt, E.; Dagan, G.; Saleeby, S. M.; Bollasina, M.; Donner, L.; Emanuel, K.; Ekman, A. M. L.; Feingold, G.; Field, P.; Forster, P.; Haywood, J.; Kahn, R.; Koren, I.; Kummerow, C.; L'Ecuyer, T.; Lohmann, U.; Ming, Y.; Myhre, G.; Quaas, J.; Rosenfeld, D.; Samset, B. H.; Schulz, M.; Stevens, B.; Stubenrauch, C. J.; Tao, W.-K. Multifaceted aerosol effects on precipitation. Nat. Geosci. 2024, 17, 719–732. [Google Scholar] [CrossRef]
- Szeto, K.; Chan, J. Structural Changes of a Simulated Tropical Cyclone Approaching Land: Effects of Land–Sea Contrast. Mon. Weather Rev. 2010, 138, 4340–4360. [Google Scholar] [CrossRef]
- Takaya, Y.; Caron, L. P.; Blake, E.; Bonnardot, F.; Bruneau, N.; Camp, J.; Chan, J.; Gregory, P.; Jones, J. J.; Kang, N.; Klotzbach, P. J. Recent advances in seasonal and multi-annual tropical cyclone forecasting. Trop. Cyclone Res. Rev. 2023, 12, 182–199. [Google Scholar] [CrossRef]
- Tao, W.-K.; Chen, J.-P.; Li, Z.; Wang, C.; Zhang, C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50, RG2001. [Google Scholar] [CrossRef]
- Taye, F. A.; Folkersen, M. V.; Fleming, C. M.; Buckwell, A.; Luckey, B.; Diwakar, K. C.; Le, D.; Hasan, S.; Saint Ange, C. The economic values of global forest ecosystem services: A meta-analysis. Ecol. Econ. 2021, 189, 107145. [Google Scholar] [CrossRef]
- Thompson, G.; Eidhammer, T. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 2014, 71, 3636–3658. [Google Scholar] [CrossRef]
- Tiwari, P.; Rao, A. D.; Pandey, S.; Pant, V. Assessing the influence of land use and land cover data on cyclonic winds and coastal inundation due to tropical cyclones: a case study for the east coast of India. Nat. Hazards 2024, 120, 10219–10240. [Google Scholar] [CrossRef]
- Tran, T. L.; Prinsley, R.; Rosenfeld, D.; Cleugh, H.; Fan, J. Can we mitigate tropical cyclone formation using aerosols? A review of cyclogenesis and aerosol effects as a theoretical basis. Atmos. Res. 2025, 314, 107779. [Google Scholar] [CrossRef]
- Trenberth, K. E. Atmospheric moisture recycling: role of advection and local evaporation. J. Clim. 1999, 12, 1368–1381. [Google Scholar] [CrossRef]
- Trenberth, K. E. Warmer oceans, stronger hurricanes. Sci. Am. 2007, 297, 44–51. [Google Scholar] [CrossRef]
- Trenberth, K. E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data. J. Hydrometeorol. 2007, 8, 758–769. [Google Scholar] [CrossRef]
- Trenberth, K. E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Water and energy budgets of hurricanes: case studies of Ivan and Katrina. J. Geophys. Res.: Atmos. 2007, 112, D23106. [Google Scholar] [CrossRef]
- United-Nations. Rio Declaration on Environment and Development. Principle 15. United Nations Conference on Environment and Development, Rio de Janeiro, Brazil, 3–14 June 1992; United Nations. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_CONF.151_26_Vol.I_Declaration.pdf.
- van der Ent, R. J.; Savenije, H. H. G.; Schaefli, B.; Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46, W09525. [Google Scholar] [CrossRef]
- Versieux, V.; Costa, M. H. Local Evapotranspiration Is the Only Relevant Source of Moisture at the Onset of the Rainy Season in South America. Atmosphere 2024, 15, 932. [Google Scholar] [CrossRef]
- Wang, Q.; Kieu, C.; Vu, T.-A. Large-scale dynamics of tropical cyclone formation associated with ITCZ breakdown. Atmos. Chem. Phys. 2019, 19, 8383–8397. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. More tropical cyclones are striking coasts with major intensities at landfall. Sci. Rep. 2022, 12, 5236. [Google Scholar] [CrossRef]
- Wang, S.; Toumi, R. Recent migration of tropical cyclones toward coasts. Science 2021, 371, 514–517. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lee, K. H.; Lin, Y.; Levy, M.; Zhang, R. Distinct effects of anthropogenic aerosols on tropical cyclones. Nat. Clim. Change 2014, 4, 368–373. [Google Scholar] [CrossRef]
- Wang, Y.; Matyas, C. J. Simulating the Effects of Land Surface Characteristics on Planetary Boundary Layer Parameters for a Modeled Landfalling Tropical Cyclone. Atmosphere 2022, 13, 138. [Google Scholar] [CrossRef]
- Weinkle, J.; Maue, R.; Pielke, R., Jr. Historical global tropical cyclone landfalls. J. Clim. 2012, 25, 4729–4735. [Google Scholar] [CrossRef]
- Willoughby, H. E.; Jorgensen, D. P.; Black, R. A.; Rosenthal, S. L. Project STORMFURY: A Scientific Chronicle 1962–1983. Bull. Am. Meteorol. Soc. 1985, 66, 505–514. [Google Scholar] [CrossRef]
- Wong, M. L. M.; Chan, J. C. L. Tropical cyclone motion in response to land surface friction. J. Atmos. Sci. 2006, 63, 1324–1337. [Google Scholar] [CrossRef]
- World Weather Attribution. World Weather Attribution Report on Cyclone Senyar. Available online: https://worldweatherattribution.org (accessed on 21 January 2026).
- Wright, J. S.; Fu, R.; Worden, J. R.; Chakraborty, S.; Clinton, N. E.; Risi, C.; Sun, Y.; Yin, L. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 2017, 114, 8481–8486. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Li, T.-H.; Huang, Y.-H. Influence of Mesoscale Topography on Tropical Cyclone Tracks: Further Examination of the Channeling Effect. J. Atmos. Sci. 2015, 72, 3032–3050. [Google Scholar] [CrossRef]
- Wunder, S.; Börner, J.; Shively, G.; Wyman, M. Safety nets, gap filling and forests: a global-comparative perspective. World Dev. 2014, 64, S29–S42. [Google Scholar] [CrossRef]
- Young, R.; Hsiang, S. Mortality caused by tropical cyclones in the United States. Nature 2024, 633, 580–586. [Google Scholar] [CrossRef]
- Yu, X.; Lei, Y.; Wang, Z.; Zhao, D.; Li, Y.; Liu, L.; Wu, B.; Che, H.; Zhang, X. Inhomogeneous aerosol forcing increasing tropical cyclone intensity in western North Pacific by weakening vertical wind shear. Environ. Res. Lett. 2025, 20, 034042. [Google Scholar] [CrossRef]
- Zemp, D. C.; Schleussner, C.-F.; Barbosa, H. M. J.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 2017, 8, 14681. [Google Scholar] [CrossRef]
- Zhao, H.; Klotzbach, P. J.; Chand, S. S.; Camargo, S. J.; Cao, J.; Wu, L. Decreasing global tropical cyclone frequency in CMIP6 historical simulations. Sci. Adv. 2024, 10, eadl2142. [Google Scholar] [CrossRef]
- Zhao, H.; Klotzbach, P. J.; Chand, S. S.; Camargo, S. J.; Chan, J. C. L.; Wu, L. Decreasing global tropical cyclone frequency in CMIP6 historical simulations. Sci. Adv. 2024, 10, eadl2142. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q. a; Gan, J.; Shi, D.; Tu, S.; Chan, J. C. L. Do Tropical Cyclones Have a Steady Translation Under a Uniform Steering Flow? Geophys. Res. Lett. 2026, 53, e2025GL119479. [Google Scholar] [CrossRef]
- Zhong, Q. b; Gan, J.; Tu, S.; Toumi, R.; Chan, J. C. L. Global increase in rain rate of tropical cyclones prior to landfall. Nat. Commun. 2026, 17, 68070. [Google Scholar] [CrossRef] [PubMed]



| Process/Effect | Scale | Potential Implications of Forest Loss | Evidence Certainty* | Key Sources |
|---|---|---|---|---|
| Surface cooling via albedo, evapotranspiration, and roughness ** | Local to regional (tens to hundreds of km); hours to seasons | Warmer land surfaces, weakening land-sea temperature contrasts and shifting convergence seaward, potentially increasing offshore storm activity in marginal areas | Low | (Bonan, 2016; Alkama & Cescatti, 2016; Li et al., 2015; Lawrence & Vandecar, 2015; Portmann et al., 2022; Fahrenbach et al., 2025) |
| Moisture recycling and evapotranspiration influencing atmospheric humidity ** | Regional to continental (hundreds to thousands of km); seasonal to interannual | Reduced atmospheric moisture availability; effects on cyclone development depend on whether forests act as net moisture source or sink to oceanic areas, and on local circulation patterns | Medium | (Gentine et al., 2019; Zemp et al., 2017; Keys et al., 2012; Duque-Gardeazabal et al., 2025; Artaxo 2023; Trenberth et al., 2007a,b; Schneider et al., 2017; van der Ent, 2010; Boers et al., 2017) |
| Condensation-driven pressure gradients and circulation (Biotic Pump theory) ** | Regional to continental (hundreds to thousands of km); seasonal | Diminished low pressure drawing moisture inland, potentially elevating oceanic moisture availability and cyclone likelihood | Low | (Makarieva et al., 2017; Baudena et al., 2021; Makarieva et al., 2023; Boers et al., 201; Findell et al., 2024;) |
| Aerosols (biogenic CCN/INP) influencing cloud microphysics and precipitation ** | Local to regional (tens to hundreds of km); hours to days | Altered CCN/INP levels may suppress or invigorate convection with uncertain cyclone impacts, including possible suppression of early-stage intensification | Low | (Spracklen et al., 2011; Carslaw et al., 2013; Rosenfeld et al., 2014; Fan et al., 2018; Rosenfeld et al., 2007; Akinyoola et al., 2024; Tran et al., 2025) |
| Surface roughness accelerating energy loss at landfall | Local (tens to hundreds of km); hours to days | Faster storm decay over forest; cleared land extends storm life, increasing inland wind damage by 20-40% | High | (Wu et al., 2022; Chen & Chavas, 2020) |
| Hydrological buffering influencing flooding post-landfall | Local (tens to hundreds of km); hours to days | Increased runoff and flood risk due to reduced infiltration, though context-dependent (e.g., soil saturation limits; effects vary with storm speed and antecedent conditions) | Medium to high | (Jia et al., 2019; Hlywiak & Nolan, 2021; Wang & Matyas, 2022; Blöschl, 2022) |
| Forest influences on storm tracks (via friction, moisture, temperature, and pressure gradients) | Local to regional (tens to hundreds of km); hours to days | Altered landward drift, speed, and rainfall distribution, potentially increasing exposure frequency or duration in coastal areas | Low to medium | (Kossin, 2018; Szeto & Chan, 2010; Huang et al., 2011; Jian & Wu, 2008; Wu et al., 2015; Romdhani et al., 2024) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
