Submitted:
30 September 2024
Posted:
04 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Brake Material Friction Test Dynamometer ; the 1/7-scale Inertia Dynamometer
2.2. Friction-test Conditions
2.3. Brake Disc and Friction Materials
2.3. Brake-wear-particle-measurement Instruments
3. Results
3.1. Friction-surface Conditions
3.2. Brake-wear-particle Mass Amounts and Number Concentrations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, D.; Stachowiak, G.W. Review of automotive brake friction materials. Proc. Inst. Mech. Eng. Part D J. Automotive Eng. 2004, 218, 953–966. [Google Scholar] [CrossRef]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A Review. Environ. Sci. Pollut. Res. 2014, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed]
- Kukutschová, J.; Filip, P. Chapter 6—Review of brake-wear emissions: A review of brake emission measurement studies: identification of gaps and future needs. In Non-Exhaust Emissions; Amato, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 123–146. [Google Scholar] [CrossRef]
- Österle, W.; Dmitriev, A.I. The Role of solid lubricants for brake friction materials. Lubricants 2016, 4, 5. [Google Scholar] [CrossRef]
- Dante, R. C. Metal Sulfides. In Handbook of friction materials and their applications; Elsevier, 2016; pp 79– 91. [CrossRef]
- Kimoto, K. Current trends and development of phenolic resins used for friction materials, J. Netw. Poly. Jpn. 2014, 35, 211–217, (In Japanese with English Figures and Tables). [Google Scholar] [CrossRef]
- Singh, T. Comparative performance of barium sulphate and cement by-pass dust on tribological properties of automotive brake friction composites. Alex. Eng. J. 2023, 72, 339–349. [Google Scholar] [CrossRef]
- Handa, Y.; Kato, T. Effects of Cu powder, BaSO4 and cashew dust on the wear and friction characteristics of automotive brake pads. Tribo. Trans. 1996, 39, 346–353. [Google Scholar] [CrossRef]
- Masotti, D.; Ferreira, N.; Neis, P.; Menetrier, A.; Matozo, L.; Varante, P. Evaluation of creep groan phenomena of brake pad materials using different abrasive particles; SAE Technical Paper 2014-01-2518; SAE International: Pittsburgh, PA, USA, 2014. [Google Scholar] [CrossRef]
- Masotti, D.; Gomes, T.R.; Ordoñez, M.F.C.; Al-Qureshi, H.A.; Farias, M.C.M. Effect of Abrasives’ Characteristics on Brake Squeal Noise Generation. Wear 2023, 518–519, 204618. [Google Scholar] [CrossRef]
- Kato, T.; Magario, A. The Wear of Aramid Fiber Reinforced Brake Pads: The Role of Aramid Fibers. Tribo Trans. 1994, 37, 559–565. [Google Scholar] [CrossRef]
- Aranganathan, N.; Mahale, V.; Bijwe, U. Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests. Wear, 2016, 354–355, 69–77. [CrossRef]
- Melcher, B.; Faullant, P. A. Comprehensive study of chemical and physical properties of metal sulfides; SAE Technical Paper 2000-01-2757; SAE International: Pittsburgh, PA, USA, 2000. [Google Scholar] [CrossRef]
- Fan, X.; Li, H.; Yu, Q.; Xu, J.; Li, M. Assessment of sustainable supply capability of chinese tin resources based on the Entropy Weight-TOPSIS Model. Sustainability 2023, 15, 13076. [Google Scholar] [CrossRef]
- Verma, P.C.; Menapace, L.; Bonfanti, A.; Ciudin, R.; Gialanella, S.; Straffelini, G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear, 2015, 322–323, 251–258. [CrossRef]
- Yun, R.; Filip, P.; Lu, Y. Performance and evaluation of eco-friendly brake friction materials. Tribol. Int. 2010, 43, 2010–2019. [Google Scholar] [CrossRef]
- Min, H.C.; Ju, J.; Kim, S.J.; Jang, H. Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 2006, 260, 855–860. [Google Scholar] [CrossRef]
- Daimon, E. , Inada, K., Yamamoto, Y., and O'Doherty, J. Chemical reaction between titanate compounds and phenolic resins; SAE Technical Paper 2011-01-2366; SAE International: Pittsburgh, PA, USA, 2011. [Google Scholar] [CrossRef]
- Daimon, E. , Inada, K., Nomoto, T., Otsuka, K. et al., Chemical effects of titanate compounds on the thermal reactions of phenolic resins in friction materials - Part 2; SAE Technical Paper 2012-01-1790; SAE International: Pittsburgh, PA, USA, 2012. [Google Scholar] [CrossRef]
- Daimon, E.; Nomoto, T.; Inada, K.; Ogawa, H.; Kitada, K.; O’Doherty, J. Chemical effects of titanate compounds on the thermal reactions of phenolic resins in friction materials—Part 3; SAE Technical Paper 2013-01-2025; SAE International: Pittsburgh, PA, USA, 2013. [Google Scholar] [CrossRef]
- Davin, E.A.T.; Cristol, A.-L.; Beaurain, A.; Dufrénoy, P.; Zaquen, N. Differences in wear and material integrity of NAO and low-steel brake pads under severe conditions. Materials 2021, 14, 5531. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Cho, M.H.; Kim, S.J.; Jang, H. Tribological properties of potassium titanate in the brake friction material; morphological effects. Tribol. Lett. 2008, 32, 59–66. [Google Scholar] [CrossRef]
- Kim, S.J.; Cho, M.H.; Lim, D.-S.; Jang, H. Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear 2001, 251, 1484–149. [Google Scholar] [CrossRef]
- Song, W.; Gweon, J.; Park, J.S.; Kim, J.; Kim, J.; Jang, H. Role of contact plateaus on velocity-dependent friction of brake friction composite with steel fibers, Tribol. Int. 2022, 171, 107568. [Google Scholar] [CrossRef]
- Joo, B.S.; Gweon, J.; Park, J.; Song, W.; Jang, H. The effect of the mechanical property and size of the surface contacts of the brake lining on friction instability. Tribol. Int. 2021, 153, 106583. [Google Scholar] [CrossRef]
- Cho, M.H.; Cho, K.H.; Kim, S.J.; Kim, D.H.; Jang, H. The Role of transfer layers on friction characteristics in the sliding interface between friction materials against gray iron brake disks. Tribol. Lett. 2005, 20, 101–108. [Google Scholar] [CrossRef]
- Jara, D.C.; Jang, H. Synergistic effects of the ingredients of brake friction materials on friction and wear: A case study on phenolic resin and potassium titanate. Wear, 2019, 430–431, 222–232. [CrossRef]
- Regulation (EU) 2024/1257 of the European Parliament and of the Council. Document 32024R1257. Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202401257 (accessed on 30 August 2024).
- ECE/TRANS/180/Add.24. UN Global Technical Regulation No. 24 laboratory measurement of brake emissions for light-duty vehicles. Update on 17 July 2023. Available online: https://unece.org/sites/default/files/2023-07/ECE-TRANS-180-Add.24.docx (accessed on 30 August 2024).
- Grigoratos, T.; Mamakos, A.; Vedula, R.; Arndt, M.; Lugovyy, D.; Hafenmayer, C.; Moisio, M.; Agudelo, C.; Giechaskiel, B. Characterization of laboratory particulate matter (PM) mass setups for brake emission measurements. Atmosphere 2023, 14, 516. [Google Scholar] [CrossRef]
- Grigoratos, T.; Mamakos, A.; Arndt, M.; Lugovyy, D.; Anderson, R.; Hafenmayer, C.; Moisio, M.; Vanhanen, J.; Frazee, R.; Agudelo, C.; et al. Characterization of particle number setups for measuring brake particle emissions and comparison with exhaust setups. Atmosphere 2023, 14, 103. [Google Scholar] [CrossRef]
- JASO C470. Passenger Car—Measurement method for brake wear particle emissions. Society of Automotive Engineers of Japan Inc.: Chiyoda-Ku, Tokyo, Japan, 31 March; 2020.
- Hagino, H. brake wear and airborne particle mass emissions from passenger car brakes in dynamometer experiments based on the worldwide harmonized light-duty vehicle test procedure brake cycle. Lubricants 2024, 12, 206. [Google Scholar] [CrossRef]
- Alemani M, Wahlström J, Matějka V, et al. Scaling effects of measuring disc brake airborne particulate matter emissions – A comparison of a pin-on-disc tribometer and an inertia dynamometer bench under dragging conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol, 2018, 232, 1538–1547. [CrossRef]
- Federici, M.; Alemani, M.; Menapace, C.; Gialanella, S.; Perricone, G.; Straffelini, G. A critical comparison of dynamometer data with pin-on-disc data for the same two friction material pairs–A case study. Wear, 2019, 424–425, 40–47. [CrossRef]
- Wahlström, J.; Lyu, Y.; Matjeka, V.; Söderberg, A. A pin-on-disc tribometer study of disc brake contact pairs with respect to wear and airborne particle emissions. Wear 2017, 384, 124–130. [Google Scholar] [CrossRef]
- Wahlström, J.; Söderberg, A.; Olander, L.; Olofsson, U.; Jansson, A. Airborne wear particles from passenger car disc brakes: A comparison of measurements from field tests, a disc brake assembly test stand, and a pin-on-disc machine. Proc. Inst. Mech. Eng. Part J, J. Eng. Tribol, 2009, 224, 179–188. [CrossRef]
- Leonardi, M.; Alemani, M.; Straffelini, G.; Gialanella, S. A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite. Wear, 2020, 442–443, 203157. [CrossRef]
- Nosko, O.; Olofsson, U. Quantification of ultrafine airborne particulate matter generated by the wear of car brake materials. Wear, 2017, 374–375, 92–96. [CrossRef]
- Lyu, Y.; Leonardi, M.; Wahlström, J.; Gialanella, S.; Olofsson, U. Friction, wear and airborne particle emission from Cu-free brake materials. Tribol. Int. 2020, 141, 105959. [Google Scholar] [CrossRef]
- Gramstat, S.; Mertens, T.; Waninger, R.; Lugovyy, D. Impacts on Brake Particle Emission Testing. Atmosphere 2020, 11, 1132. [Google Scholar] [CrossRef]
- Hagino, H.; Iwata, A.; Okuda, T. Iron Oxide and Hydroxide Speciation in Emissions of Brake Wear Particles from Different Friction Materials Using an X-ray Absorption Fine Structure. Atmosphere 2024, 15, 49. [Google Scholar] [CrossRef]
- Inada, K.; Aki, M.; Yamamoto, Y. Relationship between powder properties of titanate compounds and brake performance; SAE Technical Paper 2005-01-3925; SAE International: Pittsburgh, PA, USA. [CrossRef]
- Kamifuku, A.; Inada, K.; Downey, M.; Yamamoto, Y. The brake abrasion properties in two kinds of platelet titanate compound formulations, and the swift brake property evaluation by using the thrust test method; SAE Technical Paper 2007-01-3950; SAE International: Pittsburgh, PA, USA. [CrossRef]
- Kamada, S.; Inada, K.; Downey, M.; Yamamoto, Y. An evaluation method of brake pads for new titanates, SAE Technical Paper 2009-01-3013; SAE International: Pittsburgh, PA, USA. [CrossRef]
- Marin, E.; Daimon, E.; Boschetto, F.; Rondinella, A.; Inada, K.; Zhu, W.; Pezzotti, G. Diagnostic spectroscopic tools for worn brake pad materials: A case study. Wear, 2019, 432-433, 202969. [CrossRef]
- California State Senate Bill SB346, 2010. Hazardous materials: motor vehicle brake friction material.
- Washington State Senate Bill SB6557, 2010. An act relating to limiting the use of certain substances in brake friction materials.
- Eriksson, M.; Bergman, F.; Jacobson, S. On the nature of tribological contact in automotive brakes. Wear 2002, 252, 26–36. [Google Scholar] [CrossRef]
- Seo, H.; Lee, D.G.; Park, J.; Song, W.; Lee, J.J.; Sohn, S.S.; Jang, H. Quench hardening effect of gray iron brake discs on particulate matter emission. Wear 2023, 523, 204781. [Google Scholar] [CrossRef]
- Noh, H.J.; Jang, H. Friction instability induced by iron and iron oxides on friction material surface. Wear 2018, 400, 93–99. [Google Scholar] [CrossRef]
- Motta, M.; Fedrizzi, L.; Andreatta, F. Corrosion stiction in automotive braking systems. Materials 2023, 16, 3710. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H.; Winner, H.; Asbach, C.; Kaminski, H.; Frentz, G.; Milczarek, R. Influence of disc temperature on ultrafine, fine, and coarse particle emissions of passenger car disc brakes with organic and inorganic pad binder materials. Atmosphere 2020, 11, 1060. [Google Scholar] [CrossRef]
- Rhee, S.; Sharma, D.; Singh, S.; Rathee, A. An investigation of the role of wear and friction film influencing the friction coefficient of brakes: mechanism of brake fade, SAE Technical Paper 2020-01-1630; SAE International: Pittsburgh, PA, USA. [CrossRef]
- Gweon, J.; Shin, S.; Jang, H.; Lee, W.; Kim, D.; Lee, K. The Factors governing corrosion stiction of brake friction materials to a gray cast iron disc; SAE Technical Paper 2018-01-1899; SAE International: Pittsburgh, PA, USA, https://saemobilus.sae.org/content/2018-01-1899/. 2018. [Google Scholar]
- Gweon, J.; Park, J.; Lee, W.K.; Kim, D.Y.; Jang, H. Root cause study of corrosion stiction by brake pads on the grey iron disc. Eng. Fail. Anal. 2021, 128, 105583. [Google Scholar] [CrossRef]
- Park, C.W.; Shin, M.W.; Jang, H. Friction-induced stick-slip intensified by corrosion of gray iron brake disc. Wear 2014, 309, 89–95. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).