Submitted:
23 February 2025
Posted:
24 February 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Population
2.3. Preoperative Assessment
2.4. Surgical Technique
2.5. Measures
2.6. Data Collection
2.7. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Changes in CECD
3.3. Changes in CCT, CV, and PHC
3.4. Changes in IOP
3.5. Changes in CDVA over Time
3.6. Correlation Between Loss of CECD and Surgical Parameters and IOP and Surgical Parameters
3.7. Complications
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CECD | Corneal endothelial cell density |
| CDE | Cumulative dissipated energy |
| IOP | Intraocular pressure |
| IOL | Intraocular lens |
| CDVA | Corrected distance visual acuity |
| CCT | Central corneal thickness |
| PHC | Percentage of hexagonal cells |
| CV | Variation in the size of the endothelial cells |
| SD | Standard deviation |
References
- Foster, G.J.L.; Allen, Q.B.; Ayres, B.D.; Devgan, U.; Hoffman, R.S.; Khandelwal, S.S.; Snyder, M.E.; Vasavada, A.R.; Yeoh, R. Phacoemulsification of the rock-hard dense nuclear cataract: Options and recommendations. J Cataract Refract Surg 2018, 44, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Koch, P.S.; Katzen, L.E. Stop and chop phacoemulsification. J Cataract Refract Surg 1994, 20, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Vasavada, A.R.; Desai, J.P. Stop, chop, chop, and stuff. J Cataract Refract Surg 1996, 22, 526–529. [Google Scholar] [CrossRef]
- Aslan, B.S.; Müftüoglu, O.; Gayretli, D. Crater-and-split technique for phacoemulsification: modification of the crater-and-chop technique. J Cataract Refract Surg 2012, 38, 1526–1530. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Sharma, A.K.; Katiyar, V.; Kumar, G.; Gupta, S.K. Corneal endothelial changes following cataract surgery in hard nuclear cataract: randomized trial comparing phacoemulsification to manual small-incision cataract surgery. Indian J Ophthalmol 2022, 70, 3904–3909. [Google Scholar] [CrossRef]
- Abdelmotaal, H.; Abdel-Radi, M.; Rateb, M.F.; Eldaly, Z.H.; Abdelazeem, K. Comparison of the phaco chop and drill-and-crack techniques for phacoemulsification of hard cataracts: a fellow eye study. Acta Ophthalmol 2021, 99, e378–e386. [Google Scholar] [CrossRef]
- He, Y.; Wang, C.; Zhou, X.; Peng, J.; Zhang, X.; Wang, Y.; Rui, Y.; Zhang, C.; Zhang, W.; Feng, L.; Dai, S.; Xia, X.; Song, W. Comparison of clinical outcomes between cystotome-assisted prechop phacoemulsification surgery and femtosecond laser-assisted cataract surgery for hard nucleus cataracts. Eye (Lond) 2023, 37, 235–241. [Google Scholar] [CrossRef]
- Chen, X.; Yu, Y.; Song, X.; Zhu, Y.; Wang, W.; Yao, K. Clinical outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery for hard nuclear cataracts. J Cataract Refract Surg 2017, 43, 486–491. [Google Scholar] [CrossRef]
- Sato, T. Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 479–484. [Google Scholar] [CrossRef]
- Sato, T. Eight-chop technique in phacoemulsification using iris hooks for patients with cataracts and small pupils. J Clin Med 2024, 13, 7298. [Google Scholar] [CrossRef]
- O'Brien, P.D.; Fitzpatrick, P.; Kilmartin, D.J.; Beatty, S. Risk factors for endothelial cell loss after phacoemulsification surgery by a junior resident. J Cataract Refract Surg 2004, 30, 839–843. [Google Scholar] [CrossRef]
- Storr-Paulsen, A.; Norregaard, J.C.; Ahmed, S.; Storr-Paulsen, T.; Pedersen, T.H. Endothelial cell damage after cataract surgery: divide-and-conquer versus phaco-chop technique. J Cataract Refract Surg 2008, 34, 996–1000. [Google Scholar] [CrossRef] [PubMed]
- Walkow, T.; Anders, N.; Klebe, S. Endothelial cell loss after phacoemulsification: relation to preoperative and intraoperative parameters. J Cataract Refract Surg 2000, 26, 727–732. [Google Scholar] [CrossRef]
- Dewan, T.; Malik, P.K.; Tomar, P. Comparison of effective phacoemulsification time and corneal endothelial cell loss using three different ultrasound frequencies: a randomized controlled trial. Indian J Ophthalmol 2022, 70, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Om Parkash, T.; Om Parkash, R.; Mahajan, S.; Vajpayee, R. "Chopper Shield" technique to protect corneal endothelium during phacoemulsification surgery for rock hard cataracts. Clin Ophthalmol 2021, 15, 2161–2165. [Google Scholar] [CrossRef] [PubMed]
- Emery, J.M.; Little, J.H. Patient selection. In: Phacoemulsification and aspiration of cataracts; Surgical Techniques, Complications, and Results; Emery, J.M., Little, J.H., Eds.; CV Mosby: St Louis, MO, USA, 1979; pp. 45–48.
- Miyata, K.; Nagamoto, T.; Maruoka, S.; Tanabe, T.; Nakahara, M.; Amano, S. Efficacy and safety of the soft-shell technique in cases with a hard lens nucleus. J Cataract Refract Surg 2002, 28, 1546–1550. [Google Scholar] [CrossRef]
- Kim, H.K. Decrease and conquer: phacoemulsification technique for hard nucleus cataracts. J Cataract Refract Surg 2009, 35, 1665–1670. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, E.C.; Kim, M.S. Drill-and-crack technique for nuclear disassembly of hard nucleus. J Cataract Refract Surg 2010, 36, 1627–1630. [Google Scholar] [CrossRef]
- Kamoi, K.; Mochizuki, M. Phaco forward-chop technique for managing posterior nuclear plate of hard cataract. J Cataract Refract Surg 2010, 36, 9–12. [Google Scholar] [CrossRef]
- Falabella, P.; Yogi, M.S.; Teixeira, A.; Jopetibe, F.; Sartori, J.; Schor, P. Retrochop technique for rock-hard cataracts. J Cataract Refract Surg 2013, 39, 826–829. [Google Scholar] [CrossRef]
- Fernández-Muñoz, E.; Chávez-Romero, Y.; Rivero-Gómez, R.; Aridjis, R.; Gonzalez-Salinas, R. Cumulative dissipated energy (CDE) in three phaco-fragmentation techniques for dense cataract removal. Clin Ophthalmol 2023, 17, 2405–2412. [Google Scholar] [CrossRef]
- Yang, W.J.; Wang, X.H.; Zhao, F.; Mei, Z.M.; Li, S.; Xiang, Y. Torsional and burst mode phacoemulsification for patients with hard nuclear cataract: a randomized control study. Medicine (Baltimore) 2019, 98, e15870. [Google Scholar] [CrossRef] [PubMed]
- Waring, G.O., 3rd; Bourne, W.M.; Edelhauser, H.F.; Kenyon, K.R. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 1982, 89, 531–590. [Google Scholar] [CrossRef] [PubMed]
- Shimazaki, J.; Amano, S.; Uno, T.; Maeda, N.; Yokoi, N. National survey on bullous keratopathy in Japan. Cornea 2007, 26, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Gimbel, H.V. Divide and conquer nucleofractis phacoemulsification: development and variations. J Cataract Refract Surg 1991, 17, 281–291. [Google Scholar] [CrossRef]
- Chang, D.F. Why learn chopping. In Phaco Chop and Advanced Phaco Techniques; Chang, D.F., Ed.; SLACK Incorporated: Thorofare, USA, 2013; pp. 3–9. [Google Scholar]
- Akahoshi, T. Phaco prechop: Manual nucleofracure prior to phacoemulsification. Operative Tech Cataract Refract Surge 1998, 1, 69–91.
- Zetterström, C.; Laurell, C.G. Comparison of endothelial cell loss and phacoemulsification energy during endocapsular phacoemulsification surgery. J Cataract Refract Surg 1995, 21, 55–58. [Google Scholar] [CrossRef]
- Sato, M.; Sakata, C.; Yabe, M.; Oshika, T. Soft-shell technique using Viscoat and Healon 5: a prospective, randomized comparison between a dispersive-viscoadaptive and a dispersive-cohesive soft-shell technique. Acta Ophthalmol 2008, 86, 65–70. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, H.; Jun, I.; Kim, T.I.; Seo, K.Y. Effect and safety of pressure sensor-equipped handpiece in phacoemulsification system. Korean J Ophthalmol 2023, 37, 387–394. [Google Scholar] [CrossRef]
- Igarashi, T.; Ohsawa, I.; Kobayashi, M.; Umemoto, Y.; Arima, T.; Suzuki, H.; Igarashi, T.; Otsuka, T.; Takahashi, H. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: a prospective randomized clinical trial. Am J Ophthalmol 2019, 207, 10–17. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sharma, P.; Chouhan, J.K.; Goyal, R. Comparative evaluation of modified crater (endonucleation) chop and conventional crater chop techniques during phacoemulsification of hard nuclear cataracts: a randomized study. Indian J Ophthalmol 2022, 70, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.C.G.; Moreno, C.B.; Soares, P.; Moscovici, B.K.; Colombo-Barboza, G.N.; Colombo-Barboza, L.R.; Colombo-Barboza, M.N. Comparison of endothelial cell loss in diabetic patients after conventional phacoemulsification and femtosecond laser-assisted cataract surgery. BMC Ophthalmol 2023, 23, 181. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.H.; Kim, T.G. Comparison of corneal endothelial cell changes after phacoemulsification between type 2 diabetic and nondiabetic patients. Medicine (Baltimore) 2021, 100, e27141. [Google Scholar] [CrossRef] [PubMed]
- Gajraj, M.; Mohan, A. Safety and efficacy of manual small-incision cataract surgery in patients with brunescent and black cataracts and other ocular comorbidities. Indian J Ophthalmol 2022, 70, 3898–3903. [Google Scholar] [CrossRef]


| Characteristics/Parameters | Grade IV | Grade IV plus | Grade V | Total | P-value |
|---|---|---|---|---|---|
| Number of eyes | 46 | 26 | 9 | 81 | |
| Age (years) | 76.2 ± 9.0 | 78.0 ± 11.8 | 74.9 ± 6.9 | 76.6 ± 9.8 | 0.62 a |
| Sex Male | 23 (50%) | 15 (58%) | 6 (66.7%) | 44 (54.3%) | 0.55 b |
| Female | 23 (50%) | 11 (42%) | 3 (33.3%) | 37 (45.7%) | |
| Operative time (min) | 9.4 ± 2.2 | 12.3 ± 3.9 | 15.6 ± 3.9 | 10.5 ± 3.4 | < 0.01 c |
| Phaco time (s) | 30.6 ± 10.9 | 44.2 ± 15.4 | 65.9 ± 22.0 | 38.9 ± 17.7 | < 0.01 c |
| Aspiration time (s) | 117.2 ± 30.6 | 147.8 ± 38.1 | 194.3 ± 50.7 | 135.6 ± 43.2 | < 0.01 c |
| CDE | 14.3 ± 4.4 | 22.8 ± 8.0 | 33.8 ± 12.9 | 19.2 ± 9.4 | < 0.01 c |
| Volume of fluid used (mL) | 46.5 ± 12.0 | 58.3 ± 17.9 | 70.7 ± 26.3 | 53.0 ± 17.9 | < 0.01 c |
| Mean CECD ± SD and % Decrease | |||||
|---|---|---|---|---|---|
| Time period | Grade IV (n = 49) |
Grade IV plus (n = 30) |
Grade V (n = 10) |
Total (n = 89) |
p-value |
| Preoperatively | 2530 ± 248 2518 ± 266 a 0.9 ± 13.6 2503 ± 320 a 0.2 ± 12.2 |
2496 ± 241 2208 ± 562 b 22.5 ± 42.1 2316 ± 458 b 6.8 ± 18.2 |
2622 ± 142 2318 ± 442 b 19.7 ± 40.3 2361 ± 410 b 9.6 ± 16.5 |
2529 ± 237 | 0.35 c < 0.01 d 0.09 c |
| 7-weeks postoperatively | 2393 ± 432 b | ||||
| % Decrease | 10.4 ± 31.1 | ||||
| 19-weeks postoperatively | 2425 ± 394 b | ||||
| % Decrease | 3.7 ± 15.3 | ||||
| CCT, CV, and PHC | |||||
|---|---|---|---|---|---|
| Time period | Grade IV (n = 30) |
Grade IV plus (n = 24) |
Grade V (n = 9) |
Total (n = 63) |
p-value |
| CCT | Mean ± SD | ||||
| Preoperatively | 536.4 ± 35.7 | 541.0 ± 32.7 | 519.9 ± 44.5 | 535.8 ± 36.0 | 0.33 c |
| 7-weeks postoperatively | 535.5 ± 31.9 a | 541.2 ± 42.7 a | 524.0 ± 37.2 a | 536.0 ± 36.9 a | 0.50 c |
| 19-weeks postoperatively | 529.9 ± 30.0 b | 536.7 ± 31.3 b | 524.1 ± 45.9 a | 529.9 ± 30.0 b | 0.55 c |
| CV | Mean ± SD | ||||
| Preoperatively | 40.5 ± 5.5 | 44.9 ± 7.2 | 38.6 ± 4.2 | 41.9 ± 6.4 | < 0.01 d |
| 7-weeks postoperatively | 39.2 ± 4.1 a | 43.4 ± 6.6 a | 38.1 ± 5.6 a | 40.6 ± 5.7 a | < 0.01 d |
| 19-weeks postoperatively | 37.8 ± 4.9 b | 40.2 ± 5.1 b | 35.8 ± 5.6 b | 38.4 ± 5.2 b | 0.06 c |
| PHC | Mean ± SD | ||||
| Preoperatively | 43.5 ± 5.5 | 39.5 ± 6.5 | 47.1 ± 8.9 | 42.5 ± 6.9 | < 0.01 d |
| 7-weeks postoperatively | 43.0 ± 6.1 a | 39.3 ± 6.0 a | 44.9 ± 8.6 a | 41.9 ± 6.7 a | 0.04 d |
| 19-weeks postoperatively | 43.8 ± 5.3 a | 41.5 ± 7.4 a | 46.7 ± 8.4 a | 43.3 ± 6.7 a | 0.13 c |
| Mean IOP ± SD (% Decrease ± SD) | |||||
|---|---|---|---|---|---|
| Time period | Grade IV (n = 46) |
Grade IV plus (n = 29) |
Grade V (n = 9) |
Total (n=84) |
p-value |
| Preoperatively | 14.1 ± 2.8 | 13.6 ± 2.9 | 13.3 ± 2.2 | 13.8 ± 2.8 | 0.84 c |
| 7-weeks postoperatively | 11.7 ± 2.2 a | 11.7 ± 2.4 a | 11.1 ± 0.9 a | 11.6 ± 2.2 a | 0.78 c |
| % Decrease | 16.4 ± 11.9 | 13.3 ± 12.4 | 14.6 ± 15.0 | 15.1 ± 12.4 | |
| 19-weeks postoperatively | 11.9 ± 1.9 a | 11.6 ± 2.3 a | 11.9 ± 2.0 b | 11.8 ± 2.0 a | 0.79 c |
| % Decrease | 13.9 ± 12.0 | 13.1 ± 15.7 | 8.5 ± 22.7 | 13.1 ± 14.6 | |
| Corrected distance visual acuity | |||||
|---|---|---|---|---|---|
| Time period | Grade IV (n = 43) |
Grade IV plus (n = 21) | Grade V (n = 8) |
Total (n = 72) |
p-value |
| Preoperatively | 0.50 ± 0.59 | 0.88 ± 0.83 | 0.89 ± 0.66 | 0.65 ± 0.69 | 0.07 b |
| 7-weeks postoperatively | -0.020 ± 0.17 a | -0.011 ± 0.058 a | 0.0079 ± 0.050 a | -0.014 ± 0.13 a | 0.86 b |
| 19-weeks postoperatively | -0.028 ± 0.17 a | -0.035 ± 0.050 a | -0.014± 0.043 a | -0.029± 0.13 a | 0.93 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
