Submitted:
10 October 2025
Posted:
14 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.Ethical Considerations
2.Study Population
2.Preoperative Assessment
2.Surgical Technique
2.Measurements of Corneal Diameter and Pupil Size
2.Literature Review of the Eight-chop Technique and Other Surgical Techniques
2.Data Collection and Statistical Analysis
Results
3.Characteristics of the Participants
Table Preoperative characteristics and intraoperative parameters. | |||
| Characteristic/Parameter | Microcornea Group | Control Group | p-value |
| Number of eyes | 52 | 52 | |
| Age (y) | 76.2 ± 5.4 | 76.1 ± 4.1 | 0.86 a |
| Gender: Men | 20 (38.5%) | 20 (38.5%) | 1.00 b |
| Women | 32 (61.5%) | 32 (61.5%) | |
| Coneal diameter (mm) | 9.80 ± 0.26 | 11.48 ± 0.24 | <0.01 c |
| Anterior chamber depth (mm) | 3.12 ± 0.46 | 3.32 ± 0.41 | 0.04 c |
| Axial length (mm) | 23.41 ± 1.74 | 24.42 ± 1.57 | <0.01 c |
| Preoperative pupil size (mm) | 6.30 ± 0.60 | 7.05 ± 0.50 | <0.01 c |
| Lens hardness | 2.5 ± 0.5 | 2.4 ± 0.3 | 0.48 a |
| Operative time (min) | 5.9 ± 2.4 | 4.5 ± 0.7 | <0.01 c |
| Phaco time (s) | 17.9 ± 8.9 | 14.7 ± 3.7 | 0.29 a |
| Aspiration time (s) | 77.0 ± 27.2 | 64.3 ± 10.7 | 0.06 a |
| CDE (µJ) | 7.06 ± 3.97 | 6.44 ± 1.96 | 0.71 a |
| Volume of fluid used (mL) | 31.1 ± 11.6 | 25.0 ± 4.9 | 0.03 c |
| Values are expressed as mean ± standard deviation or percentages. a No significant differences were found between the groups using the Mann–Whitney U test. b No significant differences were found between the groups using the chi-square test. c Significant differences were found between the groups using the Mann–Whitney U test. CDE, cumulative dissipated energy. | |||
3.Changes in CECD
| Table Pre- and postoperative CECD values. | |||
| Mean CECD ± SD (% Decrease) | |||
| Time period |
Microcornea group (n = 34) |
Control group (n = 52) |
p-value |
| Preoperatively | 2650 ± 271 | 2753 ± 236 | 0.20 a |
| 7 weeks postoperatively | 2558 ± 305 b | 2689 ± 239 b | 0.09 a |
| % Decrease | 3.6 ± 4.5 | 2.3 ± 2.1 | 0.52 a |
| 19 weeks postoperatively | 2610 ± 250 b | 2714 ± 244 b | 0.14 a |
| % Decrease | 1.5 ± 2.4 | 1.4 ± 1.6 | 0.41 a |
| Values are presented as mean ± standard deviation. a No significant differences were found between the groups using the Mann–Whitney U test. b Significant differences were found between the preoperative and respective time values using a paired t-test. CECD, corneal endothelial cell density; SD, standard deviation. | |||
3.Changes in CCT, CV, and PHC
| Table Pre- and postoperative endothelial CCT, CV, and PHC. | |||
| Time period |
Microcornea group (n = 33) |
Control group (n = 52) |
p-value |
| CCT | Mean ± SD | ||
| Preoperatively | 544 ± 44.4 | 528 ± 36.0 | 0.08 a |
| 7 weeks postoperatively | 545 ± 41.0 d | 532 ± 35.6 c | 0.12 a |
| 19 weeks postoperatively | 545 ± 42.4 d | 526 ± 38.0 d | 0.03 b |
| CV | Mean ± SD | ||
| Preoperatively | 40.2 ± 4.7 | 39.8 ± 5.3 | 0.52 a |
| 7 weeks postoperatively | 41.4 ± 5.5 d | 40.1 ± 5.4 d | 0.21 a |
| 19 weeks postoperatively | 38.8 ± 4.6 d | 37.6 ± 4.2 c | 0.25 a |
| PHC | Mean ± SD | ||
| Preoperatively | 43.8 ± 6.5 | 45.7 ± 5.7 | 0.22 a |
| 7 weeks postoperatively | 42.9 ± 7.4 d | 44.6 ± 6.0 d | 0.21 a |
| 19 weeks postoperatively | 44.8 ± 6.3 d | 47.7 ± 3.9 c | 0.02 b |
| Values are presented as mean ± standard deviation. a No significant differences were found between the groups using the Mann–Whitney U test. b Significant differences were found between the groups using the Mann–Whitney U test. c Significant differences between the preoperative and respective time values using a paired t-test. d No significant differences were found between the preoperative and respective time values using a paired t-test. CCT, central corneal thickness; CV, coefficient of variation; PHC, percentage of hexagonal cells; SD, standard deviation. | |||
3.Changes in IOP
| Table Mean IOP (mmHg) and mean decrease (%) in the IOP (mmHg) over time. | |||
| Mean IOP ± SD (% Decrease) | |||
| Time period | Microcornea group (n = 34) | Control group (n = 52) | p-value |
| Preoperatively | 14.1 ± 2.4 | 13.8 ± 1.9 | 0.42 a |
| 7 weeks postoperatively | 12.5 ± 2.3 b | 12.2 ± 1.8 b | 0.38 a |
| % Decrease | 10.8 ± 11.8 | 11.3 ± 10.5 | 0.84 a |
| 19 weeks postoperatively | 12.5 ± 2.5 b | 12.3 ± 1.9 b | 0.79 a |
| % Decrease | 10.8 ± 14.5 | 10.3 ± 11.7 | 0.88 a |
| Values are presented as mean ± standard deviation. a No significant differences were observed between the groups using the Mann–Whitney U test. b Significant differences were found between the preoperative and respective time values using a paired t-test. IOP, intraocular pressure; SD, standard deviation. | |||
3.Changes in BCVA over time
| Table Pre- and postoperative BCVA values. | |||
| BCVA logMAR | |||
| Time period | Microcornea group (n = 33) | Control group (n = 52) | p-value |
| Preoperatively | 0.231 ± 0.391 | 0.093 ± 0.142 | <0.01 a |
| 7 weeks postoperatively | -0.046 ± 0.046 c | -0.060 ± 0.040 c | 0.10 b |
| 19 weeks postoperatively | -0.044 ± 0.046 c | -0.064 ± 0.035 c | 0.08 b |
| Values represented as mean ± standard deviation. a Significant differences were found between the groups using the Mann–Whitney U test. b No significant differences were found between the groups using a paired t-test. c Significant differences were found between the preoperative and respective time values using a paired t-test. BCVA, best-corrected visual acuity; logMAR, logarithmic minimum angle of resolution. | |||
3.Intraoperative Parameters and CECD Loss
3.Complications
| Table Results of intraoperative parameters and CECD loss by various phacoemulsification techniques. | |||||||||
| CECD, corneal endothelial cell density; CDE, cumulative dissipated energy; VFU, volume of fluid used; NR, not reported. | |||||||||
| Study | Year | Eyes | Surgical technique | Operative time (min) |
Phaco time (s) |
Aspiration-time (s) | CDE (µJ) | VFU (mL) | CECD loss (%) |
| Sato[20] | 2025 | 75 | Eight-chop | 4.5 | 14.3 | 64.0 | 5.83 | 25.5 | 1.6 |
| Opala[27] | 2025 | 80 | Stop-and-chop | NR | NR | NR | 4.19 | NR | 18.8 |
| Spaulding[28] | 2025 | 36 | Stop-and-chop | NR | 29.5 | 90.1 | 5.00 | 32.8 | NR |
| Wang[29] | 2025 | 123 | Phaco-chop | NR | 68.9 | NR | 18.2 | NR | 10.6 |
| Sato[19] | 2024 | 65 | Eight-chop | 4.6 | 16.2 | 72.1 | 7.00 | 28.9 | 1.2 |
| Kim[30] | 2024 | 94 | Prechop | NR | 7.05 | NR | NR | NR | 12.5 |
| Wang[31] | 2024 | 55 | Phaco-chop | NR | 30.6 | NR | 5.22 | 45.1 | 4.3 |
| Altansukh[32] | 2024 | 110 | Divide-and-conquer | NR | 75.1 | NR | 12.31 | NR | 4.2 |
| Sato[18] | 2023 | 50 | Eight-chop | 3.7 | 11.6 | NR | 5.00 | 22.9 | 0.9 |
| Cruz[33] | 2023 | 48 | Phaco-chop | NR | NR | NR | 6.10 | 80.8 | 32.0 |
| Fernández-Muñoz[34] | 2023 | 30 | Phaco-chop | NR | 94.0 | NR | 20.11 | NR | 31.8 |
| Eom[35] | 2023 | 76 | Phaco-chop | 12.3 | 25.7 | NR | NR | NR | 8.1 |
| Sinha[36] | 2023 | 50 | Stop-and-chop | NR | 122.4 | NR | 6.9 | NR | 10.1 |
| Tao[37] | 2023 | 45 | Reverse-chop | NR | NR | NR | 7.53 | NR | 15.9 |
| Cyril[38] | 2022 | 82 | Phaco-chop | NR | NR | NR | 4.80 | 36.1 | NR |
| Upadhyay[39] | 2022 | 50 | Crater-chop | NR | NR | NR | NR | 105.9 | 4.4 |
| Abdelmotaal[40] | 2021 | 66 | Phaco-chop | 12.3 | NR | NR | 19.13 | NR | 15.2 |
| Present | 2025 | 52 | Eight-chop | 5.9 | 17.9 | 77.0 | 7.06 | 31.1 | 1.5 |
| No intraoperative complications such as capsulorhexis tears, posterior capsule rupture, or zonular dialysis were observed in either the microcornea group or the control group. | |||||||||
Discussion
Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CECD | Corneal endothelial cell density |
| CDE | Cumulative dissipated energy |
| IOL | Intraocular lens |
| BCVA | Best-corrected visual acuity |
| IOP | Intraocular pressure |
| CCT | Central corneal thickness |
| CV | Coefficient of variation |
| PHC | Percentage of hexagonal cells |
| SD | Standard deviation |
| VFU | Volume of fluid used |
| NR | Not reported |
| FLACS | Femtosecond laser-assisted cataract surgery |
References
- Asbell, P.A.; Dualan, I.; Mindel, J.; Brocks, D.; Ahmad, M.; Epstein, S. Age-related cataract. Lancet 2005, 365, 599–609.
- Forooghian, F.; Agrón, E.; Clemons, T.E.; Ferris, F.L., 3rd; Chew, E.Y. Visual acuity outcomes after cataract surgery in patients with age-related macular degeneration: age-related eye disease study report no. Ophthalmology 2009, 116, 2093–2100.
- Packer, M.; Fishkind, W.J.; Fine, I.H.; Seibel, B.S.; Hoffman, R.S. The physics of phaco: a review. J Cataract Refract Surg 2005, 31, 424–431. [CrossRef]
- Hoffman, R.S.; Vasavada, A.R.; Allen, Q.B.; Snyder, M.E.; Devgan, U.; Braga-Mele, R. Cataract surgery in the small eye. J Cataract Refract Surg 2015, 41, 2565–2575. [CrossRef]
- Foster, P.J.; Broadway, D.C.; Hayat, S.; Luben, R.; Dalzell, N.; Bingham, S.; Wareham, N.J.; Khaw, K.T. Refractive error, axial length and anterior chamber depth of the eye in British adults: the EPIC-Norfolk Eye Study. Br J Ophthalmol 2010, 94, 827–830. [CrossRef]
- Auffarth, G.U.; Blum, M.; Faller, U.; Tetz, M.R.; Völcker, H.E. Relative anterior microphthalmos: morphometric analysis and its implications for cataract surgery. Ophthalmology 2000, 107, 1555–1560. [CrossRef]
- Lin, Z.B.; Li, J.; Ye, L.; Sun, H.S.; Yu, A.Y.; Chen, S.H.; Li, F.F. Novel SOX2 mutation in autosomal dominant cataract-microcornea syndrome. BMC Ophthalmol 2022, 22, 70. [CrossRef]
- Feizi, S. Corneal endothelial cell dysfunction: etiologies and management. Ther Adv Ophthalmol 2018, 10, 2515841418815802. [CrossRef]
- Bourne, W.M. Clinical estimation of corneal endothelial pump function. Trans Am Ophthalmol Soc 1998, 96, 229–239, discussion 239–242.
- Kinoshita, S.; Koizumi, N.; Ueno, M.; Okumura, N.; Imai, K.; Tanaka, H.; Yamamoto, Y.; Nakamura, T.; Inatomi, T.; Bush, J.; et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N Engl J Med 2018, 378, 995–1003. [CrossRef]
- Waring, G.O., 3rd; Bourne, W.M.; Edelhauser, H.F.; Kenyon, K.R. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 1982, 89, 531–590.
- Claesson, M.; Armitage, W.J.; Stenevi, U. Corneal oedema after cataract surgery: predisposing factors and corneal graft outcome. Acta Ophthalmol 2009, 87, 154–159. [CrossRef]
- Vasavada, A.; Singh, R. Phacoemulsification in eyes with a small pupil. J Cataract Refract Surg 2000, 26, 1210–1218. [CrossRef]
- Igarashi, T.; Ohsawa, I.; Kobayashi, M.; Umemoto, Y.; Arima, T.; Suzuki, H.; Igarashi, T.; Otsuka, T.; Takahashi, H. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: A prospective randomized clinical trial. Am J Ophthalmol 2019, 207, 10–17. [CrossRef]
- Park, J.; Yum, H.R.; Kim, M.S.; Harrison, A.R.; Kim, E.C. Comparison of phaco-chop, divide-and-conquer, and stop-and-chop phaco techniques in microincision coaxial cataract surgery. J Cataract Refract Surg 2013, 39, 1463–1469. [CrossRef]
- Dzhaber, D.; Mustafa, O.; Alsaleh, F.; Mihailovic, A.; Daoud, Y.J. Comparison of changes in corneal endothelial cell density and central corneal thickness between conventional and femtosecond laser-assisted cataract surgery: a randomised, controlled clinical trial. Br J Ophthalmol 2020, 104, 225–229. [CrossRef]
- Takahashi, H. Corneal Endothelium and Phacoemulsification. Cornea 2016, 35 Suppl 1, S3–7.
- Sato, T. Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 479–484. [CrossRef]
- Sato, T. Eight-chop technique in phacoemulsification using iris hooks for patients with cataracts and small pupils. J Clin Med 2024, 13, 7298. [CrossRef]
- Sato, T. Cataract Surgery in Pseudoexfoliation Syndrome Using the Eight-Chop Technique. J Pers Med 2025, 15, 396. [CrossRef]
- Sato, T. Minimizing Endothelial Cell Loss in Hard Nucleus Cataract Surgery: Efficacy of the Eight-Chop Technique. J Clin Med 2025, 14, 2576. [CrossRef]
- Sato, T. Corneal Endothelial Changes After Phacoemulsification Using the Eight-Chop Technique in Diabetic Eyes. J Pers Med 2025, 15, 209. [CrossRef]
- Sato, T. Corneal endothelial cell loss in shallow anterior chamber eyes after phacoemulsification using the eight-chop technique. J Clin Med 2025, 14, 3045. [CrossRef]
- Emery, J.M. Kelman phacoemulsification; patient selection. In Extracapsular cataract surgery; Emery, J.M., Mclyntyre, D.J., Eds.; CV Mosby: St Louis, USA, 1983; pp. 95–100.
- Kang, H. Sample size determination and power analysis using the G*Power software. J Educ Eval Health Prof 2021, 18, 17. [CrossRef]
- Jung, K.I.; Yang, J.W.; Lee, Y.C.; Kim, S.Y. Cataract surgery in eyes with nanophthalmos and relative anterior microphthalmos. Am J Ophthalmol 2012, 153, 1161-1168.e1161. [CrossRef]
- Opala, A.; Kołodziejski, Ł.; Grabska-Liberek, I. Impact of Well-Controlled Type 2 Diabetes on Corneal Endothelium Following Cataract Surgery: A Prospective Longitudinal Analysis. J Clin Med 2025, 14, 3603. [CrossRef]
- Spaulding, J.; Hall, B. Efficiency of phacoemulsification handpieces with high and low intraocular pressure settings. J Cataract Refract Surg 2025, 51, 218–221. [CrossRef]
- Wang, H.; Liu, R.; Wang, R.; Wang, X.; Luo, F.; Kuang, J.; Li, Z.; Yang, C.; Zeng, M. Subnuclear Phacoemulsification to Reduce Corneal Injury in Nuclear Cataract Surgery: Evidence From a Randomized Controlled Trial. J Ophthalmol 2025, 2025, 1737599. [CrossRef]
- Kim, H.; Seong, J.; Rho, C. Comparison between Early Clinical Results of Dual-Linear and Conventional Foot-Pedal Control in Phacoemulsification. J Clin Med 2024, 13, 693. [CrossRef]
- Wang, S.; Tao, J.; Yu, X.; Diao, W.; Bai, H.; Yao, L. Safety and prognosis of phacoemulsification using active sentry and active fluidics with different IOP settings - a randomized, controlled study. BMC Ophthalmol 2024, 24, 350. [CrossRef]
- Altansukh, A.; Ma, K.S.; Doyodmaa, A.; Hung, N.; Kang, E.Y.; Quan, W.; Ma, D.H. Comparison of corneal endothelial cell loss in FLACS: impact on endothelial cells in different regions. J Cataract Refract Surg 2024, 50, 912–918. [CrossRef]
- Cruz, J.C.G.; Moreno, C.B.; Soares, P.; Moscovici, B.K.; Colombo-Barboza, G.N.; Colombo-Barboza, L.R.; Colombo-Barboza, M.N. Comparison of endothelial cell loss in diabetic patients after conventional phacoemulsification and femtosecond laser-assisted cataract surgery. BMC Ophthalmol 2023, 23, 181. [CrossRef]
- Fernández-Muñoz, E.; Chávez-Romero, Y.; Rivero-Gómez, R.; Aridjis, R.; Gonzalez-Salinas, R. Cumulative dissipated energy (CDE) in three phaco-fragmentation techniques for dense cataract removal. Clin Ophthalmol 2023, 17, 2405–2412. [CrossRef]
- Eom, Y.; Koh, E.; Lee, D.H.; Lee, S.J.; Nam, D.H. Comparison of patient experiences and clinical outcomes between an illuminated chopper and a conventional chopper under a surgical microscope. J Cataract Refract Surg 2023, 49, 1036–1042. [CrossRef]
- Sinha, A.; Morya, A.K.; Gupta, V.; Prasad, R. A randomized controlled trial to assess safety and efficacy between terminal chop, stop and chop, and direct chop. Indian J Ophthalmol 2023, 71, 3658–3662. [CrossRef]
- Tao, J.; Wan, Y.; Song, X. Comparison of the reverse chopper-assisted prechop and phaco-chop nucleotomy techniques during phacoemulsification for cataracts with grade III nuclei: a randomized controlled trial. Ann Transl Med 2023, 11, 105. [CrossRef]
- Cyril, D.; Brahmani, P.; Prasad, S.; Rashme, V.L.; R, S.; Kamble, N.R.; Balakrishnan, L.; Nagu, K.; Shekhar, M. Comparison of two phacoemulsification system handpieces: prospective randomized comparative study. J Cataract Refract Surg 2022, 48, 328–333. [CrossRef]
- Upadhyay, S.; Sharma, P.; Chouhan, J.K.; Goyal, R. Comparative evaluation of modified crater (endonucleation) chop and conventional crater chop techniques during phacoemulsification of hard nuclear cataracts: a randomized study. Indian J Ophthalmol 2022, 70, 794–798. [CrossRef]
- Abdelmotaal, H.; Abdel-Radi, M.; Rateb, M.F.; Eldaly, Z.H.; Abdelazeem, K. Comparison of the phaco chop and drill-and-crack techniques for phacoemulsification of hard cataracts: a fellow eye study. Acta Ophthalmol 2021, 99, e378–e386. [CrossRef]
- Yeh, C.Y.; Fang, H.S.; Ou, Y.C.; Cheng, C.K.; Wu, T.E. Comparison of low-energy FLACS and conventional cataract surgery: meta-analysis and systematic review. J Cataract Refract Surg 2024, 50, 1074–1082. [CrossRef]
- Wang, H.; Chen, X.; Xu, J.; Yao, K. Comparison of femtosecond laser-assisted cataract surgery and conventional phacoemulsification on corneal impact: A meta-analysis and systematic review. PLoS One 2023, 18, e0284181. [CrossRef]
- Wen, L.; Lian, H.; Liu, Y.; Wei, B.; Deng, Y.; Hu, J.; Wu, Y.; Zhang, M.; Fan, Y.; Xu, L. Effect of femtosecond laser-assisted cataract surgery for cataracts after pars plana vitrectomy: a prospective randomized controlled study. BMC Ophthalmol 2025, 25, 79. [CrossRef]
- Akahoshi, T. Phaco Prechop. In Phaco Chop and Advanced Phaco Techniques; Chang, D.F., Eds.; SLACK Incorporated: Thorofare, NJ, USA, 2013; pp. 55–76.
- Akahoshi, T. Phaco prechop: Manual nucleofracure prior to phacoemulsification. Operative Tech Cataract Refract Surge 1998, 1, 69–91.
- Khalid, M.; Hanif, M.K.; Islam, Q.U.; Mehboob, M.A. Change in corneal endothelial cell density after phacoemulsification in patients with type II diabetes mellitus. Pak J Med Sci 2019, 35, 1366–1369. [CrossRef]
- Ciorba, A.L.; Teusdea, A.; Roiu, G.; Cavalu, D.S. Particularities of Cataract Surgery in Elderly Patients: Corneal Structure and Endothelial Morphological Changes after Phacoemulsification. Geriatrics (Basel) 2024, 9, 77. [CrossRef]
- Guedes, J.; Pereira, S.F.; Amaral, D.C.; Hespanhol, L.C.; Faneli, A.C.; Oliveira, R.D.C.; Mora-Paez, D.J.; Fontes, B.M. Phaco-Chop versus Divide-and-Conquer in Patients Who Underwent Cataract Surgery: A Systematic Review and Meta-Analysis. Clin Ophthalmol 2024, 18, 1535–1546. [CrossRef]
- Joo, J.H.; Kim, T.G. Comparison of corneal endothelial cell changes after phacoemulsification between type 2 diabetic and nondiabetic patients. Medicine (Baltimore) 2021, 100, e27141. [CrossRef]
- Alvarado, J.; Murphy, C.; Juster, R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology 1984, 91, 564–579. [CrossRef]
- Grierson, I.; Howes, R.C. Age-related depletion of the cell population in the human trabecular meshwork. Eye (Lond) 1987, 1, 204–210. [CrossRef]
- Day, A.C.; MacLaren, R.E.; Bunce, C.; Stevens, J.D.; Foster, P.J. Outcomes of phacoemulsification and intraocular lens implantation in microphthalmos and nanophthalmos. J Cataract Refract Surg 2013, 39, 87–96. [CrossRef]
- Ashok Kumar, D.; Agarwal, A.; Sivangnanam, S.; Chandrasekar, R.; Agarwal, A. Implantation of glued intraocular lenses in eyes with microcornea. J Cataract Refract Surg 2015, 41, 327–333. [CrossRef]
- Sato, T. Reply: Efficacy and safety of the eight-chop technique in phacoemulsification for patients with cataract. J Cataract Refract Surg 2023, 49, 1078–1079. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
