Submitted:
26 September 2024
Posted:
26 September 2024
You are already at the latest version
Abstract
The objective was to evaluate the effect of 3-nitrooxypropanol (3-NOP) in combination with different feed additives on growth performance, carcass traits, meat quality, enteric methane (CH4) emissions, nutrient intake and digestibility, and blood parameters in feedlot beef cattle. In experiment (Exp.) 1, one hundred sixty-eight Nellore bulls (initial bodyweight (BW) 410 ± 8 kg) were allocated to 24 pens in a completely randomized block design. In Exp. 2, thirty Nellore bulls (Initial BW 410 ± 3 kg) were allocated to a collective pen in a completely randomized design. Three treatments were applied: Control (CTL): Sodium monensin (26 mg/kg of dry matter, DM), M3NOP: CTL with 3-NOP (100 mg/kg DM) and Combo: 3-NOP (100 mg/kg DM) with essential oils (100 mg/kg DM), 25-Hydroxy-Vitamin-D3 (0.10 mg/kg DM), organic chromium (4 mg/kg DM), and zinc (60 mg/kg DM). In Exp 1, bulls in Combo had greater (P<0.01) dry matter intake (DMI) at d 28 compared with CTL and M3NOP. During d 0 to 102, bulls final BW and average daily gain (ADG) were greater (P≤0.03) for Combo compared with CTL. Bulls in Combo and M3NOP had better (P<0.01) feed conversion (FC) and feed efficiency (FE) compared with CTL. Hot carcass weight (HCW), carcass ADG and carcass yield were greater (P≤0.05) for bulls from Combo compared with CTL and M3NOP. Bulls in Combo had greater (P=0.01) dressing compared with M3NOP. Combo bulls had better (P=0.02) biological efficiency compared with CTL. Bulls in Combo had lower (P<0.01) carcass pH compared to CTL and M3NOP. In Exp. 2, bulls in Combo had greater (P=0.04) DMI at d 28 compared with CTL and had greater (P<0.01) DMI at d 102 compared with CTL and M3NOP. Bulls in Combo had greater (P=0.04) HCW compared with CTL and M3NOP and carcass ADG was greater (P=0.04) for bulls Combo compared with M3NOP. Bulls in Combo and M3NOP had lower (P<0.01) CH4 production (38.8%, g/d), yield (41.1%, g/kg DMI), intensity (40.8%, g/kg carcass ADG) and increased (P<0.01) H2 emissions (291%, g/d) compared with CTL. Combo bulls had lower (P<0.01) blood glucose and insulin, and higher nutrient intake and digestibility (P≤0.05) compared with CTL and M3NOP. Combining 3-NOP with different feed additives improved FC, FE, and reduced enteric CH4 emissions. Combo treatment improved growth performance, carcass traits, nutrient intake and digestibility, and improved glucose and insulin responses in feedlot beef cattle on a high-concentrate finishing diet.
Keywords:
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design and Treatments (Exp. 1 and 2)
2.2. Management, Animal Feeding and Diet Analyses (Exp. 1 and 2).
2.3. Growth Performance and Carcass Traits (Exps 1 and 2)
2.4. Meat Quality (Exp. 1)
2.5. Blood Variables (Exp 2)
2.6. Digestibility of Nutrients (Exp 2)
2.7. Greenhouse Gas Emissions (Exp. 2)
2.8. Statistical Analysis (Exps 1 and 2)
3. Results
3.1. Growth Performance, Carcass Traits and Meat Quality (Exp. 1)
3.2. Growth Performance and Carcass Traits (Exp. 2)
3.3. Greenhouse Gas Measurements
3.4. Blood Variables (Exp. 2)
3.5. Intake and Digestibility of Nutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ornaghi, M.G.; Guerrero, A.; Vital, A.C.P.; De Souza, K.A.; Passetti, R.A.C.; Mottin, C.; De Araújo Castilho, R.; Sañudo, C.; Do Prado, I.N. Improvements in the quality of meat from beef cattle fed natural additives. Meat Sci. 2020, 163, 108059. [CrossRef]
- Greenwood, P.L. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 15, 100295. [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture: Towards 2030/2050; ESA Working Paper No. 12–03; FAO: Rome, Italy, 2012. [CrossRef]
- Cooke, R.F.; Daigle, C.L.; Moriel, P.; Smith, S.B.; Tedeschi, L.O.; Vendramini, J.M.B. Cattle adapted to tropical and subtropical environments: social, nutritional, and carcass quality considerations. J. Anim. Sci. 2020. [CrossRef]
- Yu, G.; Beauchemin, K.A.; Dong, R. A review of 3-nitrooxypropanol for enteric methane mitigation from ruminant livestock. Animals 2021, 11, 3540. [CrossRef]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Dell Al Rotz, C.; et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock – A review. Anim. 2013, 7 (Suppl. 2), 220–234. [CrossRef]
- Nibedita, S.; Swati, P.; Pattnaik, M.; Mohapatra, S. Methane emission and strategies for mitigation in livestock. In Environmental and Agricultural Microbiology: Applications for Sustainability; pp. 257–274. [CrossRef]
- Detmann, E.; Paulino, M.F.; Valadares Filho, S.C.; Huhtanen, P. Nutritional aspects applied to grazing cattle in the tropics: A review based on Brazilian results. Semina: Ciênc. Agrár. 2014, 35, 2829–2854. [CrossRef]
- Cardoso, A.S.; Barbero, R.P.; Romanzini, E.P.; Teobaldo, R.W.; Ongaratto, F.; Fernandes, M.H.M.R.; Ruggieri, A.C.; Reis, R.A. Intensification: A key strategy to achieve great animal and environmental beef cattle production sustainability in Brachiaria grasslands. Sustainability 2020, 12, 6656. [CrossRef]
- Sousa, L.M.; de Souza, W.L.; Oliveira, K.A.; Cidrini, I.A.; Moriel, P.; Nogueira, H.C.R.; Ferreira, I.M.; Ramirez-Zamudio, G.D.; Oliveira, I.M.d.; Prados, L.F.; et al. Effect of Different Herbage Allowances from Mid to Late Gestation on Nellore Cow Performance and Female Offspring Growth until Weaning. Animals 2024, 14, 163. [CrossRef]
- Hristov, A.; Oh, J.; Giallongo, F.; Frederick, T.; Harper, M.; Weeks, H.; Branco, A.; Moate, P.; Deighton, M.; Williams, S. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 10663–10668. [CrossRef]
- Min, B.R.; Lee, S.; Jung, H.; Miller, D.N.; Chen, R. Enteric methane emissions and animal performance in dairy and beef cattle production: Strategies, opportunities, and impact of reducing emissions. Animals 2022, 12, 948. [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [CrossRef]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, effectiveness and safety. Anim. Prod. Sci. 2021, 61, 15. [CrossRef]
- Kelly, L.; Kebreab, E. Recent advances in feed additives with the potential to mitigate enteric methane emissions from ruminant livestock. J. Soil Water Conserv. 2023, 78, 111–123. [CrossRef]
- Duin, E.; Wagner, T.; Shima, S.; Prakash, D.; Cronin, B.; Yáñez-Ruiz, D.; Duval, S.; Rümbeli, R.; Stemmler, R.; Thauer, R. Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 6172–6177. [CrossRef]
- Almeida, A.K.; Cowley, F.; McMeniman, J.P.; Karagiannis, A.; Walker, N.; Tamassia, L.F.; McGrath, J.J.; Hegarty, R.S. Effect of 3-Nitrooxypropanol on Enteric Methane Emissions of Feedlot Cattle Fed with a Tempered Barley-Based Diet with Canola Oil. J. Anim. Sci. 2023, 101. [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Fifty Years of Research on Rumen Methanogenesis: Lessons Learned and Future Challenges for Mitigation. Animal 2020, 14. [CrossRef]
- Souza, W.L.d.; Romanzini, E.P.; Delevatti, L.M.; Leite, R.G.; Bernardes, P.A.; Cardoso, A.S.; Reis, R.A.; Malheiros, E.B. Economic evaluation of nitrogen fertilization levels in beef cattle production: Implications for sustainable tropical pasture management. Agriculture 2023, 13, 2233. [CrossRef]
- Toseti, L.B.; Goulart, R.S.; Gouvêa, V.N.; Acedo, T.S.; Vasconcellos, G.S.F.M.; Pires, A.V. Effects of a blend of essential oils and exogenous α–amylase in diets containing different roughage sources for finishing beef cattle. Anim. Feed Sci. Technol. 2020, 269, 114643. [CrossRef]
- Estrada-Angulo, A.; Mendoza-Cortéz, D.A.; Ramos-Méndez, J.L.; Arteaga-Wences, Y.; Urías-Estrada, J.D.; Castro-Pérez, B.I.; Ríos-Rincón, F.G.; Rodríguez-Gaxiola, M.A.; Barreras, A.; Zinn, R.A. Comparing blend of essential oils plus 25-hydroxy-vit-D3 versus monensin plus virginiamycin combination in finishing feedlot cattle: Growth performance, dietary energetics, and carcass traits. Animals 2022, 12, 1715. [CrossRef]
- Budde, A.M.; Sellins, K.; Karen, E.L.; Wagner, J.J.; Heldt, J.S.; Spears, J.W.; Engle, T.E. Effect of Zinc Source and Concentration and Chromium Supplementation on Performance and Carcass Traits in Feedlot Steers. J. Anim. Sci. 2019, 97, 1286–1295. [CrossRef]
- Hallmark, H.D.; Zervoudakis, J.T.; Torrecilhas, J.A.; Hatamoto-Zervoudakis, L.K.; Toller, H.; Guimaraes, O.; Engle, T.E. PSII-19 Effect of zinc and chromium supplementation on performance and carcass traits in feedlot steers. J. Anim. Sci. 2020, 98, 400–401. [CrossRef]
- Soumar, S.K.; Hozhabri, F.; Moeini, M.M.; Nikousefat, Z. Impacts of feeding zinc-methionine or chromium-methionine on performance, antioxidant status and physiological responses to transportation stress on lambs. Anim. Prod. Sci. 2020, 60, 796–805. [CrossRef]
- Trojan, S.J.; Hergenreder, J.E.; Canterbury, L.G.; Leonhard, J.T.; Clark, W.D.; Beckett, J.L.; Long, J.M. The effects of chromium propionate supplementation to yearling steers in a commercial feedyard on growth performance, carcass traits, and health. Transl. Anim. Sci. 2023, 7. [CrossRef]
- Meschiatti, M.A.; Gouvêa, V.N.; Pellarin, L.A.; Batalha, C.D.; Biehl, M.V.; Acedo, T.S.; Dórea, J.R.; Tamassia, L.F.; Owens, F.N.; Santos, F.A. Feeding the Combination of Essential Oils and Exogenous Alpha Amylase Increases Performance and Carcass Production of Finishing Beef Cattle. J. Anim. Sci. 2019, 97, 456–471. [CrossRef]
- Melgar, A.; Harper, M.T.; Oh, J.; Giallongo, F.; Young, M.E.; Ott, T.L.; Duval, S.; Hristov, A.N. Effects of 3-Nitrooxypropanol on Rumen Fermentation, Lactational Performance, and Resumption of Ovarian Cyclicity in Dairy Cows. J. Dairy Sci. 2020, 103, 410–432. [CrossRef]
- Zhang, X.; Smith, M.; Gruninger, R.; Kung, L.; Vyas, D.; McGinn, S.; Kindermann, M.; Wang, M.; Tan, Z.; Beauchemin, K. Combined Effects of 3-Nitrooxypropanol and Canola Oil Supplementation on Methane Emissions, Rumen Fermentation and Biohydrogenation, and Total Tract Digestibility in Beef Cattle. J. Anim. Sci. 2021, 99. [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.D.L.; Christensen, H.; Dusemund, B.; Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F. Safety and efficacy of a feed additive consisting of 25-hydroxycholecalciferol monohydrate produced with Saccharomyces cerevisiae CBS 146008 for all ruminants (DSM Nutritional Products Sp. zoo). EFSA J. 2023, 21, e08169. [CrossRef]
- Rossi, J., Crina S.A., 1996. Additives for animal nutrition and technique for their preparation. U.S. Patent 5,558,889.
- DSM Nutritional Products, 2016. Product information: Crina Protect Composition. DSM Nutritional Products, Parsippany, NJ.
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Bampidis, V., Azimonti, G., Bastos, M.D.L., Christensen, H., Dusemund, B., Durjava, M., Kouba, M., López-Alonso, M., López Puente, S., Marcon, F., 2023. Safety and efficacy of a feed additive consisting of 25-hydroxycholecalciferol monohydrate produced with Saccharomyces cerevisiae CBS 146008 for all ruminants (DSM Nutritional Products Sp. zoo). EFSA Journal, 21(8), e08169. [CrossRef]
- Lammers, B.P.; Buckmaster, D.R.; Heinrichs, A.J. A Simple Method for the Analysis of Particle Sizes of Forage and Total Mixed Rations. J. Dairy Sci. 1996, 79, 922–928. [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006.
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [CrossRef]
- Hall, M.B. Determination of Starch, Including Maltooligosaccharides, in Animal Feeds: Comparison of Methods and a Method Recommended for AOAC Collaborative Study. J. AOAC Int. 2009, 92, 42–49. [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th rev. ed.; National Academies Press: Washington, DC, USA, 2001.
- NASEM. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016.
- CIE. Recommendations on Uniform Color Spaces-Color Equations, Psychometric Color Terms. In Proceedings of the Commission Internationale de l’Eclairage; CIE: Paris, France, 1986.
- AMSA-American Meat Science Association. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Fresh Meat. Proceedings of the American Meat Science Association; AMSA: Chicago, IL, USA, 1995. Available online: https://meatscience.org/docs/default-source/publications-resources/research-guide/amsa-research-guidelines-for-cookery-and-evaluation-1-02.pdf?sfvrsn=4c6b8eb3_2 (accessed on 3 September 2024).
- Warriss, P.D. The Extraction of Haem Pigments from Fresh Meat. J. Food Technol. 1979, 14, 75–80. [CrossRef]
- Hunt, M.C.; Sørheim, O.; Slinde, E. Color and Heat Denaturation of Myoglobin Forms in Ground Beef. J. Food Sci. 1999, 64, 847–851. [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [CrossRef]
- Sørensen, G.; Storgaard Jørgensen, S. A Critical Examination of Some Experimental Variables in the 2-Thiobarbituric Acid (TBA) Test for Lipid Oxidation in Meat Products. Eur. Food Res. Technol. 1996, 202, 205–210.
- Cole, N.A.; McCuistion, K.; Greene, L.W.; McCollum, F.T. Effects of Concentration and Source of Wet Distiller’s Grains on Digestibility of Steam-Flaked Corn-Based Diets Fed to Finishing Steers. Prof. Anim. Sci. 2011, 27, 302–311. [CrossRef]
- Krizsan, S.J.; Huhtanen, P. Effect of Diet Composition and Incubation Time on Feed Indigestible Neutral Detergent Fiber Concentration in Dairy Cows. J. Dairy Sci. 2013, 96, 1715–1726. [CrossRef]
- Della Rosa, M.M.; Jonker, A.; Waghorn, G.C. A Review of Technical Variations and Protocols Used to Measure Methane Emissions from Ruminants Using Respiration Chambers, SF6 Tracer Technique, and GreenFeed, to Facilitate Global Integration of Published Data. Anim. Feed Sci. Technol. 2021, 279, 115018. [CrossRef]
- Webb, M.J.; Block, J.J.; Harty, A.A.; Salverson, R.R.; Daly, R.F.; Jaeger, J.R.; Underwood, K.R.; Funston, D.P.; Pendell, C.A.; Rotz, C.A.; et al. Cattle and Carcass Performance, and Life Cycle Assessment of Production Systems Utilizing Additive Combinations of Growth Promotant Technologies. Transl. Anim. Sci. 2020, 4, 1–15. [CrossRef]
- Carvalho, V.V. de; Souza, W.L.L.; Perdigão, A.; Niehues, M.B.; Matos, I.E.; Ribeiro, M.M.; Acedo, T.S.; Tamassia, L.; Walker, N.; Kindermann, M.; Cardoso, A. Silva.; Reis, R. Combination of Feed Additives to Reduce Methane Emissions and Increase Performance by Feedlot Cattle. J. Anim. Sci. 2023, 101 (Supplement_3), 275–276. [CrossRef]
- Vyas, D.; McGinn, S.; Duval, S.; Kindermann, M.; Beauchemin, K. Effects of Sustained Reduction of Enteric Methane Emissions with Dietary Supplementation of 3-Nitrooxypropanol on Growth Performance of Growing and Finishing Beef Cattle. J. Anim. Sci. 2016, 94, 2024–2034. [CrossRef]
- Martinez-Fernandez, G.; Duval, S.; Kindermann, M.; Schirra, H.J.; Denman, S.E.; McSweeney, C.S. 3-NOP vs. Halogenated Compound: Methane Production, Ruminal Fermentation and Microbial Community Response in Forage Fed Cattle. Front. Microbiol. 2018, 9, 1582. [CrossRef]
- Alemu, A.; Shreck, A.; Booker, C.; McGinn, S.; Pekrul, L.; Kindermann, M.; Beauchemin, K. Use of 3-Nitrooxypropanol in a Commercial Feedlot to Decrease Enteric Methane Emissions from Cattle Fed a Corn-Based Finishing Diet. J. Anim. Sci. 2021, 99. [CrossRef]
- Araújo, T.L.; Rabelo, C.H.; Cardoso, A.S.; Carvalho, V.V.; Acedo, T.S.; Tamassia, L.F.; Vasconcelos, G.S.; Duval, S.M.; Kindermann, M.; Gouvêa, V.N.; Fernandes, M.H. Feeding 3-Nitrooxypropanol Reduces Methane Emissions by Feedlot Cattle Under Tropical Conditions. J. Anim. Sci. 2023, 101. [CrossRef]
- Pedrini, C.A.; Machado, F.S.; Fernandes, A.R.M.; Cônsolo, N.R.B.; Ocampos, F.M.M.; Colnago, L.A.; Perdigão, A.; de Carvalho, V.V.; Acedo, T.S.; Tamassia, L.F.M.; et al. Performance, Meat Quality and Meat Metabolomics Outcomes: Efficacy of 3-Nitrooxypropanol in Feedlot Beef Cattle Diets. Animals 2024, 14, 2576. [CrossRef]
- Haisan, J.; Sun, Y.; Guan, L.; Beauchemin, K.; Iwaasa, A.; Duval, S.; Barreda, D.; Oba, M. The Effects of Feeding 3-Nitrooxypropanol on Methane Emissions and Productivity of Holstein Cows in Mid Lactation. J. Dairy Sci. 2014, 97, 3110–3119. [CrossRef]
- Haisan, J.; Sun, Y.; Guan, L.; Beauchemin, K.A.; Iwaasa, A.; Duval, S.; Kindermann, M.; Barreda, D.R.; Oba, M. The Effects of Feeding 3-Nitrooxypropanol at Two Doses on Milk Production, Rumen Fermentation, Plasma Metabolites, Nutrient Digestibility, and Methane Emissions in Lactating Holstein Cows. Anim. Prod. Sci. 2017, 57, 282–289. [CrossRef]
- Melgar, A.; Lage, C.; Nedelkov, K.; Räisänen, S.; Stefenoni, H.; Fetter, M.; Chen, X.; Oh, J.; Duval, S.; Kindermann, M.; et al. Enteric Methane Emission, Milk Production, and Composition of Dairy Cows Fed 3-Nitrooxypropanol. J. Dairy Sci. 2021, 104, 357–366.
- Schilde, M.; von Soosten, D.; Hüther, L.; Kersten, S.; Meyer, U.; Zeyner, A.; Dänicke, S. Dose–Response Effects of 3-Nitrooxypropanol Combined with Low- and High-Concentrate Feed Proportions in the Dairy Cow Ration on Fermentation Parameters in a Rumen Simulation Technique. Animals 2021, 11, 1784. [CrossRef]
- Martínez-Fernández, G.; Abecia, L.; Arco, A.; Cantalapiedra-Hijar, G.; Martín-García, A.; Molina-Alcaide, E.; Kindermann, M.; Duval, S.; Yáñez-Ruiz, D. Effects of Ethyl-3-Nitrooxy Propionate and 3-Nitrooxypropanol on Ruminal Fermentation, Microbial Abundance, and Methane Emissions in Sheep. J. Dairy Sci. 2014, 97, 3790–3799. [CrossRef]
- Vyas, D.; Alemu, A.W.; McGinn, S.M.; Duval, S.M.; Kindermann, M.; Beauchemin, K.A. The Combined Effects of Supplementing Monensin and 3-Nitrooxypropanol on Methane Emissions, Growth Rate, and Feed Conversion Efficiency in Beef Cattle Fed High-Forage and High-Grain Diets. J. Anim. Sci. 2018, 96, 2923–2938. [CrossRef]
- Ungerfeld, E.M. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Front. Microbiol. 2020, 11, 589. [CrossRef]
- Wang, M.; Wang, R.; Zhang, X.; Ungerfeld, E.M.; Long, D.; Mao, H.; Jiao, J.; Beauchemin, K.A.; Tan, Z. Molecular Hydrogen Generated by Elemental Magnesium Supplementation Alters Rumen Fermentation and Microbiota in Goats. Br. J. Nutr. 2017, 118, 401–410. [CrossRef]
- Wang, R.; Wang, M.; Ungerfeld, E.M.; Zhang, X.M.; Long, D.L.; Mao, H.X.; Deng, J.P.; Bannink, A.; Tan, Z.L. Nitrate Improves Ammonia Incorporation into Rumen Microbial Protein in Lactating Dairy Cows Fed a Low-Protein Diet. J. Dairy Sci. 2018, 101, 9789–9799. [CrossRef]
- Salzar, L.F.; Nero, L.A.; Campos-Galvão, M.E.; Cortinhas, C.S.; Acedo, T.S.; Tamassia, L.F.; Busato, K.C.; Morais, V.C.; Rotta, P.P.; Silva, A.L.; Marcondes, M.I. Effect of Selected Feed Additives to Improve Growth and Health of Dairy Calves. PLoS ONE 2019, 14, e0216066. [CrossRef]
- Duffield, T.F.; Merrill, J.K.; Bagg, R.N. Meta-Analysis of the Effects of Monensin in Beef Cattle on Feed Efficiency, Body Weight Gain, and Dry Matter Intake. J. Anim. Sci. 2012, 90, 4583–4592. [CrossRef]
- Gadberry, S.; Beck, P.; Moore, M.; White, F.; Linneen, S.; Lalman, D. Meta-analysis of the effects of monensin on performance of beef replacement heifers and beef cows. Transl. Anim. Sci. 2022, 6. [CrossRef]
- Silva, T.I.; Souza, J.M.; Acedo, T.S.; Carvalho, V.V.; Perdigão, A.; Silva, L.A.; Silvestre, A.M.; Niehues, M.B.; Schleifer, W.F.; Casali, D.M.; Martins, C.L. Feedlot performance, rumen and cecum morphometrics of Nellore cattle fed increasing levels of diet starch containing a blend of essential oils and amylase or monensin. Front. Vet. Sci. 2023, 10, 1090097. [CrossRef]
- Barajas, R.; Cervantes, B.J.; Velazquez, E.A.; Romo, J.A.; Juarez, F.; Rojas, P.J. Cr Methionine Supplementation on Feedlot Performance and Carcass Traits of Bulls: I. Results During the Cool Season in the Northwest of Mexico. Proc. West. Sect. Am. Soc. Anim. Sci. 2008, 59, 383–386.
- Barajas, R.; Cervantes, B.J.; Velazquez, E.A.; Romo, J.A.; Juarez, F.; Rojas, P.J.; Peña, F.R. Chromium Methionine Supplementation on Feedlot Performance and Carcass Traits of Bulls: II. Results Including through Hot and Humid Season in the Northwest of Mexico. Proc. West. Sect. Am. Soc. Anim. Sci. 2008, 59, 374–375.
- Bernhard, B.C.; Burdick, N.C.; Rounds, W.; Rathmann, R.J.; Carroll, J.A.; Finck, D.N.; Jennings, M.A.; Young, T.R.; Johnson, B.J. Chromium Supplementation Alters the Performance and Health of Feedlot Cattle During the Receiving Period and Enhances Their Metabolic Response to a Lipopolysaccharide Challenge. J. Anim. Sci. 2012, 90, 3879–3888. [CrossRef]
- Baggerman, J.O.; Smith, Z.K.; Thompson, A.J.; Kim, J.; Hergenreder, J.E.; Rounds, W.; Johnson, B.J. Chromium Propionate Supplementation Alters Animal Growth Performance, Carcass Traits, and Skeletal Muscle Properties in Feedlot Steers. Transl. Anim. Sci. 2020, 4. [CrossRef]
- Meyer, N.F.; Erickson, G.E.; Klopfenstein, T.J.; Greenquist, M.A.; Luebbe, M.K.; Williams, P.; Engstrom, M.A. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass traits, liver abscesses, ruminal fermentation, and digestibility. J. Anim. Sci. 2009, 87, 2346–2354. [CrossRef]
- Acedo, T.S.; Gouvêa, V.N.; Vasconcellos, G.M.; Arrigoni, M.; Martins, C.L.; Millen, D.D.; Muller, L.R.; Melo, G.F.; Rizzieri, R.A.; Costa, C.F. Effect of 25-Hydroxy-Vitamin-D3 on Feedlot Cattle. J. Anim. Sci. 2018, 96(Suppl. 3), 447–448. [CrossRef]
- Carvalho, V.V.; Perdigão, A. Supplementation of 25-hydroxy-vitamin-D3 and increased vitamin E as a strategy to increase carcass weight of feedlot beef cattle. J. Anim. Sci. 2019, 97(Suppl. 3), 440. [CrossRef]
- Martins, T.E.; Acedo, T.S.; Gouvêa, V.N.; Vasconcellos, G.M.; Arrigoni, M.; Martins, C.L.; Millen, D.D.; Pai, M.D.; Perdigão, A.; Melo, G.F. Effects of 25-hydroxycholecalciferol supplementation on gene expression of feedlot cattle. J. Anim. Sci. 2020, 98, 302–303. [CrossRef]
- Batley, R.J.; Romanzini, E.P.; Johnson, J.B.; de Souza, W.L.; Naiker, M.; Trotter, M.G.; Quigley, S.P.; de Souza Congio, G.F.; Costa, D.F.A. Rapid Screening of Methane-Reducing Compounds for Deployment via Water with a Commercial Livestock Supplement Using In Vitro and FTIR-ATR Analyses. Methane 2024, 3, 437-455. [CrossRef]
- Bohrer, B.M.; Edenburn, B.M.; Boler, D.D.; Dilger, A.C.; Felix, T.L. Effect of Feeding Ractopamine Hydrochloride (Optaflexx) with or without Supplemental Zinc and Chromium Propionate on Growth Performance, Carcass Traits, and Meat Quality of Finishing Steers. J. Anim. Sci. 2014, 92, 3988–3996. [CrossRef]
- Edenburn, B.M.; Kneeskern, S.G.; Bohrer, B.M.; Rounds, W.; Boler, D.D.; Dilger, A.C.; Felix, T.L. Effects of supplementing zinc or chromium to finishing steers fed ractopamine hydrochloride on growth performance, carcass traits, and meat quality. J. Anim. Sci. 2016, 94, 771–779. [CrossRef]
- Kneeskern, S.G.; Dilger, A.C.; Loerch, S.C.; Shike, D.W.; Felix, T.L. Effects of chromium supplementation to feedlot steers on growth performance, insulin sensitivity, and carcass traits. J. Anim. Sci. 2016, 94, 217–226. [CrossRef]
- Van Bibber-Krueger, C.L.; Axman, J.E.; Gonzalez, J.M.; Vahl, C.I.; Droulliard, J.S. Effects of a yeast combined with chromium propionate on growth performance and carcass quality of finishing steers. J. Anim. Sci. 2016, 94, 3003–3011. [CrossRef]
- Spears, J.W.; Kegley, E.B. Effect of zinc source (zinc oxide vs zinc proteate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. J. Anim. Sci. 2002, 80, 2747–2752. [CrossRef]
- Matthews, J.O.; Guzik, A.C.; LeMieux, F.M.; Southern, L.L.; Bidner, T.D. Effect of chromium propionate on growth, carcass traits, and pork quality of growing-finishing pigs. J. Anim. Sci. 2005, 83, 858–862. [CrossRef]
- Tian, Y.Y.; Gong, L.M.; Xue, J.X.; Cao, J.; Zhang, L.Y. Effects of graded levels of chromium methionine on performance, carcass traits, meat quality, fatty acid profiles of fat, tissue chromium concentrations, and antioxidant status in growing-finishing pigs. Biol. Trace Elem. Res. 2015, 168, 110–121. [CrossRef]
- Hultgren, J.; Segerkvist, K.A.; Berg, C.; Karlsson, A.H.; Öhgren, C.; Algers, B. Preslaughter stress and beef quality in relation to slaughter transport of cattle. Livest. Sci. 2022, 264, 105073. [CrossRef]
- Kegley, E.B.; Spears, J.W.; Brown, T.T., Jr. Effect of shipping and chromium supplementation on performance, immune response, and disease resistance of steers. J. Anim. Sci. 1997, 75, 1956–1964. [CrossRef]
- Stahlhut, H.S.; Whisnant, C.S.; Lloyd, K.E.; Baird, E.J.; Legleiter, L.R.; Hansen, S.L.; Spears, J.W. Effect of chromium supplementation and copper status on glucose and lipid metabolism in Angus and Simmental beef cows. Anim. Feed Sci. Technol. 2005, 128, 253–265. [CrossRef]
- Spears, J.W.; Whisnant, C.S.; Huntington, G.B.; Lloyd, K.E.; Fry, R.S.; Krafka, K.; Lamptey, A.; Hyda, J. Chromium propionate enhances insulin sensitivity in growing cattle. J. Dairy Sci. 2012, 95, 2037–2045. [CrossRef]
- Anderson, R.A. Nutritional Factors Influencing the Glucose/Insulin System: Chromium. J. Am. Coll. Nutr. 1997, 16, 404–410. [CrossRef]
- Yao, X.; Liu, R.; Li, X.; Li, Y.; Zhang, Z.; Huang, S.; Ge, Y.; Chen, X.; Yang, X. Zinc, selenium, and chromium co-supplementation improves insulin resistance by preventing hepatic endoplasmic reticulum stress in diet-induced gestational diabetes rats. J. Nutr. Biochem. 2021, 96, 108810. [CrossRef]
- Greenbaum, C.J.; Havel, P.J.; Taborsky, G.J.; Klaff, L.J. Intra-islet insulin permits glucose to directly suppress pancreatic A cell function. J. Clin. Invest. 1997, 88, 767–773. [CrossRef]
- Hoffmann, W.E.; Solter, P.F. Diagnostic enzymology of domestic animals. In Clinical Biochemistry of Domestic Animals, 6th ed.; Kaneko, J.J.; Harvey, J.W.; Bruss, M.L., Eds.; Elsevier: San Diego, CA, USA, 2008; pp. 351–378.
- Lawrence, P.; Kenny, D.A.; Earley, B.; Crews, D.H., Jr.; McGee, M. Grass silage intake, rumen and blood variables, ultrasonic and body measurements, feeding behavior, and activity in pregnant beef heifers differing in phenotypic residual feed intake. J. Anim. Sci. 2011, 89, 3248–3261. [CrossRef]
- Anderson, T.J.; Meredith, I.T.; Yeung, A.C.; Frei, B.; Selwyn, A.P.; Ganz, P. The Effect of Cholesterol-Lowering and Antioxidant Therapy on Endothelium-Dependent Coronary Vasomotion. N. Engl. J. Med. 1995, 332, 488–493. [CrossRef]
- Hassan, R.M.; Elsayed, M.; Kholief, T.E.; Hassanen, N.H.M.; Gafer, J.A.; Attia, Y.A. Mitigating effect of single or combined administration of nanoparticles of zinc oxide, chromium oxide, and selenium on genotoxicity and metabolic insult in fructose/streptozotocin diabetic rat model. Environ. Sci. Pollut. Res. 2021, 28, 48517–48534. [CrossRef]
- Abou Zaid, O.A.R.; El-sonbaty, S.M.; Afifi, M.W.F. The Biochemical Effect of Chromium Nanoparticles Administration on Adiponectin Secretion, Oxidative Stress, and Metabolic Disorders in Streptozotocin-Induced Diabetic Rats. Benha Vet. Med. J. 2015, 28, 266–275. [CrossRef]
- Li, Y.L.; Li, C.; Beauchemin, K.A.; Yang, W.Z. Effects of a commercial blend of essential oils and monensin in a high-grain diet containing wheat distillers’ grains on in vitro fermentation. Can. J. Anim. Sci. 2013, 93, 387–398. [CrossRef]
- Van Gastelen, S.; Dijkstra, J.; Binnendijk, G.; Duval, S.M.; Heck, J.M.L.; Kindermann, M.; Zandstra, T.; Bannink, A. 3-Nitrooxypropanol decreases methane emissions and increases hydrogen emissions of early lactation dairy cows, with associated changes in nutrient digestibility and energy metabolism. J. Dairy Sci. 2020, 103, 8074–8093. [CrossRef]
| Item | Diet Adaptation 1 | Diet Adaptation 2 | Diet Finishing | ||||||
|---|---|---|---|---|---|---|---|---|---|
| CTL1 | M3NOP2 | Combo3 | CTL | M3NOP | Combo | CTL | M3NOP | Combo | |
| Ingredients, % DM | |||||||||
| Sugarcane bagasse, % | 30.0 | 30.0 | 30.0 | 20.0 | 20.0 | 20.0 | 10.0 | 10.0 | 10.0 |
| Soybean meal, % | 11.0 | 11.0 | 11.0 | 6.35 | 6.35 | 6.35 | 1.70 | 1.70 | 1.70 |
| Ground corn, % | 50 | 50 | 50 | 59.5 | 59.5 | 59.5 | 69.0 | 69.0 | 69.0 |
| Cottonseed, % | 5.00 | 5.00 | 5.00 | 10.0 | 10.0 | 10.0 | 15.0 | 15.0 | 15.0 |
| Urea, % | 1.00 | 1.00 | 1.00 | 1.15 | 1.15 | 1.15 | 1.30 | 1.30 | 1.30 |
| Mineral Supplement4, % | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
| Sodium monensin, mg/kg DM | 26.0 | 26.0 | - | 26.0 | 26.0 | - | 26.0 | 26.0 | - |
| Essential oils, mg/kg DM | - | - | 100 | - | - | 100 | - | - | 100 |
| 25-Hydroxy-Vitamin-D3, mg/kg DM | - | - | 0.10 | - | - | 0.10 | - | - | 0.10 |
| 3-nitrooxypropanol, mg/kg DM | - | 100 | 100 | - | 100 | 100 | - | 100 | 100 |
| Chemical composition (DM-basis) | |||||||||
| Dry matter, % | 89.5 | 89.5 | 89.5 | 90.3 | 90.3 | 90.3 | 90.5 | 90.5 | 90.5 |
| Organic matter, % DM | 84.6 | 84.6 | 84.6 | 85.2 | 85.2 | 85.2 | 85.3 | 85.3 | 85.3 |
| Crude protein, % DM | 16.2 | 16.2 | 16.2 | 15.4 | 15.4 | 15.4 | 14.8 | 14.8 | 14.8 |
| Mineral matter, % DM | 4.93 | 4.93 | 4.93 | 5.05 | 5.05 | 5.05 | 5.24 | 5.24 | 5.24 |
| Total Digestible Nutrients, % DM | 69.8 | 69.8 | 69.8 | 74.2 | 74.2 | 74.2 | 81.1 | 81.1 | 81.1 |
| Neutral Detergent Fiber, % DM | 32.2 | 32.2 | 32.2 | 27.8 | 27.8 | 27.8 | 26.5 | 26.5 | 26.5 |
| Acid Detergent Fiber, % DM | 22.8 | 22.8 | 22.8 | 19.3 | 19.3 | 19.3 | 18.4 | 18.4 | 18.4 |
| PeNDF5, % DM | 27.2 | 27.2 | 27.2 | 22.2 | 22.2 | 22.2 | 17.2 | 17.2 | 17.2 |
| Starch, % DM | 35.5 | 35.5 | 35.5 | 42.2 | 42.2 | 42.2 | 49.0 | 49.0 | 49.0 |
| Vitamin D3, UI/kg DM | 510 | 510 | 4510 | 510 | 510 | 4510 | 510 | 510 | 4510 |
| Chromium, mg/kg DM | 0.20 | 0.20 | 0.60 | 0.20 | 0.20 | 0.60 | 0.20 | 0.20 | 0.60 |
| Zinc, mg/kg DM | 60.0 | 60.0 | 120 | 60.0 | 60.0 | 120 | 60.00 | 60.00 | 120 |
| ME6, Mcal/kg DM | 2.52 | 2.52 | 2.52 | 2.68 | 2.68 | 2.68 | 2.93 | 2.93 | 2.93 |
| Item | CTL1 | M3NOP2 | Combo3 | SEM4 | P-value |
|---|---|---|---|---|---|
| Growth performance | |||||
| Initial bodyweight, kg | 410 | 410 | 410 | 8.17 | 0.83 |
| d 28 dry matter intake, kg/d | 11.2b | 10.9b | 11.7a | 0.22 | <0.01 |
| d 28 average daily gain, kg/d | 1.816 | 1.795 | 1.918 | 0.06 | 0.34 |
| d 28 feed conversion, kg/kg | 6.23 | 6.11 | 6.14 | 0.21 | 0.91 |
| d 28 feed efficiency, kg/kg | 0.162 | 0.164 | 0.163 | 0.01 | 0.93 |
| d 28 bodyweight, kg | 462 | 460 | 464 | 8.18 | 0.46 |
| d 102 dry matter Intake, kg/d | 12.1 | 11.8 | 12.4 | 0.26 | 0.07 |
| d 102 average daily gain, kg/d | 1.733b | 1.808ab | 1.873a | 0.03 | 0.01 |
| d 102 feed conversion, kg/kg | 6.98a | 6.54b | 6.60b | 0.13 | <0.01 |
| d 102 feed efficiency, kg/kg | 0.144a | 0.154b | 0.152b | 0.01 | <0.01 |
| Final bodyweight, kg | 588b | 594ab | 601a | 8.63 | 0.03 |
| Carcass traits | |||||
| Initial hot carcass weight, kg | 214 | 213 | 213 | 4.47 | 0.57 |
| Final hot carcass weight, kg | 332b | 334b | 345a | 5.29 | <0.01 |
| Carcass average daily gain, kg/d | 1.159b | 1.188b | 1.287a | 0.02 | <0.01 |
| Dressing, % | 56.5ab | 56.3b | 57.3a | 0.23 | 0.01 |
| Carcass yield, % | 67.0b | 65.7b | 68.7a | 0.76 | 0.05 |
| Biological Efficiency, DM kg/15 kg HCW6 | 156b | 150ab | 144a | 3.29 | 0.02 |
| LM5 area, cm² | 89.2 | 88.7 | 91.1 | 1.80 | 0.31 |
| Marbling | 2.38 | 2.57 | 2.40 | 0.09 | 0.21 |
| 12th-rib-fat, mm | 5.52 | 5.47 | 5.87 | 0.18 | 0.21 |
| Rump fat thickness, mm | 8.11 | 8.26 | 8.24 | 0.27 | 0.87 |
| Meat quality | |||||
| pH | 5.92b | 5.92b | 5.83a | 0.01 | <0.01 |
| Shear force, N | 65.9 | 64.6 | 65.1 | 3.11 | 0.95 |
| Cooking loss, % | 27.4 | 28.0 | 27.5 | 0.50 | 0.69 |
| Chroma L* (24h) | 39.6 | 39.7 | 38.9 | 0.85 | 0.77 |
| Chroma a* (24h) | 21.6 | 21.2 | 21.2 | 0.54 | 0.84 |
| Chroma b* (24h) | 14.8 | 14.9 | 14.2 | 0.51 | 0.57 |
| Chroma L* (72h) | 42.7 | 41.8 | 41.9 | 0.92 | 0.73 |
| Chroma a* (72h) | 22.7 | 22.0 | 22.4 | 0.63 | 0.76 |
| Chroma b* (72h) | 17.0 | 16.6 | 16.6 | 0.61 | 0.85 |
| Myoglobin, mg/g | 4.22 | 4.20 | 4.15 | 0.04 | 0.35 |
| Total lipids, % | 1.72 | 1.90 | 1.76 | 0.09 | 0.12 |
| Lipid oxidation, mgMDA/kg meat | 1.05 | 1.03 | 1.05 | 0.01 | 0.15 |
| Item | CTL1 | M3NOP2 | Combo3 | SEM4 | P-value |
|---|---|---|---|---|---|
| Growth performance | |||||
| Initial bodyweight, kg | 410 | 410 | 410 | 3.23 | 0.93 |
| d 28 dry matter intake, kg/d | 11.0b | 11.3ab | 11.8a | 0.20 | 0.04 |
| d 28 average daily gain, kg/d | 1.500 | 1.536 | 1.750 | 0.10 | 0.21 |
| d 28 feed conversion, kg/kg | 8.30 | 7.71 | 7.61 | 0.50 | 0.58 |
| d 28 feed efficiency, kg/kg | 0.135 | 0.138 | 0.149 | 0.008 | 0.45 |
| d 28 bodyweight, kg | 452 | 453 | 459 | 2.77 | 0.19 |
| d 102 dry matter Intake, kg/d | 11.8b | 11.7b | 12.8a | 0.23 | <0.01 |
| d 102 average daily gain, kg/d | 1.814 | 1.765 | 1.892 | 0.05 | 0.36 |
| d 102 feed conversion, kg/kg | 6.57 | 6.61 | 6.78 | 0.16 | 0.61 |
| d 102 feed efficiency, kg/kg | 0.153 | 0.152 | 0.148 | 0.004 | 0.61 |
| Final bodyweight, kg | 595 | 590 | 603 | 5.99 | 0.35 |
| Carcass traits | |||||
| Initial hot carcass weight, kg | 212 | 213 | 213 | 3.38 | 0.93 |
| Final hot carcass weight, kg | 333b | 331b | 346a | 3.89 | 0.04 |
| Carcass average daily gain, kg/d | 1.186b | 1.157b | 1.304a | 0.04 | 0.04 |
| Dressing, % | 56.1 | 56.0 | 57.3 | 0.47 | 0.23 |
| Carcass yield, % | 65.2 | 65.3 | 68.9 | 1.63 | 0.34 |
| Biological efficiency, DM kg/15 kg HCW | 151 | 153 | 149 | 5.05 | 0.85 |
| LM area, cm² | 88.2 | 86.6 | 88.8 | 2.58 | 0.82 |
| Marbling | 2.35 | 2.41 | 1.93 | 0.17 | 0.11 |
| 12th-rib fat, mm | 5.37 | 6.01 | 5.62 | 0.28 | 0.24 |
| Rump fat thickness, mm | 7.67 | 8.41 | 7.88 | 0.34 | 0.30 |
| Item | CTL1 | M3NOP2 | Combo3 | SEM4 | P-value |
|---|---|---|---|---|---|
| GreenFeed data | |||||
| Drop, total/d | 16.1 | 15.4 | 14,8 | 1.62 | 0.74 |
| Time, minutes/visit | 5.10 | 5.06 | 5.09 | 0.07 | 0.60 |
| Drop, kg | 0.56 | 0.54 | 0.52 | 0.06 | 0.54 |
| CH4 production, g/d | 141a | 87.0b | 85.6b | 6.67 | <0.01 |
| H2, g/d | 1.23b | 4.59a | 5.04a | 0.22 | <0.01 |
| CH4 yield, g/kg DMI | 12.0a | 7.45b | 6.69b | 0.50 | <0.01 |
| CH4 intensity, g/kg Carcass ADG | 119a | 75.2b | 65.6b | 5.43 | <0.01 |
| Item | CTL1 | M3NOP2 | Combo3 | CTL | M3NOP | Combo | CTL | M3NOP | Combo | SEM4 | P-value | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| d 0 | d 28 | d 102 | T5 | Time | T x Time | ||||||||
| Blood parameters, | |||||||||||||
| Insulin, uIU/ml | 7.18 | 6.68 | 6.99 | 10.3a | 11.2a | 9.28b | 16.0a | 16.1a | 13.9b | 0.20 | <0.01 | <0.01 | <0.01 |
| IGF-1, ng/ml | 313 | 331 | 339 | 427 | 412 | 437 | 450 | 458 | 455 | 15.7 | 0.59 | <0.01 | 0.78 |
| Glucose, mg/dl | 75.9 | 80.4 | 83.1 | 99.5a | 103a | 89.2b | 113a | 107ab | 95.8b | 3.72 | 0.05 | <0.01 | 0.01 |
| Albumin, g/dl | 3.06 | 3.18 | 3.34 | 3.6 | 3.55 | 3.35 | 3.8 | 3.85 | 3.67 | 0.08 | 0.51 | <0.01 | 0.01 |
| Total protein, g/dl | 6.79 | 6.79 | 6.80 | 6.60 | 6.69 | 6.63 | 6.60 | 6.90 | 6.79 | 0.07 | 0.09 | 0.01 | 0.48 |
| Creatinine, mg/dl | 1.75 | 1.75 | 1.73 | 1.5 | 1.54 | 1.56 | 2.00 | 2.04 | 2.06 | 0.05 | 0.67 | <0.01 | 0.93 |
| AST6, u/l | 68.8 | 67.3 | 69.6 | 78.0 | 80.0 | 64.6 | 82.0 | 93.0 | 79.2 | 4.05 | 0.04 | <0.01 | 0.11 |
| GGT7, u/l | 18.8 | 19.1 | 19.6 | 24.0 | 28.5 | 28.6 | 32.0 | 31.1 | 28.0 | 1.86 | 0.65 | <0.01 | 0.19 |
| Cholesterol, mg/dl | 86.7 | 87.3 | 86.3 | 126 | 132 | 107 | 165 | 175 | 145 | 6.04 | <0.01 | <0.01 | 0.17 |
| Triglycerides, mg/dl | 46.3 | 41.7 | 41.6 | 43.0 | 44.7 | 42.1 | 46.0 | 46.2 | 46.5 | 2.21 | 0.64 | 0.15 | 0.59 |
| Urea, mg/dl | 48.0 | 48.2 | 46.6 | 46.0 | 47.7 | 47.1 | 36.0 | 39.3 | 41.6 | 1.54 | 0.28 | <0.01 | 0.31 |
| Item | CTL1 | M3NOP2 | Combo3 | CTL | M3NOP | Combo | CTL | M3NOP | Combo | SEM4 | P-value | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| d 28 | d 56 | d 84 | T5 | Time | T x Time | ||||||||
| Intake, kg/d | |||||||||||||
| Dry matter | 11.6 | 11.7 | 12.4 | 11.9 | 12.0 | 13.1 | 11.7 | 11.5 | 12.5 | 0.47 | 0.03 | 0.46 | 0.98 |
| Organic matter | 11.0 | 11.1 | 11.8 | 11.3 | 11.4 | 12.4 | 11.1 | 10.9 | 11.9 | 0.47 | 0.03 | 0.49 | 0.98 |
| Crude protein | 1.71 | 1.73 | 1.83 | 1.77 | 1.77 | 1.93 | 1.74 | 1.70 | 1.85 | 0.07 | 0.02 | 0.42 | 0.97 |
| Ether extract | 0.58 | 0.59 | 0.63 | 0.65 | 0.65 | 0.70 | 0.59 | 0.57 | 0.59 | 0.03 | 0.18 | <0.01 | 0.85 |
| Acid detergent fiber | 2.17 | 2.21 | 2.30 | 2.13 | 2.16 | 2.37 | 2.34 | 2.30 | 2.52 | 0.09 | 0.02 | 0.02 | 0.96 |
| Neutral detergent fiber | 3.07 | 3.08 | 3.24 | 3.09 | 3.15 | 3.40 | 3.13 | 3.05 | 3.32 | 0.12 | 0.04 | 0.70 | 0.96 |
| Starch | 6.07 | 6.12 | 6.45 | 6.24 | 6.26 | 6.80 | 6.01 | 5.88 | 6.38 | 0.24 | 0.05 | 0.26 | 0.99 |
| Digestibility, g/kg dry matter | |||||||||||||
| Dry matter | 765 | 770 | 763 | 749 | 747 | 753 | 732 | 749 | 756 | 5.24 | 0.08 | <0.01 | 0.07 |
| Organic matter | 779 | 787 | 778 | 775 | 769 | 775 | 756 | 771 | 772 | 4.68 | 0.25 | <0.01 | 0.09 |
| Crude protein | 783 | 785 | 793 | 778 | 769 | 779 | 769 | 782 | 790 | 5.59 | 0.05 | 0.04 | 0.29 |
| Ether extract | 748 | 749 | 762 | 738 | 712 | 766 | 698 | 698 | 740 | 14.43 | 0.01 | <0.01 | 0.61 |
| Acid detergent fiber | 435 | 470 | 435 | 390 | 369 | 411 | 437 | 441 | 480 | 16.30 | 0.28 | <0.01 | 0.13 |
| Neutral detergent fiber | 579 | 572 | 582 | 569ab | 544b | 589a | 559b | 571ab | 593a | 8.04 | <0.01 | 0.29 | 0.04 |
| Starch | 932 | 934 | 933 | 910 | 913 | 923 | 906 | 908 | 920 | 4.06 | 0.03 | <0.01 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
