Submitted:
10 September 2024
Posted:
11 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experimental Procedure
2.1. Deposition by Immersion or Dip-Coating Method
2.2. Samples Preparation
2.3. Characterization
3. Results and Discussions
3.1. Structural Properties



3.2. Raman Analysis

3.3. Morphological Properties for SnO2, ZnO and TiO2 Films

3.4. Measurement of Thickness for SnO2, ZnO, and TiO2 Films


3.5. Photocatalysis Study



4. Mechanism of Photodegradation


5. Reusability of the Photocatalyst

6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, C.; Hawkes, F.R.; Hawkes, D.L.; Lourenço, N.D.; Pinheiro, H.M.; Delée, W. Colour in textile effluents - Sources, measurement, discharge consents and simulation: A review. J. Chem. Technol. Biotechnol. 1999, 74, 1009–1018. [Google Scholar] [CrossRef]
- Bae, J.S.; Freeman, H.S.; Kim, S.D. Influences of new azo dyes to the aquatic ecosystem. Fibers Polym. 2006, 1, 30–35. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, W.F.; Koshy, P.; Sorrell, C.C. Effect of film thickness on the phototcatalytic performance of TiO2 thin films deposited by spin coating. Am. Ceram. Soc. 2015. [Google Scholar]
- Garud, R. M.; Kore, S. V.; Kore, V. S.; Kulkarni, G. S. A Short Review on Process and Applications of Reverse Osmosis. Universal Journal of Environmental Research and Technology. 2011. 1, 3 233-238.
- Sangwoo, S.; Orest, S.; Patrick, B.; Warren, Howard, A.; Stone, Membraneless water filtration using CO2, Nature Communications 2017. 8, 15181.
- Gianluca, C.; Nicola, R.; The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation, Water Research, 2001. 35, 2, 567-572.
- Colmenares, J.C. Colmenares, J.C. Yi-Jun, X., Heterogeneous Photocatalysis From Fundamentals to Green Applications, Springer, Green Chemistry and Sustainable Technology. [CrossRef]
- Xueting, C.;Zhongliang, L.;Xinxin, Z.;Shibin, S.; Danxia, G.;Lihua, D.;Yansheng, Y.;Yanqiu, Z.; Efficient synthesis of sunlight-driven ZnO-based heterogeneous photocatalysts. Materials & Design 2016, 98, 324–332.
- Alves do Nascimento, J.L.; Chantelle, L.; Garcia dos Santos, I.M.; Menezes de Oliveira, A.L. Ferreira Alves, M.C. TThe Influence of Synthesis Methods and Experimental Conditions on the Photocatalytic Properties of SnO2: A Review. Catalysts 2022, 12, 428. [CrossRef]
- Gbenga Peleyeju, M.; Viljoen, E.L. WO3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water – A review, Journal of Water Process Engineering. 2021. 40, 101930.
- Serpone, N.; Emeline, A. V Semiconductor Photocatalysis — Past, Present, and Future Outlook, J. Phys. Chem. Lett. 2012, 5, 673–677. [Google Scholar] [CrossRef]
- Tao, Y.; Schwartz, S.; Wu, C.Y.; Mazyck, D.W. Development of a TiO2/AC composite photocatalyst by dry impregnation for the treatment of methanol in humid airstreams, Ind. Eng. Chem. Res. 2005. 44, 7366–7372. [CrossRef]
- Prado, A.G.S.; Bolzon, L.B.; Pedroso, C.P.; Moura, A.O.; Costa, L.L. Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation, Appl. Catal. B Environ. 2008. 82. 219–224.r indigo carmine degradation, Appl. Catal. B Environ. 2008.
- Luiz, F. K.; Pedrinia, L.C.; Escaliantea, L.V.A. Deposition of TiO2 thin Films by Dip-Coating Technique from a Two-Phase Solution Method and Application to Photocatalysis, Materials Research. 2021. 24. e20210007. [CrossRef]
- Ferhunde, A.; Orkun, G. The effect of spinning cycle on structural, optical, surface and photocatalytic properties of sol–gel derived ZnO films, Journal of Sol-Gel Science and Technology. 2021. 100. 299–309. [CrossRef]
- Chin-Yi.; Jui-Chung, W.; Jing-Heng, C.; Shih-Hsin, M.; Kun-Huang, C.; Tzyy-Leng, H.; Chien-Yie, T.; Chi-Jung, C.; Chung-Kwei, L.; Jerry, J. W. Photocatalyst ZnO-doped Bi2O3 powder prepared by spray pyrolysis, Powder Technology, 2015. 272, 316-321.
- Obregón, S.; Rdz, V. Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review, Journal of Sol-Gel Science and Technology. 2018. 102. Available online: https://link.springer.com/article/10.1007%2Fs10971-021-05628-5.
- Farsi, B. Al.; Souier, T.M.; Marzouqi, F. Al.; Maashani, M. Al.; Bououdina, M.; Widatallah, H.M.; Abri, M. Al. Structural and optical properties of visible active photocatalytic Al doped ZnO nanostructured thin films prepared by dip coating, OpticalMaterials. 2021, 113. 110868.
- Shaham-Waldmann, N., Yaron, P. Away from TiO2: A critical mini review on the developing of new Photocatalysts for degradation of contaminants in water, Materials Science in Semiconductor Processing 2016. 42. 72–80. [CrossRef]
- C.J. Brinker, A.J. Hurd, “Fundamentals of sol-gel dip-coating”, J. Phys. III France 4 (1994) 1231-1242.
- C.J. Brinker, “Dip coating”, “Chemical Solution Deposition of Functional Oxide Thin Films”, T. Schneller et al. (eds.) Springer-Verlag Wien 2013. [CrossRef]
- Tang, X., & Yan, X. (2016). Dip-coating for fibrous materials: mechanism, methods and applications. Journal of Sol-Gel Science and Technology, 81(2), 378–404. [CrossRef]
- Amakali, T., Daniel, L.S., Uahengo, V., Dzade, N.Y., & de Leeuw, N.H. (2020). Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods. Crystals, 10(2), 132. [CrossRef]
- Akgul, F.A., Gumus, C., Er, A.O., Farha, A.H., Akgul, G., Ufuktepe, Y., & Liu, Z. (2013). Structural and electronic properties of SnO2. Journal of Alloys and Compounds, 579, 50–56. 579, 50–56. [CrossRef]
- Venkatachalam, T., Sakthivel, K., Renugadevi, R., Narayanasamy, R., Rupa, P., Predeep, P., … Varma, M.K.R. (2011). Structural and Optical Properties of TiO[sub 2] Thin Films. [CrossRef]
- Joint Committee on Powder Diffraction Standards (JCPDS), International Centre for Diffraction Data. 1997, Card No. 41-1445.
- McMurdie, H.F.; Morris, M.; Evans, E.; Paretzkin, B.; Wong-Ng, W.; Ettlinger, L.; Hubbard, C. Standard X-ray diffraction powder patterns from the JCPDS research associateship. Powder Diffr. 1986, 1, 64–77. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Madelung, O.; Rössler, U.; Schulz, M. (Eds.) II-VI and I-VII Compounds; Semimagnetic Compounds. Landolt-Börnstein—Group III Condensed Matter (Numerical Data and Functional Relationships in Science and Technology); Springer: Berlin/Heidelberg, Germany, 1999; Volume 41B. [Google Scholar]
- Khan Z R, Zulfequar M and Khan M S, Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (1 0 0) wafers, Mater. Sci. Eng. B. 2010, 174. 145–149.
- Harris, G. Quantitative measurement of preferred orientation in rolled uranium bars, Dublin Philosophy. Mag. J. Sci.1952. 43, 336, 113–123.
- Wiatrowski, A.; Mazur, M.; Obstarczyk, A.; Wojcieszak, D.; Kaczmarek, D.; Morgiel, J.; Gibson, D. Comparison of the Physicochemical Properties of TiO2 Thin Films Obtained by Magnetron Sputtering with Continuous and Pulsed Gas Flow, Coatings. 2018, 8, 11, 412. [CrossRef]
- Sekiya, T.; Ohta, S.; Kamei, S.; Hanakawa, M.; Kurita, S. Raman spectroscopy and phase transition of anatase TiO2 under high pressure, Journal of Physics and Chemistry of Solids. 2001. 62. 717-721.
- Tanaka, K.; Capule, M.F.V.; Hisanaga, T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 1991. 187. 73–76.
- Chang, Y.C.; Chen, C.M.; Guo, J.Y. Fabrication of novel ZnO nanoporous films for efficient photocatalytic applications. J. Photochem. Photobiol. A Chem. 2018. 356. 340–346.
- Adeyemi, J.O., & Onwudiwe, D.C. SnS2 and SnO2 Nanoparticles Obtained from Organotin(IV) Dithiocarbamate Complex and Their Photocatalytic Activities on Methylene Blue. Materials, 2020. 13(12), 2766. doi:10.3390/ma13122766.Viet, P.V., Thi, C.M., & Hieu, L.V. (2016). The High Photocatalytic Activity of SnO2 Nanoparticles Synthesized by Hydrothermal Method. Journal of Nanomaterials, 2016, 1–8. [CrossRef]
- Swetha, P., Jayachamarajapura, P.S., Jayden, S., Syed, F.A., Mufsir, K., Mohammad, R.H., Baji, S., Kiran, K. Photocatalytic Degradation of Methylene Blue and Metanil Yellow Dyes Using Green Synthesized Zinc Oxide (ZnO) Nanocrystals. Crystals 2022, 12(1), 22. [CrossRef]
- Albiss, B., & Abu-Dalo, M. Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers. Sustainability 2021, 13(9), 4729. [CrossRef]
- Isai1, k. A., Shrivastava, V.S. Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study. N Applied Sciences. 2019. 1:1247. [CrossRef]
- Olga, T., Anastasia, M.M., Konstantinos, M.S., Ekaterini, P.; Lakovos, Y. Highly Active under VIS Light M/TiO2 Photocatalysts Prepared by Single-Step Synthesis. Appl. Sci. 2023, 13(11), 6858. [CrossRef]
- Mohammad Jafri, N.N., Jaafar, J., Alias, N.H., Samitsu, S., Aziz, F., Wan Salleh, W.N., … Isloor, A.M. (2021). Synthesis and Characterization of Titanium Dioxide Hollow Nanofiber for Photocatalytic Degradation of Methylene Blue Dye. Membranes, 11(8), 581. [CrossRef]
- Maness, P.C.; Smolinski, S.; Blake, D.M.; Huang, Z.; Wolfrum, E.J.; Jacoby, W.A. Bactericidal Activity of Photocatalytic TiO2 Reaction: toward an Understanding of Its Killing Mechanism. Columbia: Applied and Environmental Microbiology. 1999. 4094–4098.
- Landsberg, P.T. Recombination in semiconductors, Cambridge, 1991.
- Hunge, Y.M., Yadav, A.A., Kang, S.W., Mohite, B.M. Role of Nanotechnology in Photocatalysis Application, Recent Patents on Nanotechnology.2023.17.
- Vasiljevic, Z.Z., Dojcinovic, M. P.,Vujancevic, J.D. , Jankovic-Castvan. I., Ognjanovic, M., Tadic, N.B., Stojadinovic, S.,Brankovic, G.O., Nikolic, M.V. Photocatalytic degradation ofmethylene blue under natural sunlight using irontitanate nanoparticles prepared by a modifiedsol–gel method. R. Soc. Open Sci. 2020. 7: 200708. [CrossRef]
- J. Zhang, P. Zhou, J. Liu, J. Yu, Phys. Chem. Chem. Phys., 2014, 16, 20382-20386.
- J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Physical Review B, vol. 18, no. 10, pp. 5606–5614, 1978.
- E. Baldini, L. Chiodo, A. Dominguez et al., “Strongly bound excitons in anatase TiO2 single crystals and nanoparticles,” Nature Communications, vol. 8, no. 1, pp. 13–13, 2017.
- J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO2,” Physical Review B, vol. 18, no. 10, pp. 5606–5614, 1978.
- W. Tian, T. Zhai, C. Zhang, S.L. Li, X. Wang, F. Liu, D. Liu, X. Cai, K. Tsukagoshi, D. Golberg, Y. Bando, Adv. Mater. 2013, 25, 4625.
- Shaho, M. Rasul; Dlear, R. Saber; Shujahadeen, B. Aziz. In: Results in Physics, Vol 38, Iss , Pp 105688- (2022).
- M. Zhanhong; F. Ren; X. Ming; Y. Long; A. A. Volinsky Materials, 12 (2019), p. 196.
- Z. Nabi; A. Kellou; S. Méçabih; A. Khalfi; N. Benosman Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 98 (2003), p. 104.
- Ishchenko O, Rogé V, Lamblin G, Lenoble D, Fechete, I. TiO 2, ZnO, and SnO 2 -based metal oxides for photocatalytic applications: principles and development. C R Chim. 2021;24(1):103–24. [CrossRef]

| TiO2 | ZnO | SnO2 | |||
|---|---|---|---|---|---|
| Sample | Cycles | Sample | Cycles | Sample | Cycles |
| T100 | 4 | Z100 | 2 | S100 | 6 |
| T200 | 7 | Z200 | 6 | S200 | 10 |
| T300 | 11 | Z300 | 10 | S300 | 16 |
| Sample | D (nm) | a (Å) | c (Å) |
| S100 | 11 | 4.7842 | 3.1569 |
| S200 | 11 | 4.8012 | 3.1329 |
| S300 | 11 | 4.8165 | 3.0718 |
| T100 | 35 | ---- | 5.2164 |
| T200 | 35 | 3.2511 | 5.1984 |
| T300 | 45 | 3.2636 | 5.1967 |
| Sample | δ (×107) | TC(002) |
|---|---|---|
| S100 | 9.09 | 1.875 |
| S200 | 9.09 | 1.97 |
| S300 | 8.33 | 2.06 |
| TC(110) | ||
| Z100 | 2.85 | 1.29 |
| Z200 | 2.85 | 3.03 |
| Z300 | 2.22 | 3.7 |
| TiO2 | ZnO | SnO2 | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Measurement technique | T100 | T200 | T300 | Z100 | Z200 | Z300 | S100 | S200 | S300 |
| Film thickness by SEM (nm) | 100.5 | ---- | ---- | ---- | 217.7 | 307 | ---- | 230 | 307 |
| Film thickness by AFM (nm) | 51 | 153 | 227 | 125 | 195 | 296 | 125 | 185 | 304 |
| Average grain size by SEM (nm) | 11 | 13 | 12 | 11 | 30 | 30 | 12 | 11 | 11 |
| RMS roughness by SEM(nm) | 19.63 | 29.21 | 41.65 | 20.82 | 43.19 | 64.09 | 8.42 | 20.17 | 33.57 |
| Film | Photocatalytic degradation (%) | K (h-1) |
|---|---|---|
| S100 | 84.3 | 0.75 |
| S200 | 85.6 | 0.79 |
| S300 | 86.1 | 0.81 |
| Z100 | 91.3 | 0.96 |
| Z200 | 97.7 | 1.53 |
| Z300 | 98.6 | 1.79 |
| T100 | 50.7 | 0.27 |
| T200 | 62.1 | 0.38 |
| T300 | 76.3 | 0.58 |
| Material | Degradation (%) | UV IRRADIATION TIME (MIN) |
MB CONCENTRATION |
Reference |
|---|---|---|---|---|
| SnO2 | 60 | 120 | 0.1 mg/L | [36] |
| SnO2 | 90 | 120 | 10 mg/L | [37] |
| ZnO | 99 | 100 | 20 ppm | [38] |
| ZnO | 99 | 180 | 50 mg/L | [39] |
| TiO2 | 50 | 105 | 250 ppm | [40] |
| TiO2 | 95.2 | 240 | 10 ppm | [41] |
| SnO2 | 87 | 120 | 10 mg/L | Our result |
| ZnO | 98 | 120 | 10 mg/L | Our result |
| TiO2 | 76 | 120 | 10 mg/L | Our result |
| Film | Optical absorption edge: Eg (eV) | Excitonic binding energy (meV) | Crystal structure | Electronic band strycture |
|---|---|---|---|---|
| TiO2 | ⊥ (direct) anatasa 3.420 Rutilo 3.035 ‖ (indirect) anatasa 3.460 Rutilo 3.051 |
Rutile 4 [47] Anatase 180 [48] |
Anatase (tetragonal). Rutile (tetragonal) brookite (orthorhombic) |
[51] |
| ZnO | 3.370 – 3.437 | 60 | Wurtzita hexagonal [49] |
[52] |
| SnO2 | 3.6 – 3.8 | 130 | Cassiterite or rutile phase [50] |
[53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).



