Submitted:
05 September 2024
Posted:
06 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Place of Research and Plant Material
| Section | Species | GPS | Accession number, MB RAS | Description |
|---|---|---|---|---|
| Aesculus L. | A. hippocastanum L. | 55.845042 37.599364 |
1950-149710; 1953-149713; 1954-3327; 1959-49734 | Endemic to the Balkan Peninsula, can be found in Bulgaria, Greece and Albania. Widely cultivated in Europe and North America. 25-30 m in height, it has dense white flowers and 5 or 7 cuneate-obovate leaflets. Since 1941, 22 accessions were grown in MBG RAS from seeds obtained from various botanical gardens. |
| Pavia (Mill.) Persoon | A. glabra Willd | 55.845399 37.599918 |
1950- 3448; 1954-3448/45; 1965- 3448/65; 1965- 149712 | 10-30 m tall, can be found in Pennsylvania, Iowa, Arkansas, Tennessee and Alabama. It has yellow flowers. 5-7 leaflets, oblong-obovate or elliptic-obovate. In dendroculture since 1809, it is widespread in botanical gardens of Europe, Central Asia and North America. Three accessions were grown from seeds obtained from botanical gardens, there are also plants of the GBS reproduction. |
| A. flava Aiton | 55.844902 37.599790 |
1953- 4182; 1961- 95638 | Distributed in North America, it is 20-30 m tall, has yellow flowers. Leaves have 5 or 7 leaflets. Three accessions were grown from seeds obtained from different botanical gardens, but there were also plants of GBS reproduction. | |
| A. pavia L. | 55.844942 37.599865 |
1961- 95641; 1965- 31217 | North American species up to 10 m tall, has red flowers. Leaves have 5 or 7 leaflets, oblong obovate and narrowly elliptic. Since 1950, one accession has been grown in the MBG from seeds obtained from the Trostyanets Arboretum (Ukraine). |
|
| A. × carnea Hayne | 55.845133 37.599836 |
1960- 86340 1964-87325 | Tree up to 15(25) m tall. The hybrid was obtained in culture in 1818. It is found quite often in the south of Europe and North America. In GBS since 1989. Three accessions were grown from seeds received from Holland. | |
| Macrothyrsus (Spach) K. Koch | A. parviflora Walter | 55.845166 37.555798 |
No data | North American species, up to 5 m tall. Leaves have 5 or 7 leaflets; elliptic to oblong-obovate. It has white flowers. |
| Calothyrsus (Spach) K. Koch | А. chinensis Bunge | 55.844902 37.555798 |
No data | Distributed in China, up to 25 m tall and has white flowers. Leaves have 5-7 leaflets, oblong-lanceolate or oblongoblanceolate |
2.2. Estimation of Orchid Miner Abundance Using Pheromone Traps
2.3. Scanning Electron Microscopy
2.4. Determination of Dry Matter of Leaves
2.5. Determination of Leaf Pigment Content
2.6. Determination of Tannin Content
2.7. Determination of Phenolic Compounds and Flavonoids
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- D’Costa, L.; Koricheva, J.; Straw, N.; Simmonds, M.S.J. Oviposition Patterns and Larval Damage by the Invasive Horse-Chestnut Leaf Miner Cameraria Ohridella on Different Species of Aesculus: Oviposition Patterns and Larval Damage. Ecol. Entomol. 2013, 38, 456–462. [Google Scholar] [CrossRef]
- Chanon, A.M. Studies on the Reproductive Capacity of Aesculus parviflora and Aesculus pavia: Opportunities for Their Improvement through Interspecific Hybridization. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2005; p. 264. [Google Scholar]
- Simova-Tosic, D.; Filev, S. Contribution to the Horse Chestnut Miner. Zast. Bilja 1985, 36, 235–239. [Google Scholar]
- Deschka, G.; Dimić, N. Cameraria ohridella n. sp. aus Mazedonien, Jugoslawien (Lepidoptera, Lithocelletidae). Acta Entomol. Jugosl. 1986, 22, 11–23. [Google Scholar]
- Bogoutdinova, L.R.; Tkacheva, E.V.; Konovalova, L.N.; Tkachenko, O.B.; Olekhnovich, L.S.; Gulevich, A.A.; Baranova, E.N.; Shelepova, O.V. Effect of Sun Exposure of the Horse Chestnut (Aesculus hippocastanum L.) on the Occurrence and Number of Cameraria ohridella (Lepidoptera: Gracillariidae). Forests 2023, 14, 1079. [Google Scholar] [CrossRef]
- Kirichenko, N.I.; Karpun, N.N.; Zhuravleva, E.N.; Shoshina, E.I.; Anikin, V.V.; Musolin, D.L. Invasion genetics of the horse-chestnut leaf miner, Cameraria ohridella (Lepidoptera: Gracillariidae), in European Russia: A case of successful involvement of citizen science in studying an alien insect pest. Insects 2023, 14, 117. [Google Scholar] [CrossRef]
- Anikin, V.V. Present day bio-invasions in the Volga-Ural Region: From the South to the North or from the East to the West? Cameraria ohridella (Lepidoptera: Gracillariidae) in the Lower and Middle Volga. Zootaxa 2019, 4624, 583–588. [Google Scholar]
- Freise, J.; Heitland, W.; Tosevski, I. Parasitism of the horse chestnut leafminer, Cameraria ohridella Deschka and Dimić (Lep., Gracillariidae), in Serbia and Macedonia. Anz. Schädlingskunde 2002, 75, 152–157. [Google Scholar] [CrossRef]
- Shvydenko, I.M.; Stankevych, S.V.; Zabrodina, I.V.; Bulat, A.G.; Pozniakova, S.I.; Goroshko, V.V.; Matsyura, A.V. Diversity and distribution of leaf mining insects in deciduous tree plantations. A review. Ukrainian Journal of Ecology 2021, 11, 399–408. [Google Scholar]
- Bačovský, V.; Vyhnánek, T.; Hanáček, P.; Mertelík, J.; Šafránková, I. Genetic diversity of chestnut tree in relation to susceptibility to leaf miner (Cameraria ohridella Deschka & Dimič). Trees 2017, 31, 753–763. [Google Scholar]
- Zdravković-Korać, S.; Milojević, J.; Belić, M.; Ćalić, D. Tissue Culture Response of Ornamental and Medicinal Aesculus Species—A Review. Plants 2022, 11, 277. [Google Scholar] [CrossRef]
- Kulbat, K. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 2016, 80, 97–108. [Google Scholar]
- Oszmiański, J.; Kalisz, S.; Aneta, W. The content of phenolic compounds in leaf tissues of white (Aesculus hippocastanum L.) and red horse chestnut (Aesculus carea H.) colonized by the horse chestnut leaf miner (Cameraria ohridella Deschka & Dimić). Molecules 2014, 19, 14625–14636. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Kolniak-Ostek, J.; Biernat, A. The Content of Phenolic Compounds in Leaf Tissues of Aesculus glabra and Aesculus parviflora Walt. Molecules 2015, 20, 2176–2189. [Google Scholar] [CrossRef] [PubMed]
- Weryszko-Chmielewska, E.; Haratym, W. Leaf micromorphology of Aesculus hippocastanum L. and damage caused by leaf-mining larvae of Cameraria ohridella Deschka and Dimic. Acta Agrobot. 2012, 65, 25–33. [Google Scholar] [CrossRef]
- Sefrova´, H.; Lastˇuvka, Z. Dispersal of the horse-chestnut leafminer, Cameraria ohridella Deschka et Dimi´c, 1986, in Europe: its course, ways and causes (Lepidoptera: Gracillariidae). Entomol. Z. (Stuttgart) 2001, 111, 194–197. [Google Scholar]
- Svatos, A.; Kalinová, B.; Hoskovec, M.; Kindl, J.; Hrdy, I. Chemical communication in horse-chestnut leafminer Cameraria ohridella Deschka & Dimic. Plant. Prot. Sci. 1999, 35, 10–13. [Google Scholar]
- Svatos, A.; Kalinova, B.; Hoskovec, M.; Hovorka, O.; Hrdy´, I. Identification of a new lepidopteran sex pheromone in picogram quantities using an antennal biodetector: (8E,10Z)- Tetradeca-8,10-dienal from Cameraria ohridella. Tetrahedron Lett. 1999, 40, 7011–7014. [Google Scholar] [CrossRef]
- Cardé, R.T.; Elkinton, J.S. Field trapping with attractants: Methods and interpretation. In Techniques in Pheromone Research; Springer: New York, NY, USA, 1984; pp. 111–129. [Google Scholar]
- Hardin, J.W. A Revision of the American Hippocastanaceae-II. Brittonia 1957, 9, 173–195. [Google Scholar] [CrossRef]
- Hardin, J.W. Studies in the Hippocastanaceae, V. Species of the Old World. Brittonia 1960, 12, 26–38. [Google Scholar] [CrossRef]
- D’Costa, L.E. Resistance and susceptibility to the invasive leaf miner Cameraria ohridella within the genus Aesculus. Thesis (Ph. D), University of London, 2014; pp. 495–505. [Google Scholar]
- Feed. Methods for determining dry matter content: GOST 31640-2012. Introduced 01.07.2013, M.: Standartinform, 2012, 11 p.
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- State Pharmacopoeia of the Russian Federation. 14th ed.: in 4 volumes. Moscow: Ministry of Health of the Russian Federation, 2018, Access mode: https://femb.ru/femb/ (date of access: 06/27/2024).
- Bogoutdinova, L.R.; Khaliluev, M.R.; Chaban, I.A.; Gulevich, A.A.; Shelepova, O.V.; Baranova, E.N. Salt Tolerance Assessment of Different Tomato Varieties at the Seedling Stage. Horticulturae 2024, 10, 598. [Google Scholar] [CrossRef]
- Krasnyuk, I.I. Modifikatsiya metodiki kolichestvennogo opredeleniya flavonoidov v trave zolotarnika kanadskogo (Solidago canadensis). Vestn. Mosk. Univ. Ser. 2 Khimiya 2019, 60, 49–54. [Google Scholar]
- Kashtanova, O.A.; Tkachenko, O.B.; Kondratieva, V.V.; Voronkova, T.V.; Olekhnovich, L.S. Resistance of horse chestnut species (Aesculus L.) to ohrid miner or chestnut miner moth (Cameraria ohridella Deschka & Dimic). Bull. Moscow Soc. Natur. Biol. Ser. 2020, 125, 45–51. (In Russian) [Google Scholar]
- Jaenike, J. Host specialization in phytophagous insects. Annual Review of Ecology and Systematics, 1990, 21, 243–273. [Google Scholar] [CrossRef]
- Johne, A.B.; Weissbecker, B.; Schutz, S. Volatile emissions from Aesculus hippocastanum induced by mining of larval stages of Cameraria ohridella influence oviposition by conspecific females. J. Chem. Ecol. 2006, 32, 2303–2319. [Google Scholar] [CrossRef] [PubMed]
- Desurmont, G.A.; Donoghue, M.J.; Clement, W.L.; Agrawal, A.A. Evolutionary history predicts plant defense against an invasive pest. Proc. Natl. Acad. Sci. USA 2011, 108, 7070–7074. [Google Scholar] [CrossRef]
- Underwood, W. The plant cell wall: A dynamic barrier against pathogen invasion. Front. Plant Sci. 2012, 3, 85. [Google Scholar] [CrossRef]
- Evert, R.F. Esau’s Plant Anatomy, Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 323–355. [Google Scholar]
- Weryszko-Chmielewska, E.; Haratym, W. Changes in Leaf Tissues of Common Horse Chestnut (Aesculus Hippocastanum L.) Colonised by the Horse-Chestnut Leaf Miner (Cameraria Ochridella Deschka and Dimić). Acta Agrobot. 2011, 64, 11–22. [Google Scholar] [CrossRef]
- Holoborodko, K.; Seliutina, O.; Alexeyeva, A.; Brygadyrenko, V.; Ivanko, I.; Shulman, M.; Pakhomov, O.; Loza, I.; Sytnyk, S.; Lovynska, V.; et al. The Impact of Cameraria ohridella (Lepidoptera, Gracillariidae) on the State of Aesculus hippocastanum Photosynthetic Apparatus in the Urban Environment. Int. J. Plant Biol. 2022, 13, 223–234. [Google Scholar] [CrossRef]
- Łukasiewicz, S. The influence of urban environment factors on the growth of horse chestnut Aesculus hippocastanum L. Acta Scientiarum Polonorum. Formatio Circumiectus 2022, 21. [Google Scholar] [CrossRef]
- Tyapkina, A.; Shiryaeva, N.A.; Silaeva, Zh.G. Assessment of the condition of horse chestnut (aesculus hippocastanum l.) plantings at some landscaping sites in orel. Vestnik agrarnoj nauki 2022, 1, 38–44. [Google Scholar] [CrossRef]
- Paterska, M.; Bandurska, H.; Wysłouch, J.; Molińska-Glura, M.; Moliński, K. Chemical composition of horse-chestnut (Aesculus) leaves and their susceptibility to chestnut leaf miner Cameraria ohridella Deschka and Dimic. Acta Physiol. Plant. 2017, 39, 105. [Google Scholar] [CrossRef]
- Materska, M.; Pabich, M.; Sachadyn-Król, M.; Konarska, A.; Weryszko-Chmielewska, E.; Chilczuk, B.; Staszowska-Karkut, M.; Jackowska, I.; Dmitruk, M. The Secondary Metabolites Profile in Horse Chestnut Leaves Infested with Horse-Chestnut Leaf Miner. Molecules 2022, 27, 5471. [Google Scholar] [CrossRef] [PubMed]
- Bielarska, A.M.; Jasek, J.W.; Kazimierczak, R.; Hallmann, E. Red horse chestnut and horse chestnut flowers and leaves: A potential and powerful source of polyphenols with high antioxidant capacity. Molecules 2022, 27. [Google Scholar] [CrossRef] [PubMed]
- D'Costa, L.; Simmonds, M.S.; Straw, N.; Castagneyrol, B.; Koricheva, J. Leaf traits influencing oviposition preference and larval performance of Cameraria ohridella on native and novel host plants. Entomologia Experimentalis et Applicata, 2014, 152, 157–164. [Google Scholar] [CrossRef]
- Menkis, A.; Povilaitiene, A.; Marciulynas, A.; Lynikiene, J.; Gedminas, A.; Marciulyniene, D. Occurrence of common phyllosphere fungi of horse-chestnut (Aesculus hippocastanum) is unrelated to degree of damage by leafminer (Cameraria ohridella). Scand. J. For. Res. 2019, 34, 26–32. [Google Scholar] [CrossRef]





| 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
| polyphenols | |||||||
| Glycerol | 1.91 | 3.92 | 12.03 | 5.17 | 4.45 | 14.49 | 0.01 |
| 1,2,2-3-Butanetriol | 0.27 | 0.62 | 0.01 | 0.79 | 0.01 | 0.01 | 7.80 |
| L-(-)-Arabitol | 1.87 | 4.38 | 8.81 | 0.01 | 2.6 | 3.41 | 0.64 |
| D-Fucitol | 0.89 | 0.01 | 0.01 | 6.35 | 0.41 | 2.30 | 4.77 |
| D-Mannotol | 0.45 | 0.52 | 0.01 | 0.01 | 0.01 | 0.01 | 2.02 |
| 1,5-Angidroglucitol | 11.04 | 11.67 | 8.75 | 4.62 | 2.13 | 0.01 | 5.35 |
| Scillo-Inositol | 1.75 | 1.72 | 0.00 | 0.20 | 0.95 | 0.01 | 0.01 |
| Galactinol | 14.19 | 5.96 | 1.91 | 0.60 | 2.84 | 0.60 | 0.44 |
| D-Glucitol | 0.95 | 0.74 | 2.35 | 2.38 | 0.01 | 0.01 | 0.01 |
| Maltitol | 2.85 | 2.05 | 0.57 | 0.01 | 0.01 | 0.01 | 0.01 |
| Adonitol | 0.01 | 0.01 | 0.01 | 0.01 | 14,11 | 0.01 | 0.01 |
| Organic acid | |||||||
| Glucopyranuronic acid | 0,38 | 3,97 | 0.01 | 23,22 | 4,45 | 0.01 | 22,26 |
| Butanedioic acid | 4,92 | 9,91 | 11,69 | 12,87 | 14,98 | 17,29 | 13,27 |
| Quininic acid | 6,18 | 3,65 | 0,78 | 0,12 | 7,47 | 22,50 | 4,96 |
| Gluonic acid | 4,09 | 4,67 | 1,30 | 5,07 | 6,63 | 1,70 | 5,10 |
| Gallic acid | 0,54 | 0,84 | 0,29 | 0.01 | 0.01 | 0.01 | 6,37 |
| Ribonic acid | 0,25 | 0.01 | 1,94 | 0.01 | 1,27 | 0.01 | 0.01 |
| D-(+)-Galacturonic acid | 0,45 | 2,29 | 10,35 | 0.01 | 0.01 | 1,05 | 5,64 |
| Sugar deriva0.01ives | |||||||
| D-erythro-2-pentulose | 0.62 | 22.23 | 0.59 | 1.11 | 1.62 | 8.54 | 7.42 |
| Methyl-a-D-glucofuranoside | 0.75 | 1.42 | 3.37 | 0.28 | 6.87 | 13.07 | 7.29 |
| D-Psicofuranose | 9.30 | 3.72 | 6.43 | 0.01 | 0.82 | 0.25 | 3.37 |
| D-(-)-Tagatofuranose | 1.45 | 0.02 | 13.58 | 24.49 | 2.84 | 3.01 | 4.05 |
| DL- Arabinofuranoside | 3.05 | 0.01 | 0.01 | 4.33 | 4.86 | 2.97 | 0.42 |
| Methyl galactoside | 6.04 | 0.01 | 4.87 | 1.33 | 3.38 | 1.47 | 0.84 |
| b-D-(+)-Talophyranose | 2.15 | 0.01 | 2.99 | 0.84 | 0.22 | 0.05 | 0.01 |
| Talofuranose | 1.57 | 1.57 | 0.61 | 0.09 | 1.03 | 0.07 | 1.11 |
| Deoxyglucose | 0.60 | 13.92 | 0.78 | 0.12 | 2.25 | 0.10 | 0.09 |
| a-D-Ribofuranose | 0.25 | 0.99 | 0.01 | 0.05 | 0.77 | 0.05 | 0.01 |
| Glucosylspingosine | 6.55 | 0.01 | 0.01 | 0.01 | 1.75 | 3.21 | 1.15 |
| D-Turanose | 2.98 | 0.06 | 2.75 | 1.11 | 1.28 | 0.22 | 0.20 |
| Methyl-a-N-acetyl-D-galactoside | 4.89 | 0.01 | 3.18 | 0.01 | 0.64 | 0.01 | 0.37 |
| D-(-)-Sorbofuranose | 1.68 | 0.01 | 2.63 | 0.01 | 0.75 | 0.01 | 0.18 |
| b-Arabinopyranose | 2.07 | 0.01 | 0.01 | 0.01 | 1.63 | 0.01 | 0.01 |
| 1-c-Octylhexopyranose | 7.31 | 1.01 | 0.94 | 1.21 | 1.16 | 0.01 | 0.11 |
| DL-Arabinopyranose | 2.78 | 1.38 | 0.01 | 0.01 | 1.57 | 0.01 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
